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Abstract

The field of Machine Translation (MT) has
experienced rapid progress in recent years,
with significant advancements in neural-based
models and parallel corpora. However, the
challenge of developing relevant automated
metrics to evaluate MT systems remains a
significant obstacle. Despite the widespread
use of automated Natural Language Process-
ing (NLP) metrics for this purpose, there is
growing concern that these metrics do not al-
ways align with human judgment, leading to
potential inaccuracies in evaluation.

To address this issue, our research paper
conducted a benchmark evaluation of various
automated NLP metrics at the sentence-level,
with a focus on two different approaches:
candidate-to-reference and candidate-to-
original-sentence, also known as the Quality
Estimation (QE) task. Through our evaluation,
we found that automated metrics perform
well in the former aspect, but there is still
significant room for improvement in the latter.

Our research highlights the importance of mul-
tilingual QE, as it offers a strategic solution
to the challenge of collecting labelled data for
each language pair. By overcoming this obsta-
cle, multilingual QE can play a crucial role in
improving MT models. However, our findings
also underscore the need for further research
and development in this area, particularly in
developing automated metrics that align more
closely with human judgment. Ultimately, im-
proving the accuracy and reliability of auto-
mated NLP metrics will be essential to advanc-
ing the field of MT and realizing the full poten-
tial of machine translation technology.

∗These authors contributed equally to this work.
Code is available on Github.

1 Introduction

Machine Translation has seen considerable
progress since the introduction of Transformers
(Vaswani et al., 2017), and more generally of
pre-trained language models (Devlin et al., 2018;
Radford et al., 2018). However, the evaluation
of generated sentences is still a problem in its
own right. Evaluating the performance of natural
language generation systems using human anno-
tation can be a costly and time-consuming process
that requires a significant amount of non-reusable
labor (Colombo* et al., 2019; Jalalzai* et al.,
2020; Colombo et al., 2021a). To mitigate these
issues, researchers often rely on automatic metrics
as a substitute measure of quality (Colombo,
2021).

The standard evaluation framework for a met-
ric is to compute its correlation with human judg-
ment, on manually annotated datasets. Transla-
tion quality can be assessed at different levels of
granularity: word, sentence and document level.
Although considerable progress has been made in
these areas, automatic metrics often show poor
correlation with human judgment, at least at the
sentence-level (Liu et al., 2016) On the other hand,
at the system level, some metrics can show corre-
lations higher than 0.9 (Ma et al., 2019).

The problem lies essentially in the lack of
datasets and the inherent bias of human annota-
tion. Moreover, aggregating the different aspects
of a translation according to a metric makes it diffi-
cult to account for the aspects that the metric man-
ages to capture or not (Guan et al., 2021).

Today, existing metrics can be broken down into
three categories:

1. Edit based (Snover et al., 2006): the metric
counts the number of operations required to
go from the translated sentence to a reference
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sentence. The possible operations are inser-
tion, deletion and substitution.

2. N-gram based (Papineni et al., 2002) : the
metric is computed from the overlap of n-
gram between the reference and the trans-
lated sentence.

3. Embedded based (Kusner et al., 2015; Zhang
et al., 2019; Zhao et al., 2019; Clark et al.,
2019) : sentence are embedded using a model
language and a similarity measure is com-
puted.

We can already see here that Edit based N- gram
based metrics seem less suitable to score a transla-
tion directly from the original sentence.

In this work, we propose a benchmark of differ-
ent usual automatic metrics on the test set new-
stest2020 of WMT2020 (Barrault et al., 2020).
We use a dataset that has been re-annotated by
professional translators, which gives a more reli-
able notation than the one done by crowd-workers.
In addition, to simplify the benchmark, we used
the Scalar Quality Metrics (SQM) as a reference,
which uses a scale of 0 to 6 to evaluate the quality
of a translation, unlike the WMT’s 0 to 100 rating
(Freitag et al., 2021).

The benchmark is broken down into two parts:
one deals with the correlation with human judg-
ment between a proposed translation and a refer-
ence translation, the other between the proposed
translation and the original (i.e. foreign language)
sentence. The second approach is called Quality
Estimation, and is a burning topic in the research
community, given that it aims to create metrics
that do not need a reference translation to work,
and therefore being much more available for use
in practice.

2 Experiments Protocol

2.1 Dataset

Here we seek to compare different automatic met-
rics. In machine translation, datasets are usu-
ally composed of the triplets sentence to translate,
translated sentence, references. In order to evalu-
ate the correlation with human judgment, we add
to this triplet the SQM score which gives the trans-
lation quality of the translated sentence.

Two modifications are made on the original
dataset:

Table 1: Statistics of the dataset

Number of original sentences (OS) 638
Number of translated sentences (TS) 5816
Average number of references (R) per OS 2.98

Table 2: Example of a quadruplets

Original: J’aime les chiens
Translated: I’m playing with a dog
References: [I like dogs, I love dogs]
SQM Score: 3.5

1. The scores of the different translators for
the same translation are averaged to obtain
a more continuous score between 0 and 6
(which can be resized between 0 and 1).

2. There is no reference translation: to over-
come this, as soon as one of the translators
has given the maximum score of 6, the pro-
posed translation is considered a reference.

Table 1 shows the statistics of the resulting
dataset and Table 2 gives a dummy example.

2.2 Automatic Metrics for Translated to
Reference Correlation

2.2.1 N-Gram Based Metric
1. BLEU (Papineni et al., 2002)

BLEU compares the n-gram of the candidate
translation with the n-gram of the reference
translations to count the number of matches,
independently of the positions they occur.It
uses a modified n-gram precision score pn
associated with a weight wn, as well as a
Brevity Penalty BP to get :

BLEU = BP×exp
(∑N

n=1wn × log(pn)
)

2. ROUGE (Lin, 2004)

ROUGE is actually a set of metrics. In addi-
tion to precision, ROUGE also takes into ac-
count the recall on the n-gram to form a more
accurate Fβ-score. ROUGE-L measures the
longest common subsequences ( between the
candidate and the references. Since it does
not capture synonymous or topic concepts,
ROUGE 2.0 (Ganesan, 2018) address this by
providing a synonymy dictionary and Part-
Of-Speech tagging.



3. METEOR (Banerjee and Lavie, 2005; Guo
et al., 2018)

METEOR is also a Fβ-score that use Porter
stemming and synonymy matching using
WordNet (Miller, 1995). To account for the
word order in the candidate a penalty func-
tion is introduced, which gives :

METEOR = (1− Penalty)× Fβ

2.2.2 Embedded Based Metric
1. BERTScore (Zhang et al., 2019)

Instead of using n-grams, BERTScore com-
putes a similarity (usually Cosine) for each
token in the candidate sentence with each to-
ken in the reference sentence. BERTScore is
more robust to paraphrase and capture more
easily distant dependencies

2. BLEURT (Sellam et al., 2020)

The aim is to combine expressivity and ro-
bustness by pre-training a fully learned met-
ric on large amounts of synthetic data, before
fine tuning it on human-ratings. Given two
sentences x and x̃ we use BERT for sentence
pairs, BERT (x, x̃) to extract the [CLS] to-
ken embedding v[CLS]. To classify, we add
a linear layer on top of the [CLS] vector to
predict the rating, where W and b are weight
matrix and bias vector :

ŷ = Wv[CLS] + b

3. BaryScore (Colombo et al., 2021b)

BaryScore combines the layers of BERT to
calculate a similarity score. However, instead
of using a vector embedding, BaryScore
models the layer output as a probability dis-
tribution. This allows BaryScore to combine
the different outputs using the Wasserstein
space topology. Since BaryScore does not
handle multiple references, we take the av-
erage of the scores obtained.

4. DepthScore (Staerman et al., 2021a)

Similar to BERTScore, DepthScore use a sin-
gle layer of a pretrained language model to
get a discrete probabilities measure of the
candidate µ̂C

·,land the reference µ̂R
·,l and com-

pute a similarity score using the pseudo met-
ric of (Staerman et al., 2021b). Since Depth-
Score does not handle multiple references,
we take the average of the scores obtained.

2.3 Automatic Metrics for Translated to
Orignal Sentence Correlation

The idea here is to use the previous metrics not be-
tween a candidate and the reference, but between
the candidate and the original sentence. Of course,
only embedded-based models seem to be better
adapted. Two infrastructures are analysed.

2.3.1 Multilingual BERT structures
As shown in Figure 1, we use a trained mul-
tilingual BERT model on several languages to
then test the BERTScore, BaryScore, and Depth-
Score metrics that do not require training. In
addition, we also try cross-encoder model from
Sentence-Transformers (Reimers and Gurevych,
2019), which works similarly to BERTScore.

Figure 1: Multilingual BERT structure

2.3.2 Siamese BERT structures
Here we prefer a Siamese structure that encodes
the candidate and the original sentence in respec-
tive BERTs (see Figure 2) Only the BaryScore and
DepthScore metrics seem to be the most suitable
for this type of structure.

Figure 2: Siamese BERT structure

2.4 Correlation Evaluation

We use the standard Pearson, Spearman and
Kendall correlation coefficient on a segment level.

2.4.1 Pearson Correlation Coefficient (PCC)
The PCC, or r is a measure of linear correlation
between two variables :

rX,Y = Cov(X,Y )√
Var(X)Var(Y ))



2.4.2 Spearman’s Rank Correlation
Coefficient ρ

It is a measure of rank correlation between two
variables. In other words, it shows the relationship
between two variable using a monotonic function.
Converting X ,Y to ranks rg(X), rg(Y ) :

ρX,Y = rrg(X),rg(Y ) =
Cov(rg(X),rg(Y ))√

Var(rg(X))Var(rg(Y )))

2.4.3 Kendall Rank Correlation Coefficient τ

It is a measure of the ordinal association between
two variables. For any pair (xi, yi) and (xj , yj),
i < j, the pair are concordant if both xi > xj and
yi > yj holds or both xi < xj and yi < yj holds;
otherwise the pair are discordant. For n observa-
tion :

τX,Y =
#Concordant pairs−#Discordant pairs

#Number of pairs

3 Results

Due to lack of computational resources, the coef-
ficients below have been computed with a sample
of 500 quadruplets of our final dataset. Indeed,
embedded based metrics are resource intensive.

3.1 Translated to References

Pearson Spearman
Metric

bleu 0.659636 0.784567
meteor 0.644352 0.775174
bertscore 0.671346 0.793900
bleurt 0.701576 0.796326
rouge1 0.658301 0.798812
rouge2 0.677770 0.793060
rougeL 0.655965 0.794507
rougeLsum 0.655965 0.794507
baryscore W -0.561375 -0.603565
baryscore SD 10 -0.277762 -0.276258
baryscore SD 1 -0.349625 -0.366585
baryscore SD 5 -0.284509 -0.284985
baryscore SD 0.1 -0.564299 -0.605902
baryscore SD 0.5 -0.443399 -0.479060
baryscore SD 0.01 -0.561362 -0.603572
baryscore SD 0.001 0.098422 0.199817
depth score -0.500916 -0.606358

Kendall
Metric

bleu 0.611053
meteor 0.576915
bertscore 0.608994
bleurt 0.604044
rouge1 0.624249
rouge2 0.616871
rougeL 0.618991
rougeLsum 0.618991
baryscore W -0.438494
baryscore SD 10 -0.195089
baryscore SD 1 -0.261753
baryscore SD 5 -0.201229
baryscore SD 0.1 -0.441264
baryscore SD 0.5 -0.348217
baryscore SD 0.01 -0.438450
baryscore SD 0.001 0.139307
depth score -0.436903

Table 3: Evaluation of correlation coefficient (Pearson,

Spearman and Kendall) between automated metric and hu-

man judgment for Translation-Original similarity evaluation

3.2 Translated to Original

Pearson Spearman
Metric

baryscore W -0.137279 -0.142643
baryscore SD 10 -0.194361 -0.212121
baryscore SD 1 -0.193026 -0.211178
baryscore SD 5 -0.194259 -0.212340
baryscore SD 0.1 -0.147889 -0.169007
baryscore SD 0.5 -0.190128 -0.208709
baryscore SD 0.01 -0.137188 -0.142703
baryscore SD 0.001 0.047921 -0.020487
depth score -0.037193 0.003231
siam baryscore W -0.050786 -0.063746
siam baryscore SD 10 -0.043611 -0.061870
siam baryscore SD 1 -0.043827 -0.062036
siam baryscore SD 5 -0.043634 -0.061885
siam baryscore SD 0.1 -0.046168 -0.063744
siam baryscore SD 0.5 -0.044071 -0.062197
siam baryscore SD 0.01 -0.055554 -0.068986
siam depth score 0.098776 0.105129
Sentence Transformer 0.233240 0.231915
bertscore multi 0.152020 0.144655



Kendall
Metric

baryscore W -0.100542
baryscore SD 10 -0.152267
baryscore SD 1 -0.151465
baryscore SD 5 -0.152642
baryscore SD 0.1 -0.119284
baryscore SD 0.5 -0.149606
baryscore SD 0.01 -0.100525
baryscore SD 0.001 -0.014129
depth score 0.001253
siam baryscore W -0.044443
siam baryscore SD 10 -0.041373
siam baryscore SD 1 -0.041714
siam baryscore SD 5 -0.041476
siam baryscore SD 0.1 -0.043607
siam baryscore SD 0.5 -0.042004
siam baryscore SD 0.01 -0.047223
siam depth score 0.073179
Sentence Transformer 0.163062
bertscore multi 0.101557

Table 4: Evaluation of correlation coefficient (Pearson,

Spearman and Kendall) between automated metric and hu-

man judgment for Translation-Original similarity evaluation

4 Conclusion

In the first part of our study, the sentence-level
evaluation of various automated metrics using
Spearman’s and Kendall’s correlations showed
that ROUGE performed the best, followed by
BLEURT for Spearman’s correlation. However,
BaryScore and DepthScore, despite obtaining re-
spectable scores, failed to capture human judg-
ment effectively.

It is important to note that the dataset used in
this study initially had no references, and the ref-
erences were taken from the proposed translations.
Additionally, the texts were taken from the WMT,
which is the dataset on which BLEURT was fine-
tuned.

In the second part of the study, the results were
unexpected, as none of the metrics achieved high
correlations. Instead, the model based on Sen-
tence Transformers, which was originally trained
for Information Retrieval, achieved the best per-
formance.

For future research, it would be interesting to
evaluate the same metrics at the word-level and
system-level for our dataset and other task (Chhun
et al., 2022). This would provide a more compre-

hensive evaluation of automated metrics and their
ability to capture human judgment accurately.

In order to advance research in machine trans-
lation, it is crucial to identify the factors that pre-
vent automatic metrics from accurately approxi-
mating human judgments. It is important to un-
derstand and characterize the unobserved variance
between the two evaluations. For instance, it is
necessary to determine whether the discrepancies
arise solely from the biases of human evaluators.
Some studies suggest that automatic metrics are
subject to a glass ceiling that limits their ability
to approximate human judgment (Colombo et al.,
2022b,a). It remains uncertain whether this ceiling
can be surpassed in the future. Therefore, further
research is required to investigate the limitations
of automatic metrics and identify potential ways
to address them.

.
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d’Alché Buc. 2021a. A pseudo-metric between
probability distributions based on depth-trimmed re-
gions. arXiv preprint arXiv:2103.12711.

Guillaume Staerman, Pavlo Mozharovskyi, Pierre
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