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Abstract

Direct Loss Minimization (DLM) has been proposed as a pseudo-Bayesian method
motivated as regularized loss minimization. Compared to variational inference, it
replaces the loss term in the evidence lower bound (ELBO) with the predictive log
loss, which is the same loss function used in evaluation. A number of theoretical
and empirical results in prior work suggest that DLM can significantly improve
over ELBO optimization for some models. However, as we point out in this paper,
this is not the case for Bayesian neural networks (BNNs). The paper explores
the practical performance of DLM for BNN, the reasons for its failure and its
relationship to optimizing the ELBO, uncovering some interesting facts about both
algorithms.

1 Introduction

One of the main goals of probabilistic machine learning is to develop algorithms that can make
well calibrated probabilistic predictions. From the frequentist view, we need to find a single set
of parameters that best fits the data; while from a Bayesian view, we specify a prior distribution
on the parameters, calculate the posterior, and then use the posterior to predict on new data. Let
D = {(x(i), y(i))}Ni=1 be the dataset sampled i.i.d. from distribution D. From now on, we use
superscript with parentheses to denote the i-th instance. Let θ denote the parameters. The frequentist
method chooses one best set of parameters θ∗ and makes predictions on new data x∗ such that
p(y∗|x∗) = p(y∗|θ∗, x∗). Bayesian methods specify a prior p(θ), calculate the posterior

p(θ|D) ∝ p(θ)p(D|θ),
and make predictions on new data x∗ as

p(y∗|x∗) = Ep(θ|D)[p(y
∗|θ, x∗)].

For simple models, the posterior can be computed analytically. But for complicated models, the
posterior becomes intractable. One solution is to get samples from true posterior and calculate the
objective, for example using MCMC. Another line of work aims to find a distribution q from an
analytical distribution family Q that is closest to the posterior. When making prediction on new data
x∗, we marginalize over q, that is, p(y∗|x∗) = Eq(θ)[p(y

∗|θ, x∗)]. A typical example is variational
inference, which tries to minimize the KL divergence between the variational distribution and the
true posterior:

q∗(θ) = argmin
q∈Q

KL(q(θ)||p(θ|D))

= argmin
q∈Q

Eq(θ)[log q(θ)− log p(θ,D)] + log p(D)

= argmin
q∈Q

∑
i

Eq(θ)[− log p(y(i)|θ, x(i))] + KL(q(θ)||p(θ)). (1)
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The last line is the negation of the Evidence Lower Bound (ELBO). The most common measure to
evaluate the quality of predictions is negative log-loss (NLL):

l(q, (x∗, y∗)) = − logEq(θ)[p(y
∗|θ, x∗)]. (2)

We use ltest(q) to denote the averaged NLL on test set. We optimize eq (1) but hope to get lower NLL,
i.e. eq (2). This suggests a discrepancy. If we care about the NLL, why not directly optimize NLL
(2)? From this perspective the KL term in eq (1) is seen as a regularizer to prevent overfitting. This
motivates the idea of Direct Loss Minimization (DLM) which has been studied by multiple authors:

q
(η)
DLM(θ) = argmin

q∈Q

∑
i

− logEq(θ)[p(y
(i)|θ, x(i))] + ηKL(q(θ)||p(θ)). (3)

Notice that by Jensen’s inequality,

ldlm(q, (x, y)) = − logEq(θ)[p(y|θ, x)] ≤ lelbo(q, (x, y)) = −Eq(θ)[log p(y|θ, x)]
so that lelbo can be seen as a surrogate loss for the log loss which is used during training. But DLM
optimizes the desired objective and the idea of DLM can be applied on various loss functions. We can
replace the first term in eq (3) with any loss functions we are interested in. Similarly, the regularizer
can be chosen among several options. However, in this paper we focus on the choice given above.

In practice, it is common to use a hyperparameter η to tune the KL regularizer, as in eq (3). In
addition, when it is hard to compute the expectations analytically we can use Monte Carlo samples to
approximate them. With these modifications the objectives in eq (1) and eq (3)) become:

q̄
(η,M)
ELBO (θ) = argmin

q∈Q

∑
i

1

M

M∑
m=1

[− log p(y(i)|θ(m), x(i))] + ηKL(q(θ)||p(θ)), θ(m) ∼ q(θ);

(4)

q̄
(η,M)
DLM (θ) = argmin

q∈Q

∑
i

− log
1

M

M∑
m=1

p(y(i)|θ(m), x(i)) + ηKL(q(θ)||p(θ)), θ(m) ∼ q(θ).

(5)

Notice that eq (4) is an unbiased estimate of eq (1) while eq (5) is a biased estimate of eq (3).

2 Theoretical Motivation of DLM

Prior work motivates the use of DLM from a theoretical perspective. In this section we review some
of these results. Specifically, Sheth and Khardon [2019] provide risk bounds for several variants of
DLM. Here we focus on one result (see their appendix B) that uses a bounded optimization view.
Suppose we restrict our distribution family Q to QA = {q ∈ Q s.t. KL(q, p) ≤ A}, where p is the
prior distribution over θ, and we perform empirical risk minimization (ERM) on QA:

q
(A)
ERM(θ) = argmin

q∈QA

∑
i

− logEq(θ)[p(y
(i)|θ, x(i))]. (6)

Then with probability 1− δ over the choice of the dataset D, for all q ∈ QA,

E(x,y)∼D

[
− log

(
E
q
(A)
ERM(θ)

p(y|θ, x)
)]

≤ E(x,y)∼D
[
− log(Eq(θ)(p(y|θ, x)))

]
+O

√A

N
+

√
log 1

δ

N

 .

(7)

This result holds when the log-loss is bounded, which can be achieved by replacing the log loss with

log(a) p = log((1− a)p+ a) (8)

or by further bounding the parameter space of distribution family Q. The following proposition (proof
in [Wei and Khardon, 2022]) observes that while the above holds for eq (6) we can obtain similar risk
bounds for eq (3). One can further extend eq (7) into a data dependent bound as in Theorem 10 in
[Meir and Zhang, 2003]. Therefore DLM as motivated above enjoys some theoretical support.

Proposition 1. Let Aη = KL(q(η)DLM||p). Then the solution of eq (3), i.e., q(η)DLM, is also the solution of
eq (6) with A = Aη .
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A second theoretical perspective is given by the recent work of Morningstar et al. [2022]. This work
presents a PAC-Bayes bound called PACm bound. With probability 1− δ, for any q ∈ Q,

E(x,y)∼D[− logEq(θ)[p(y|θ, x)]]

≤− 1

N

∑
i

Eq(θM )

[
log

(
1

M

∑
m

p
(
y(i)|x(i), θ(m)

))]
+

1

ηN
KL(q||p)

+ ψ(D, η,M,N, p, δ) +
1

ηMN
log

1

δ
, (9)

where

ψ(D, η,M,N, p, δ) =
1

ηMN
logED∼DNEp(θ(1:m))

[
exp

(
ηNM ·∆

(
D, θ(1:M)

))]
,

∆(D, θ(1:M)) =
1

N

∑
i

log

(
1

M

∑
m

p(y(i)|x(i), θ(m))

)
− E(x,y)∼D

[
log

(
1

M

∑
m

p(y|x, θ(m))

)]
.

The PACm algorithm minimizes the right-hand-side of (9) to calculate its solution which we denote
as q̄(η)DLM. For the corresponding algorithm note that the terms on the last line of (9) do not depend
on q̄(η)DLM and can be omitted in the optimization. This is different from previous analysis [Sheth and
Khardon, 2017, 2019], that uses the predictive loss

− logEq(θ)[p(y|x, θ)] = − logEq(θ(1:M))

[
1

M

∑
m

p(y|x, θ(m))

]

≤ −Eq(θ(1:M))

[
log

(
1

M

∑
m

p
(
y|x, θ(m)

))]
(10)

for the data-dependent upper bound. When the outside expectation in (9) is implemented with a
single multi-sample from q(), which is the case in [Morningstar et al., 2022], eq (9) leads to the same
implementation as eq (5) and (7). Theoretically, loss term in bound (7) is lower but it requires q̄(η)DLM

to converge to q(η)DLM to guarantee the performance (see related analysis by Wei et al. [2021]), while
the bound (9) directly guarantees the performance of q̄(η)DLM with a higher loss as shown in eq (10).

Morningstar et al. [2022] also establishes the relationship between ELBO and DLM. Notice that with
M = 1, the right hand sides of eq (4) and eq (5) are the same. They also show that as M becomes
larger, the data dependent bound when M > 1 (i.e., the right hand side of eq (9)) is tighter than that
when M = 1, corresponding to the data dependent bound for ELBO.

3 Applications of DLM

DLM has already been applied in practice and is shown to yield good results. Sheth and Khardon
[2017] apply DLM to the correlated topic model and it achieves lower predictive loss than ELBO.
Jankowiak et al. [2020] explores the application of DLM in conjugate sparse Gaussian processes and
Wei et al. [2021] extends this to non-conjugate sparse Gaussian processes. In those experiments, η is
chosen appropriately through cross validation. For conjugate cases, where both the ELBO objective
(1) and the DLM objective (3) can be computed exactly without approximation, DLM significantly
outperforms ELBO; while for non-conjugate cases, Monte Carlo sampling is needed and DLM is
better than or comparable to ELBO.

DLM has also been applied to BNNs. Dusenberry et al. [2020] apply both ELBO and DLM on a
rank-1 parametrization of BNNs that they introduce. Their experiments show that DLM has higher
NLL than ELBO, which means that DLM performs worse than ELBO. Morningstar et al. [2022] also
compare ELBO and DLM on BNNs and conclude that DLM performs better than ELBO when data is
misspecified, i.e. the data generating distribution is not inside the model space. To see this, they apply
ELBO and DLM to independently predict pixels of the bottom half of an image given the top half,
which encounters data misspecification as the pixels are not independent. When there is no evident
data misspecification they show that, under the same KL value, DLM performs slightly better than
ELBO. However, the converged ELBO solution may not have the same KL value as the converged
DLM solution. So the experiment is not sufficient to show that the converged DLM solution performs
better than the converged ELBO solution.
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4 DLM in Bayesian Neural Networks

In contrast with the positive evidence, our work found that DLM does not perform as well for
Bayesian neural networks (BNNs). In BNN, θ represents the weights of the neural network and we
use eq (4) and eq (5) with a mean-field diagonal Gaussian variational distribution q(θj) = N (µj , σ

2
j )

and µ and σ2 are vectors of the same dimension as the parameter space. BNNs normally have millions
of parameters, so the KL-divergence term can be very high and using a high value of η = 1 leads to
poor performance, hence we fix η = 0.1. Following Wilson et al. [2022], we set the prior variance to
0.05. We experimented with two neural network structures, AlexNet [Krizhevsky et al., 2012] and
PreResNet [He et al., 2016] with depth 20 on four datasets, CIFAR10, CIFAR100, STL10, SVHN.
For all experiments, we set the batch size to 512, use the Adam optimizer with learning rate 0.001
and train for 500 epochs. We set M = 5 in eq (4) and eq (5) for training and M = 10 for evaluation.
Most combinations of datasets and structures have similar results (see Figure 1) and behave similarly
during our exploration, so we only show the detailed exploration of using AlexNet on CIFAR10 in the
main body of the paper and discuss exceptions in the [Wei and Khardon, 2022]. Our code is available
on https://github.com/weiyadi/dlm_bnn. To simplify the presentation, we use upper case
“ELBO” and “DLM” to indicate the solution trained with ELBO and DLM loss respectively, and use
lower case “elbo” and “dlm” to denote the corresponding loss functions.

Observation 1. ELBO performs better than DLM.

DLM is worse than ELBO in most experiments. A summary over all experiments is shown in Figure 1
and a concrete learning curve is shown in Figure 2a. In a few cases DLM has similar performance but
it does not outperform ELBO in any of the experiments. The range of test losses in the experiments is
up to 2, so the differences shown are significant.

CIFAR10-A CIFAR100-A STL10-A SVHN-A CIFAR10-P CIFAR100-P STL10-P SVHN-P

0.0

0.1

0.2

0.3

0.4

0.5

DL
M
−E

LB
O

Figure 1: Comparison of ELBO and DLM in all experiments, “-A” means on AlexNet and “-P”
means on PreResNet20. y-axis is ltest(qDLM)− ltest(qELBO), and a positive value indicates that DLM
performs worse than ELBO. Each point represents an independent run with random initialization.

To better understand the behavior of ELBO and DLM, we also compute some quantities during the
training, including elbo objective, dlm objective and KL divergence, and see how they change. We
repeat with different seeds and the quantities behave similarly regardless of the random seed we
choose. To our surprise, we observe:

Observation 2. ELBO appears to optimize the dlm objective better than the DLM algorithm.

As shown in Figure 2b, which depicts how the dlm loss changes during training, ELBO (blue solid
line) is below DLM (orange dashdot line). At the same time, ELBO optimizes its own objective, elbo
objective, better than DLM, as shown in Figure 2c. One might suspect that the reason for this is that
the dlm objective is likely to get stuck in local optima. Thus if we initialize DLM with a good starting
point, then DLM may be improved. To test this, we initialize DLM with ELBO solution and continue
to train with dlm objective and we denote this solution as DLM-init_ELBO. For comparison we also
have ELBO-init_ELBO which is initialized with ELBO and then continue to train with elbo objective.
However, DLM is not improved with ELBO initialization and it even makes ELBO worse, as shown
in Figure 2a. The increase of test loss for DLM shows that DLM is not stuck in local optima by
accident, but is inherently worse than ELBO.

Observation 3. The failure of DLM is not due to local optima.
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The good news is that with ELBO initialization, DLM optimizes the dlm objective slightly better than
ELBO, as shown in Figure 2b. We note that this does not happen for every experiment. In Figure
C.1c in the [Wei and Khardon, 2022], DLM still optimizes dlm loss worse than ELBO even with
ELBO initialization.
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Figure 2: Comparison of ELBO and DLM with/without initialization

All these abnormalities lead us to further explore the structure of elbo and dlm losses. Motivated by
Garipov et al. [2018], we create a path from ELBO to DLM, i.e. µ = (1− α)µELBO + αµDLM, σ

2 =
(1 − α)σ2

ELBO + ασ2
DLM, and then evaluate the elbo objective (with/without KL), dlm objective

(with/without KL) and test loss on (µ, σ2). It is clear that ELBO corresponds to α = 0 and DLM
corresponds to α = 1. From the loss surface plotted in Figure 3a, we confirm Observation 1
and 2 (note that the dlm objective is lower at α = 0). Figure 3b plots the path from ELBO to
DLM-init_ELBO, and we can see how optimizing with dlm loss will change these loss functions.

Observation 4. The elbo objective with η = 0.1 is better aligned with test loss than the dlm objective,
which indicates that the elbo objective generalizes better.

Figure 3b shows that as α increases, the dlm objective decreases, but both the elbo objective and
the test loss increase. Figure C.2b in the [Wei and Khardon, 2022] shows a different situation (on
CIFAR100 with AlexNet) where the dlm objective also increases, i.e., it is also aligned. But in our
experiments the elbo objective and the test loss are always aligned in our experiments. Observation 4
also explains the abnormality in Figure C.1c, in which DLM-init_ELBO significantly increases the
dlm objective in first few epochs. This is because we optimize the dlm objective within a batch but
plot the average dlm objective value among all batches. The poor generalization of the dlm objective
may cause the value evaluated on other batches to increase and the overall value increases.

We also observe from Figure 3b that the dlm objective goes down but its loss term goes up, implying
that the reduction in objective is due to the KL term. The same sensitivity regarding the tradeoff
between the loss term and regularizer appears in other cases as well. To explore this we reduce η to
0 after initializing with ELBO. Figure 4a shows that reducing η to 0 makes both ELBO and DLM
perform worse than their original version but the relationship of ELBO-init-no_kl and DLM-init-
no_kl still follows Observation 1. Figure 4b again shows Observation 2, i.e., that the dlm objective
(η = 0) achieves lower value at ELBO-init-no_kl than at DLM-init-no_kl.

In contrast with Figure 4b, Figure 3c depicts the path between DLM-init-no_kl and the original ELBO
solution (which is the best), instead of ELBO-init-no_kl. Then we can see that neither the elbo loss
nor the dlm loss without KL is aligned with the test loss, indicating overfitting. From another view,
the three plots in Figure 3 depict the change of loss functions along three directions from ELBO. The
elbo objective with η = 0.1 is aligned with the test loss in all three cases. But we cannot find such
proper η for dlm. In (a) and (c), the dlm objective with η = 0.1 is aligned with the test loss, but in (b)
the dlm objective with η = 0 is aligned with the test loss. All these results support Observation 4.

In addition to the work mentioned above, we have explored bounded optimization, smoothed loss,
collapsed variational inference [Tomczak et al., 2021] and empirical Bayes [Wu et al., 2019]. The first
two measures aim to close the gap between theoretical analysis and real applications so that we can
utilize the upper bounds to guarantee the performance of DLM. The latter two define a hierarchical
model and perform inference on the prior parameters, which results in a different regularizer to replace
the original KL divergence. Although these measures can sometimes improve the performance of
DLM, they do not help DLM outperform ELBO. Details are in the [Wei and Khardon, 2022].
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Figure 3: Loss Surface
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Figure 4: Test Performance and Loss Surface for η = 0

Overall, we found that at least one of Observation 2 and 4 appears in all experiments. In cases where
ELBO does not optimize the dlm objective better than DLM, Observation 4 kicks in and shows that
optimizing the dlm objective cannot make the performance better; In cases where the dlm objective is
aligned with the test loss, we find that ELBO optimizes the dlm objective better. Thus, none of the
variants of DLM mentioned in this paper outperforms ELBO.

5 Conclusion and Future Work

Direct loss minimization has a strong motivation that we should use the same loss function in both
training and testing. During training, we add a regularizer to prevent overfitting. Many theoretical
results guarantee the performance of DLM optimizers. Despite its empirical success in sparse
Gaussian processes, we observe that such success does not appear for Bayesian neural networks. In
empirical exploration, we found that the goal of DLM is also severely challenged as ELBO optimizes
dlm objective better than DLM itself. The most likely reason for this is that the dlm objective
is hard to optimize for Bayeisan neural networks. Besides, DLM generalizes worse than ELBO,
because elbo loss is more consistent with test loss, pointing out overfitting of the dlm objective. This
relates to data misspecification as suggested in [Morningstar et al., 2022] but how to test the notion
of misspecification in image classification remains unclear as the neural networks are expressive.
It would be interesting to explore what distinguishes cases where DLM succeeds, such as sparse
Gaussian processes, from the behavior shown in this paper. As mentioned above, we can view the
elbo loss as a (potentially better behaved) surrogate loss of the true loss given by dlm. It would be
interesting to explore theoretical analysis that explains differences in behavior from this perspective.
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