Exploring Example Selection for Few-shot Text-to-SQL Semantic Parsing

Anonymous ACL submission

Abstract

We study example selection methods for few-
shot text-to-SQL tasks with unseen databases.
Annotating natural language questions with cor-
responding SQL queries is expensive, but we
can use abundant unlabeled questions to effi-
ciently select examples to annotate and then
use them to adapt models. Many previous
works only randomly sample a few instances
for few-shot learning, but this random selec-
tion is not sufficient to select representative and
informative examples that provide specific do-
main knowledge. We thus explore methods to
efficiently choose annotation examples. We
identify two important factors: the diversity of
selected instances and the dissimilarity to the
source training data if any. A diverse training
set contains more domain knowledge, while
dissimilar examples are selected to fill in the
domain gap between the source and target. We
show that our best example selection approach
substantially improves few-shot text-to-SQL
performance in both finetuning using TS and
in-context learning with Codex: average execu-
tion accuracy gains of 8.7% and 4.3% over ran-
dom selection. Our extensive analysis demon-
strates the importance of the similarity metric
and the embedding method for example repre-
sentations. We also find that effective example
selection reduces syntax errors on the target
domains. Our results encourage future work to
further explore example selection for efficient
adaptation of text-to-SQL models.'

1 Introduction

Text-to-SQL semantic parsing is the task of gen-
erating executable SQL queries from natural lan-
guage utterances and relational database schemas.
Most previous work aims to train and test a se-
mantic parsing system on a single database (Price,
1990; Dahl et al., 1994; Zelle and Mooney, 1996a;
Zettlemoyer and Collins, 2005; Dong and Lapata,
2016). However, it is inefficient to train a sepa-
rate model from scratch for each possible target

!Our code is available at anonymized.

Unlabeled in-domain questions

Can undergrads take 595?
Are undergrads allowed to take 660?

Give me some good restaurants in alameda.
How many French restaurant are there in Palo Alto ?

Select‘

Annotate SQL for selected questions

NL: Can undergrads take 595?

SQL: SELECT DISTINCT ADVISORY REQUIREMENT,
ENFORCED REQUIREMENT, NAME FROM COURSE
WHERE DEPARTMENT = "EECS" AND NUMBER = 595

NL: Give me some good restaurants in alameda.

SQL: SELECT T2.HOUSE NUMBER, T1.NAME FROM
RESTAURANT AS TI JOIN LOCATION AS T2 ON
T1.ID = T2.RESTAURANT ID WHERE T2.CITY NAME
= ”alameda” AND T1.RATING > 2.5

Figure 1: Our goal is to make the best use of the anno-
tation budget by selecting a few examples to annotate
from many unlabeled questions. The first two questions
are similar, and it is enough to annotate only one of
them. In the last two questions, we select the first one
to annotate because it requires domain knowledge (e.g.,
good restaurants means the ones with rating > 2.5) to
interpret its meaning.

database, as there are too many in the world. Fur-
thermore, annotating SQL queries for natural lan-
guage questions requires annotators with techni-
cal backgrounds. Thus, much recent progress on
this task has been driven by large-scale neural net-
work models (Guo et al., 2019; Wang et al., 2020;
Scholak et al., 2021) trained on cross-database se-
mantic parsing (XSP) datasets such as Spider (Yu
et al., 2018) that cover multiple databases and do-
mains.

Nonetheless, these recent models trained on
source domains (e.g., Spider) still perform poorly
when applied to a different target domain (e.g.,
ATIS (Price, 1990)) with a wide variety of lan-
guage usage not covered during training (Suhr et al.,
2020). One major failure mode is caused by ques-
tions that require domain-specific knowledge to

anonymized

correctly interpret. For example, a user might ask
“can undergrads take 5957 in an academic advising
domain (Fig. 1). A text-to-SQL model struggles
to interpret this question as “return the name and
advisory and enforce requirements for Course 595
in the EECS department” unless it is trained on this
particular domain.

We thus explore techniques to efficiently select
examples to annotate for domain adaptation in text-
to-SQL. In addition to clustering approaches that
have proven successful in other tasks (Chang et al.,
2021), we propose simple but effective sample se-
lection methods for few-shot text-to-SQL. In partic-
ular, we focus on two important aspects as selection
criteria: example diversity and dissimilarity to the
source training data. We aim to select a few diverse,
representative questions from the target domain and
annotate corresponding SQL queries to maximize
the limited annotation budget. For example, in
Fig. 1 questions “Can undergrads take 5957 and
“Are undergrads allowed to take 660 are similar,
and models can learn from one of them. It is thus
ideal to select one of the two instances to annotate
and save annotation efforts. We also seek to se-
lect examples dissimilar to the source XSP training
data (e.g., Spider) so that we encourage the model
to learn domain-specific information not covered in
the training data. For example, the last question in
Fig. 1 is about restaurants, but understanding good
restaurants requires domain knowledge (rating >
2.5), which differs from Spider whose questions
usually specify such values.

We demonstrate the effectiveness of our selec-
tion methods on 9 datasets with varying domains
under two settings: finetuning and in-context learn-
ing. In the former scenario, we first train a T5-large
model (Raffel et al., 2020) on Spider and then fine-
tune the model on a small number of selected in-
domain question-SQL pairs. Our example selection
boosts the Spider model’s few-shot performance on
target domains by 8.7% in execution accuracy, as
compared to random selection. In-context learning,
on the other hand, constructs demonstration exam-
ples from the few annotated instances and feeds
them to Codex (Chen et al., 2021), a variant of
GPT-3 (Brown et al., 2020a) that is finetuned on
publicly available code from Github. This approach
has the advantage of avoiding the need for parame-
ter updates of large language models. Our example
selection is also effective in this setting with 4.3%
accuracy improvement over random selection.

We also provide extensive analysis that exam-
ines the importance of the similarity metric and the
embedding method used to produce representations
of examples. In summary, our contributions are:

* We explore example selection methods that
substantially improve the few-shot text-to-
SQL performance on 9 diverse datasets.

* We apply our methods to finetuning and in-
context learning, demonstrating the effective-
ness in both settings.

* To the best of our knowledge, we are the first
to develop a method for Codex in-context
learning under a small, predetermined anno-
tation budget. Our method consists of two
stages where the first stage selects a few exam-
ples to annotate and the second stage further
selects prompt demonstration examples from
the annotated ones.

* We conducted detailed analyses on embed-
ding methods and similarity metrics. We find
that syntactic errors are substantially reduced
by our example selection, compared to ran-
dom selection.

2 Few-shot Text-to-SQL Approaches

We describe two major approaches to few-shot
Text-to-SQL; each has its own strength, and we will
demonstrate that our example selection is effective
in both of them (§3). In both approaches, we first
select a few examples to annotate. Those exam-
ples are then used in standard finetuning (§2.1) or
prompt construction for in-context learning (§2.2).

2.1 Finetuning

Our finetuning proceeds over two steps: source
training and adaptation. In source training, we
finetune the pretrained T5-large encoder-decoder
model (Raffel et al., 2020) for the Text-to-SQL task
using the high-resource dataset of Spider (Yu et al.,
2018). In the second step of adaptation, the model
is further finetuned on M samples from the tar-
get domain (e.g., the ATIS flight booking domain,
Price, 1990; Dahl et al., 1994). These M samples
are selected based on the methods described in §3.
We consider M = 50, and further explore the ef-
fects of increasing to M =250 and M = 500. In
both steps, the encoder-decoder model takes as in-
put a concatenation of a natural language question
and a string representation of the database schema
(Hwang et al., 2019) and is trained to predict a
corresponding SQL query. We train the model by
minimizing the token-level cross entropy loss.

2.2 In-context Learning

In-context learning is a lightweight alternative
to finetuning that keeps pretrained language model
parameters frozen (Brown et al., 2020a). The lan-
guage model takes as input a prompt that contains
task descriptions, a few demonstration examples,
and the input to be predicted on. While finetun-
ing the whole network is a promising approach as
discussed above, in-context learning has the advan-
tage of avoiding finetuning on every target domain.
This is particularly important for large-scale pre-
trained language models such as GPT-3, because
finetuning is prohibitively expensive.

We introduce a method to apply in-context learn-
ing to our few-shot Text-to-SQL problem. We use
Codex (Chen et al., 2021), a variant of GPT-3 fine-
tuned on publicly available code from Github.?
Similar to the finetuning setting, we first select
and only annotate M natural language questions
with gold SQL queries for the target domain (M =
50, 250, 500). Again similar to finetuning, we ex-
plore various selection methods that make crucial
use of example diversity (§3). We then create a
prompt for every evaluation instance by finding m
demonstration examples most similar to the partic-
ular instance from the M annotated examples for
demonstration; m is chosen to fit into the maximum
length for Codex, and typically, 5 <m <10 (Zhao
et al., 2021; Gao et al., 2021a). The similarity of
a pair of examples is measured by their cosine dis-
tance in the T5 embeddings with averaging pooling
over all encoder time steps and normalization by
subtracting the mean of all input embeddings.

3 Selection Methods

In few-shot text-to-SQL, we assume access to
a large set of unlabeled user questions on the tar-
get domain. This simulates many real-world sce-
narios where we have a record of many natural
language questions from customers, but not their
SQL annotations. Our goal is to select a small sub-
set of examples to be annotated with SQL queries
that will be used for few-shot finetuning (§2.1) and
in-context learning (§2.2). We hypothesize that
effective examples should be diverse to represent
different types of user questions. To this end, we
propose two types of example selection strategies.
The first strategy (§3.1) employs a sequential selec-
tion process by iteratively picking examples that
are dissimilar to the already selected ones. Further-

https://openai.com/blog/openai-codex/

more, for the sequential selection strategy in our
finetuning setup (§2.1), we also prioritize select-
ing the target domain examples that are dissimilar
to the source domain examples so that the model
can be better adapted using more domain-specific
information. The second strategy (§3.2) clusters
the user questions into groups of similar examples
and then selects the example closest to the centroid
from each cluster as the representative.

3.1 Sequential Selection based on Similarity

Our first strategy is sequential selection by pick-
ing examples iteratively while making sure they
are dissimilar to each other to promote sample di-
versity. We propose the following two methods of
sequential selection. SelfDis (self-dissimilar) uses
dissimilarity with the already chosen examples to
choose the next one. In the finetuning setup where
the model is first trained on the source domain, Src-
SelfDis (source-training-data-self-dissimilar) fur-
ther incorporates dissimilarity to the source domain
examples .

SelfDis Let Dy denote the set of selected exam-
ples. We randomly select a seed example from the
training set to initialize Dse, and we iteratively add
new examples. For each remaining training exam-
ple ;, we compute the dissimilarity between x;
and the already chosen examples x; in Dge).

Z cos(xj, ;)

x; EDge)

SelfDis(x;) = —

At each iteration, We choose the example with the
highest SelfDis score such that it is the farthest
from Dy on average. We stop iteration when Dge)
includes M examples. The final Dy is expected
to be a diverse subset of the unlabeled (i.e., natu-
ral language questions without SQL annotations)
training set.

SrcSelfDis When the model is first trained on the
source domain, we want to select target domain
examples that are dissimilar to the source training
examples for domain adaptation. Therefore, we
propose SrcSelfDis that combines the similarity to
the examples in the source domain and that to the
already selected examples. Let Dy, denote the set
of source domain training examples. We first com-
pute the SrcDis (source-training-data-dissimilar)
score for dissimilarity to the source domain exam-
ples.

SreDis(x;) = — Z cos(xi, ;)

x;E< Dire

https://openai.com/blog/openai-codex/

GeoQuery Advising ATIS Yelp Scholar Restaurants IMDB Academic Kaggle Spider
Database 1 1 1 1 1 1 1 8 160
Train 576 2756 15786 99 1139 266 102 141 272 7000
Evaluation 344 242 1757 42 252 112 45 59 185 1034

Table 1: Numbers of databases, train and evaluation instances in each dataset. We follow the dataset format in
Finegan-Dollak et al. (2018a), but report the number of question-SQL pairs instead of the separate question and

SQL query counts for the first 8 datasets.

Then, we add SelfDis and SrcDis as the SrcSelfDis
score using « as the scaling parameter to balance
the two terms. We use o = 1700 in the later exper-
iments.

SrcSelfDis(x;) = SrcDis(x;) + aSelfDis(x;)

The first instance is chosen as the one with the
maximum SrcDis score, and we sequentially add
examples with the maximum SrcSelfDis score until
M examples are selected.

3.2 Selection by Clustering

Alternatively, we can cluster the whole unlabeled
dataset into M groups. Each cluster represents a
group of similar examples. Therefore, we select
one instance from each cluster. Since the exam-
ple closest to the cluster centroid minimizes the
total distance to the remaining examples in the
same cluster, we consider it as the representative
of this cluster. By selecting all cluster represen-
tatives, we aim to maximize the diversity of the
selected subset. In addition, the model prediction
of an evaluation instance usually depends on the
nearest neighbor in the training set (Khandelwal
et al., 2019; Kwon et al., 2021). By diversifying
the selected instances, we maximize the chance for
an evaluation data point to find a similar example
in the few-shot finetuning set. We consider the
following two clustering algorithms.
K-means K-means groups unlabeled training in-
stances into M clusters based on their embedding
representations. We then choose the example closet
to the centroid of each cluster.
Agglomerative Agglomerative clustering itera-
tively merges the closest two clusters. It constructs
a hierarchy of unlabeled instances, where clusters
on a higher level are more dissimilar to each other.
We terminate the Agglomerative clustering algo-
rithm when only M clusters are left. Similar to
K-means, we then choose the example closet to the
centroid of each cluster.

4 Experiments
In this section, we first discuss our experimental
setups (§4.1). We then describe the experimen-

tal results and compare varying selection methods
extensively (§4.2).

4.1 Experimental Setup

Datasets Following Suhr et al. (2020), we use
Spider (Yu et al., 2018) as the source train-
ing dataset and 8 other single-domain datasets
to perform few-shot domain adaptation: Geo-
Query (Zelle and Mooney, 1996a), Advis-
ing (Finegan-Dollak et al., 2018a), ATIS (Price,
1990; Dahl et al., 1994), Scholar (Iyer et al., 2017),
Restaurants (Tang and Mooney, 2000; Popescu
et al., 2003; Giordani and Moschitti, 2012), Aca-
demic (Li and Jagadish, 2014), Yelp (Yaghmazadeh
et al., 2017), and IMDB (Yaghmazadeh et al.,
2017). In addition, we further evaluate our methods
on the Kaggle dataset (Lee et al., 2021) contain-
ing multiple databases. We follow the the stan-
dard splits of train and evaluation in the datasets
if they have, and randomly split datasets into 70%
for training and 30% for evaluation otherwise. The
dataset information is summarized in Table 1; eval-
uation examples in each dataset are available in
Appendix E.

Evaluation Metrics Following Zhong et al.
(2020), we use the test suite accuracy for all
datasets as evaluation metrics. Instead of using
a single given database to compute execution ac-
curacy, it compares the execution results of the
predicted queries and the gold queries on a com-
pact test suite of databases with designed instances
to distinguish different values in each clause. This
setting reduces false positives of traditional execu-
tion accuracy (i.e., wrong SQL queries but happen
to have the same execution result as correct ones).
The test suite of databases are generated by modi-
fying one aspect of the gold queries, and therefore,
gives a tight upper bound compared to other evalu-
ation metrics such as the exact set match (Yu et al.,
2018) and execution accuracy based on a small
database.

Implementation We implement two clustering-
based selection methods using scikit-learn pack-

Method GeoQuery Advising ATIS Scholar Academic Restaurants Yelp IMDB Kaggle
Finetuning (T5-Spider)

Random 58.838 16.66.8 34.250 62.457 40.337 93.727 45.682 42.477 34.540
K-means 64.528 22.444 38.22.1 66.83.0 47.62.2 96.612 55.057 45.74.2 36.823
Agglo 66.9 25.1 39.0 75.6 49.2 98.2 57.1 48.9 35.2
SelfDis 65.533 24453 38.825 69.84.1 48.227 97.418 55.763 46.65.6 35.732
SrcSelfDis 68.0 26.4 40.6 73.8 50.9 99.1 59.5 51.1 37.8
In-context Learning (Codex)

Random 57.921 16.23.2 31.623 64.347 51.234 90.21.3 33.356 41.245 2.410
K-means 62.408 18.324 34.514 63.224 54.818 90.705 34.526 42.527 2.80.6
Agglo 63.5 18.4 35.2 65.2 55.6 91.2 36.7 42.8 3.2
SelfDis 65.41.1 20.626 36.722 63.524 58.923 91.409 41.323 43.633 5.208

Table 2: Finetuning (T5-Spider) and in-context learning (Codex) performance with different selection methods. All
scores are based on the test suite accuracy (§4.1). 50 examples are selected to annotate. Among the five selection
methods for finetuning, SrcSelfDis performs best apart from Scholar (8.7% improvement on avg. compared to
Random). For in-context learning, SelfDis improves the average accuracy by 4.3% and reduces the variance. The
subscripts indicate standard deviations from 6 trials for the three methods involving random sampling (Random,
K-means, and SelfDis). Bold numbers indicate the best results in finetuning or in-context learning.

ages.’ We use the T5-large model checkpoint

trained on Spider from Scholak et al. (2021) which
achieves 65.3% exact matching accuracy. For sim-
plicity, we refer to T5-large and T5-large trained
on Spider as T5 and T5-Spider respectively. In all
our experiments, the batch size per device is set to
2 with gradient accumulation steps of 2. We use
greedy search (i.e., beam size 1) since we found
that a larger beam size did not improve the perfor-
mance. We finetune the T5-Spider on in-domain
selected examples of each evaluation dataset for 30
epochs. Following Shaw et al. (2020) and Scholak
et al. (2021), for the input sequence in finetuning,
we also serialize the database schema as a string
and append it to the question. For in-context learn-
ing, we use the Davinci version of Codex; the input
sequence is the concatenation of task descriptions,
demonstration examples and a question without the
database schema, as more examples can be added
under the maximum input length in this case.*

4.2 Results

We evaluate the performance of our selection
methods on the aforementioned datasets. As shown
in Table 2 where M = 50 in-domain examples
are selected, all selection selection methods (K-
means, SelfDis, Agglo, and SrcSelfDis) show sub-
stantial improvements over random selection both
in the finetuning and in-context learning experi-
ments. This confirms our hypothesis that random

*https://scikit-learn.org/stable/
modules/clustering.html.

*We tried adding serialized schemas in the same way as
finetuning, but we found that it did not improve performance.

selection is suboptimal. K-means, SelfDis and
Agglo can greatly outperform the random base-
line. Even with random initial states, K-means and
SelfDis have smaller variance and are more stable
in selecting representative instances. Finally, Src-
SelfDis performs best among all five methods in
all datasets except Scholar. Overall, our combined
approach—using both the diversity and dissimilarity
to source training data as criteria—achieves a 8.7%
performance gain on average.

Moreover, K-means, Agglo and SelfDis give
substantial improvements on in-context learning.
The diversity in the M annotated examples can
help us find similar m demonstration examples
to every evaluation instance when its prompt is
created; when the annotated examples are more
homogeneous, it is possible that we cannot find
similar demonstration examples to some evaluation
instances, resulting in performance degradation.

In general, since questions in GeoQuery, Scholar
and Restaurants contain less unspecified do-
main knowledge (as mentioned in §1), T5-Spider
achieves higher performance compared to other
datasets. We also found that our best method Src-
SelfDis can select more question and SQL query
templates (see more details in Appendix B).

Comparison between T5 and Codex As shown
in Table 2, our example selection is effective in
both settings, but T5 generally outperforms Codex
when random, K-means, Agglo or SelfDis selection
is applied. The only exception is Academic, where
Codex outperforms T5 by a large margin. A poten-
tial reason is that, in both training and evaluation

https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html

GeoQuery Advising ATIS
85- 90 - 55—
E 3 »* ®
B 80 - -
80 70~ ” 5 x
75 - 60 - % 45 -
50 -
- w0- B
70 ® w0- 40 i
65 30 - “ 35
20 -
60 - 30
10 -
55 0- 25 -
50 3 250 500 % SrcSelfDis

Figure 2: Effects of annotation sizes (i.e., number of
selected examples) for the finetuning setting. Boxplots
are random selection. The purple cross is SrcSelfDis se-
lection. With different in-domain training data size, Src-
SelfDis consistently improves the model performance.
Exact numbers in Table 7 of Appendix D.

splits of the Academic dataset, questions always
start with “return me”. The consistent question
patterns might particularly benefit Codex, which
learns domain-specific knowledge directly from the
demonstration examples in the prompt.

Codex lags behind T5 most in Yelp and Kag-
gle. Since Yelp has a significantly larger portion
of templates with only one concrete examples, in
the prompt construction for in-context learning, it
is much more difficult to select similar instances
to each test example. As for Kaggle, it is a dataset
containing multiple databases, so it is difficult for
the model to effectively learn much domain knowl-
edge without the serialized schema or similar exam-
ples in the prompt. This explains the performance
degradation of Codex in Yelp and Kaggle.

5 Analysis

In this section, we analyze our example selec-
tion methods along three dimensions: effects of
annotation sizes, embedding methods for example
representations, and the similarity metrics. We then
provide an error analysis to better understand the
improvement gained from our methods. For sim-
plicity, we focus on three representative datasets
with various sizes and complexity: GeoQuery, Ad-
vising, and ATIS. We found similar results from
the other datasets.

5.1 Effects of Annotation Sizes

As shown in Fig. 2, SrcSelfDis consistently im-
proves the model performance when different num-
bers of labeled instances are available. In particular,
it achieves the most substantial improvement when
only a small number of examples are annotated. For
example, the model achieves the performance gain
of 9.8% (M = 50), 9.4% (M = 250), and 4.5%
(M = 500) on Advising. The largest improve-

GeoQuery Advising ATIS
85 - 90 - 450 -
- e s0- il 425- @ é
70~ 400~
75- =
60 - 375-
70 - @ 50 - 35.0-
40- 325-
65 -
é 30 - 30.0
60~ prp— 27.5-
55 - 10- 250~
random-50 [0 random-250 random-500
I SelfDis-50 I SelfDis-250 SelfDis-500

Figure 3: Effects of annotation sizes (i.e., number of
selected examples) for the in-context learning setting.
SelfDis selection in the first phase improves the model
performance and reduces the variance across different
annotation sizes. See Table 8 in Appendix D for more
detailed results.

ment from M = 50 indicates that our approach
is particularly suitable when annotation budgets
are limited. Similar patterns are also observed in
the in-context learning, as shown in Fig. 3. Both
in finetuning and in-context learning, the model
performance variance decreases when the training
set is larger. Another interesting finding is that, in
the ATIS dataset, when 250 examples are selected
by SelfDis, the model performance surpasses that
when 500 examples are selected randomly. This in-
dicates that SelfDis helps the model achieve better
performance under lower annotation and computa-
tional budgets.

Comparison between T5 and Codex Combin-
ing the results from Figs. 2 and 3 (See more details
on Table 7 and 8 in Appendix), we can see that the
performance differences between TS5 and Codex
are the largest when the annotated examples are of
medium size. For example, in GeoQuery, when TS
uses SrcSelfDis and Codex uses SelfDis to select
examples, their performance differences are 2.6%,
4.8% and 2.2% when M = 50,250, 500 respec-
tively. The potential reason is that, very few ex-
amples cannot cover sufficient domain knowledge
for the models to learn, while many examples pro-
vide the models with abundant information. This
explains the relatively small differences when the
annotated examples are very limited (M = 50) or
abundant (M = 500). In contrast, when the la-
beled instances are of medium size (M = 250),
the gap between the two settings is large, which
implies that TS captures additional domain infor-
mation more effectively when M increases from
50 to 250. Although this observation is not well
aligned with the ATIS dataset, it is probably due
to its much larger size than GeoQuery and Advis-

GeoQue Advisin ATI
Query R S
65 25 40
60 l l 2 ‘ 35 ‘
55 15 l 30
50 10 25
Fine-tuning _In-context learning Finc-tuning _In-context leaning Fine-tuning ~In-context learning
T5-spider T5 B SimCSE

Figure 4: Comparison of three embedding methods
(T5-Spider, TS5, and SimCSE) in the finetuning and
in-context learning settings over three domains. T35
indicates embeddings obtained from off-the-shelf TS
without any finetuning. In all domains, T5-Spider per-
forms best. See Table 9 in Appendix D for more detailed
results.

ing (Table 1). In this case, 500 examples are still
considered as medium size for ATIS.

In summary, with the benefit of avoiding fine-
tuning, it may be better to use Codex when we
have very abundant or very few labeled instances,
given the small performance difference from T5
finetuning. However, when the labeled instances
are of medium size, it is more important to con-
sider the tradeoff between finetuning TS and its
performance gain over Codex, in addition to its
accessibility and the large model size. Note that
future advances in prompt engineering can push
the Codex performance.

5.2 Design Choices for Example Selection

Embedding methods Fig. 4 compares finetuning
and in-context learning results from three embed-
ding methods: T5-Spider (our default, TS finetuned
on Spider), T5 (TS5 without any finetuning), and the
SimCSE model (Gao et al., 2021b) trained on un-
labeled instances. For fair comparisons, we use
SrcSelfDis to select examples in finetuning and
SelfDis in in-context learning for all the embed-
ding methods. T5-Spider is consistently best across
three datasets. This illustrates the effectiveness of
T5 finetuning on Spider for embedding learning
and thus sample selection.

Similarity metrics We then use the default em-
beddings from T5-Spider and compare three sim-
ilarity metrics for SrcSelfDis and SelfDis. Fig. 5
shows that in both settings, when the cosine simi-
larity is applied in the selection process, the model
consistently performs better than Euclidean dis-
tance and dot product. This indicates the impor-
tance of similarity metrics for the success of Src-

GeoQuery Advising ATIS
70 30 4s
60 I 25 4]
35
50
20 30
40 25
15
30 20
10 15
20 l I
10
5
10 5
I
0 0 4
Finc-tuning _In-context learning Fine-tuning _In-context learning Fine-tuning _In-context learning
Cosine Dot-product B Euclidean

Figure 5: Comparison of three similarity metrics (cosine
similarity, dot-product, and Euclidean distance) in the
finetuning and in-context learning settings over three
domains. In all domains, Cosine similarity performs
the best. See Table 10 in Appendix D for more detailed
results.

model GeoQuery Advising ATIS
Random T5 20.2 47.6 273
SrcSelfDis TS 16.4 40.7 232
Random Codex 19.64 18.34 16.7
SelfDis Codex 18.96 17.86 15.2

Table 3: Syntax error rates over 50 examples in three
domains. We compare random, SrcSelfDis for finetun-
ing (T5), and SelfDis for in-context learning (Codex).
With SrcSelfDis selection for TS or SelfDis for Codex,
the syntax error rate is substantially reduced.

SelfDis and SelfDis.

5.3 Error Analysis

We consider two major error types: syntax er-
ror and semantic error. Syntax errors result in a
query execution failure, while semantic errors lead
to wrong execution results. We randomly select 50
examples from each of three domains and calcu-
late the percentage of wrong predictions caused by
syntax errors.

The results are in Table 3. When T5 and Codex
select examples by SrcSelfDis and SelfDis respec-
tively, the syntax error rate is substantially reduced
compared to the random baseline. This suggests
that diverse instances selected by SrcSelfDis and
SelfDis contribute to the model capacities of writ-
ing syntactically correct SQL queries in different
domains with various question styles. For example,
in the Advising dataset, the model trained on exam-
ples selected by SrcSelfDis predicts correctly on
the question, “of the upper-level courses, are any
taught by deorio?”’; in contrast, the model trained
on randomly-selected examples does not. Indeed,
SrcSelfDis selected an example with a similar ques-
tion: “of the upper level courses, which does Artan
teach,” which corresponds to the same SQL query

template. In the in-context learning, we also ob-
serve a reduction of the syntax error rate when
SelfDis is applied.

Furthermore, SQL annotation style divergence
between source training and target finetuning sub-
stantially decreases the model performance in T5-
Spider finetuning, but not much in Codex in-
context learning, as Codex is not trained on Spider
(see more details in Appendix A).

6 Related Work

Text-to-SQL Semantic Parsing Semantic pars-
ing has been researched for decades (Zelle and
Mooney, 1996b; Miller et al., 1996; Zettlemoyer
and Collins, 2005; Pasupat and Liang, 2015; Dong
and Lapata, 2016). Among various logical forms,
Text-to-SQL has attracted much interest for its prac-
tical usefulness (Zhong et al., 2017; Yu et al., 2018;
Finegan-Dollak et al., 2018b; Bogin et al., 2019;
Wang et al., 2020). While they mainly work with
full access to annotated training data, we study
few-shot learning for Text-to-SQL for both domain
adaptation finetuning and GPT-3 in-context learn-
ing. Shin et al. (2021) recently proposed to map
natural utterances into canonical formats that can
be automatically converted to a target meaning rep-
resentation and showed its effectiveness with large
pretrained language models in a few-shot setting.
In this work, we focus particularly on example se-
lection for few-shot learning.

Domain Adaptation for Semantic Parsing Sev-
eral recent papers focus on adapting semantic
parsers trained on source domains to target do-
mains (Li et al., 2020; Chen et al., 2020), includ-
ing Text-to-SQL (Suhr et al., 2020; Wang et al.,
2021). Suhr et al. (2020) test a model performing
well on Spider on another 8 Text-to-SQL datasets
in varying domains, and the model does not gen-
eralize well. Prior work (Suhr et al., 2020; Gan
et al., 2021) find that the model fails to general-
ize because of domain-specific phrases, diverging
database and query structures, dataset conventions,
and the challenges of identifying entities in nat-
ural utterances and mapping entities to database
columns. Wang et al. (2021) use meta-learning to
better generalize models to different domains on
Spider, where the model is optimized for the source
and target domain performance simultaneously. In
contrast to these works, we study example selection
in few-shot learning for efficiently adapting models
to low-resource target domains.

Example Selection in Few-shot Learning Few-
shot learning for NLP has received increasing in-
terest with the emergence of prompt-based meth-
ods (Schick and Schiitze, 2020) and large pre-
trained language models (Raffel et al., 2020; Brown
et al., 2020b). Empirical results of few-shot learn-
ing heavily depend on the choice of training exam-
ples. Liu et al. (2021) retrieve examples that are
semantically similar to a test sample to formulate
its prompt for GPT-3. Shin et al. (2021) use several
pretrained language models as few-shot semantic
parsers with GPT-3 for selecting the most relevant
training examples to create prompts. Chang et al.
(2021) study the effects of K-means example selec-
tion strategies on data-to-text generation, document
summarization, and question generation. Our work
also follows the line of work on unsupervised sub-
set selection where labels are not used for selecting
examples (Har-Peled and Mazumdar, 2004; Wei
etal., 2014, 2015; Karamcheti et al., 2021). Further-
more, active learning has also been used for dynam-
ically acquiring new labeled examples during the
training process based on uncertainty (Thompson
et al., 1999; Kasai et al., 2019; Yao et al., 2020), en-
tropy (Siddhant and Lipton, 2018; Gal et al., 2017)
and etc. In contrast, we study comprehensive ex-
ample selection methods including both clustering
and sequential selection based on similarity. Com-
pared with active learning, our example selection
approach is more efficient because we perform ex-
ample selection before training without updating
and querying models iteratively.

7 Conclusion

We explored several example selection methods
for Text-to-SQL that can be applied to the tradi-
tional few-shot learning via finetuning and prompt
construction of Codex (GPT-3) in-context learning.
We identified the diversity and the dissimilarity to
source training data as two important factors for
selection. We showed that with carefully-chosen
annotated instances, the model performance on the
9 target domains can be greatly enhanced. Our
further analyses examined the influence of embed-
dings and similarity metrics as well as the change
in syntax error rate. Our simple yet effective meth-
ods are easy to implement. We plan to apply them
to other tasks as future work.

References

Ben Bogin, Matt Gardner, and Jonathan Berant. 2019.
Global reasoning over database structures for text-to-
sql parsing. In EMNLP.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020a.
Language models are few-shot learners. In Advances
in Neural Information Processing Systems.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020b. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Ernie Chang, Xiaoyu Shen, Hui-Syuan Yeh, and Vera
Demberg. 2021. On training instance selection for
few-shot neural text generation. In Proceedings of
the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 8—13.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde, Jared Kaplan, Harri Edwards, Yura
Burda, Nicholas Joseph, Greg Brockman, et al. 2021.
Evaluating large language models trained on code.
arXiv e-prints, pages arXiv—2107.

Xilun Chen, Asish Ghoshal, Yashar Mehdad, Luke
Zettlemoyer, and Sonal Gupta. 2020. Low-resource
domain adaptation for compositional task-oriented
semantic parsing. arXiv preprint arXiv:2010.03546.

Deborah A Dahl, Madeleine Bates, Michael K Brown,
William M Fisher, Kate Hunicke-Smith, David S
Pallett, Christine Pao, Alexander Rudnicky, and Eliz-
abeth Shriberg. 1994. Expanding the scope of the atis
task: The atis-3 corpus. In Human Language Tech-
nology: Proceedings of a Workshop held at Plains-
boro, New Jersey, March 8-11, 1994.

Li Dong and Mirella Lapata. 2016. Language to logical
form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2016, August 7-12, 2016,
Berlin, Germany, Volume 1: Long Papers.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui
Zhang, and Dragomir Radev. 2018a. Improving text-
to-SQL evaluation methodology. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 351-360, Melbourne, Australia. Association
for Computational Linguistics.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui
Zhang, and Dragomir Radev. 2018b. Improving text-
to-SQL evaluation methodology. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics. Association for Compu-
tational Linguistics.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. 2017.
Deep bayesian active learning with image data. In
Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 1183—1192.

Yujian Gan, Xinyun Chen, and Matthew Purver. 2021.
Exploring underexplored limitations of cross-domain
text-to-sql generalization. In EMNLP.

Tianyu Gao, Adam Fisch, and Danqgi Chen. 2021a.
Making pre-trained language models better few-shot

learners. In Association for Computational Linguis-
tics (ACL).

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021b.
SimCSE: Simple contrastive learning of sentence
embeddings. In Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Alessandra Giordani and Alessandro Moschitti. 2012.
Automatic generation and reranking of sql-derived
answers to nl questions. In International Workshop
on Eternal Systems, pages 59-76. Springer.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-
Guang Lou, Ting Liu, and D. Zhang. 2019. Towards
complex text-to-sql in cross-domain database with
intermediate representation. In ACL.

Sariel Har-Peled and Soham Mazumdar. 2004. On core-
sets for k-means and k-median clustering. In Pro-
ceedings of the thirty-sixth annual ACM symposium
on Theory of computing, pages 291-300.

Wonseok Hwang, Ji-Yoon Yim, Seunghyun Park, and
Minjoon Seo. 2019. A comprehensive exploration
on wikisql with table-aware word contextualization.
In KR2ML Workshop at NeurIPS.

Srinivasan Iyer, loannis Konstas, Alvin Cheung, Jayant
Krishnamurthy, and Luke Zettlemoyer. 2017. Learn-
ing a neural semantic parser from user feedback. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 963-973.

Siddharth Karamcheti, Ranjay Krishna, Li Fei-Fei, and
Christopher D Manning. 2021. Mind your outliers!
investigating the negative impact of outliers on ac-
tive learning for visual question answering. arXiv
preprint arXiv:2107.02331.

Jungo Kasai, Kun Qian, Sairam Gurajada, Yunyao Li,
and Lucian Popa. 2019. Low-resource deep entity
resolution with transfer and active learning. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics. Association for
Computational Linguistics.

https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2019. Generalization
through memorization: Nearest neighbor language
models. In International Conference on Learning
Representations.

Yongchan Kwon, Manuel A Rivas, and James Zou. 2021.
Efficient computation and analysis of distributional
shapley values. In International Conference on Ar-
tificial Intelligence and Statistics, pages 793-801.
PMLR.

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew
Richardson. 2021. Kaggledbga: Realistic eval-
uation of text-to-sql parsers. arXiv preprint
arXiv:2106.11455.

Fei Li and Hosagrahar V Jagadish. 2014. Constructing
an interactive natural language interface for relational
databases. Proceedings of the VLDB Endowment,
8(1):73-84.

Zechang Li, Yuxuan Lai, Yansong Feng, and Dongyan
Zhao. 2020. Domain adaptation for semantic parsing.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
makes good in-context examples for GPT-3? ArXiv.

Scott Miller, David Stallard, Robert Bobrow, and
Richard Schwartz. 1996. A fully statistical approach
to natural language interfaces. In Proceedings of the
34th Annual Meeting of the Association for Compu-
tational Linguistics.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers).

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a theory of natural language inter-
faces to databases. In Proceedings of the 8th interna-
tional conference on Intelligent user interfaces, pages
149-157.

Patti Price. 1990. Evaluation of spoken language sys-
tems: The atis domain. In Speech and Natural Lan-
guage: Proceedings of a Workshop Held at Hidden
Valley, Pennsylvania, June 24-27, 1990.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research.

Timo Schick and Hinrich Schiitze. 2020. It’s not just
size that matters: Small language models are also
few-shot learners. arXiv preprint arXiv:2009.07118.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. Picard: Parsing incrementally for
constrained auto-regressive decoding from language

10

models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895-9901.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova. 2020. Compositional general-
ization and natural language variation: Can a seman-
tic parsing approach handle both? arXiv preprint
arXiv:2010.12725.

Richard Shin, Christopher H. Lin, Sam Thomson,
Charles Chen, Subhro Roy, Emmanouil Antonios
Platanios, Adam Pauls, Dan Klein, Jason Eisner, and
Benjamin Van Durme. 2021. Constrained language
models yield few-shot semantic parsers. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing.

Aditya Siddhant and Zachary C Lipton. 2018. Deep
bayesian active learning for natural language pro-
cessing: Results of a large-scale empirical study.
In Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing, pages
2904-2909.

Alane Suhr, Ming-Wei Chang, Peter Shaw, and Ken-
ton Lee. 2020. Exploring unexplored generalization
challenges for cross-database semantic parsing. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics. Association
for Computational Linguistics.

Lappoon R Tang and Raymond Mooney. 2000. Auto-
mated construction of database interfaces: Intergrat-
ing statistical and relational learning for semantic
parsing. In 2000 Joint SIGDAT Conference on Em-
pirical Methods in Natural Language Processing and
Very Large Corpora, pages 133-141.

Cynthia A. Thompson, Mary Elaine Califf, and Ray-
mond J. Mooney. 1999. Active learning for natu-

ral language parsing and information extraction. In
ICML.

Bailin Wang, Mirella Lapata, and Ivan Titov. 2021.
Meta-learning for domain generalization in semantic
parsing. ArXiv, abs/2010.11988.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. Rat-sql:
Relation-aware schema encoding and linking for text-
to-sql parsers. In ACL.

Kai Wei, Rishabh Iyer, and Jeff Bilmes. 2015. Submod-
ularity in data subset selection and active learning.
In International Conference on Machine Learning,

pages 1954-1963. PMLR.

Kai Wei, Yuzong Liu, Katrin Kirchhoff, and Jeff Bilmes.
2014. Unsupervised submodular subset selection
for speech data. In 2014 IEEE International Con-
ference on Acoustics, Speech and Signal Processing

(ICASSP), pages 4107-4111. IEEE.

http://arxiv.org/abs/2006.13071
https://arxiv.org/abs/2101.06804
https://arxiv.org/abs/2101.06804
https://arxiv.org/abs/2101.06804

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and
Thomas Dillig. 2017. Sqlizer: query synthesis from
natural language. Proceedings of the ACM on Pro-
gramming Languages, 1(OOPSLA):1-26.

Ziyu Yao, Yiqi Tang, Wen tau Yih, Huan Sun, and
Yu Su. 2020. An imitation game for learning se-
mantic parsers from user interaction. In EMNLP.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3911-3921.

John M Zelle and Raymond J Mooney. 1996a. Learning
to parse database queries using inductive logic pro-
gramming. In Proceedings of the thirteenth national

conference on Artificial intelligence-Volume 2, pages
1050-1055.

John M. Zelle and Raymond J. Mooney. 1996b. Learn-
ing to parse database queries using inductive logic
programming. In AAAI/IAAI pages 1050-1055, Port-
land, OR. AAAI Press/MIT Press.

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial grammars.
UAL

Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate Before Use: Im-
proving Few-shot Performance of Language Models.

In International Conference on Machine Learning
(ICML).

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Seman-
tic evaluation for text-to-sql with distilled test suite.
In The 2020 Conference on Empirical Methods in
Natural Language Processing. Association for Com-
putational Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

A Effects of SQL Annotation Styles

The query styles in 9 downstream datasets are
different from those in Spider. For example, in-
stead of always using “!=", the queries in Advising
use “<>" to get the same output. We examine the
effects of different query styles on finetuning the
model. By applying the same selection method
SrcSelfDis, we select the same set of training in-
stances without rewriting queries. Fig. 6 shows that
queries having styles that the models are unfamiliar
with result in significantly worse performance in

11

GeoQuery Advising ATIS

70

40

60

55

50

Fine-tuning In-context tuning Fine-tuning In-context tuning Fine-tuning In-context tuning

Query is rewritten B Query is not rewritten

Figure 6: We use SrcSelfDis(SelfDis) to select 50 ex-
amples for T5(Codex), and compare the T5(Codex) per-
formance between: 1) the SQL queries in the selected
examples are rewritten to follow query styles in Spider;
2) the SQL queries are not rewritten. The finetuning
performance drops significantly when if the query is not
rewritten, while the performance of Codex only drops a
little. Detailed results can be found in Table 11.

the finetuning. Since test suite accuracy compares
query execution results, surface style differences
are ignored during evaluation. This suggests that
the finetuning model benefits from the consistency
of query styles in source training, finetuning, and
evaluations. However, since Codex has no source
training stage, whether the queries follow the styles
in Spider or not has little influence on the perfor-

mance.5

B Selection Quality

We also use the question and SQL query tem-
plates provided by Finegan-Dollak et al. (2018a)
to conduct our analysis. The question and SQL
query templates omit specific values but preserve
sentence structures with patterns and styles. For
example, “What is the biggest city in state_name0”
is a question template, where “state_name(0” can
be the name of any state in the United States. By
substituting different values in the templates, differ-
ent question-SQL pairs are generated. We confirm
that SrcSelfDis selects more diverse examples by
calculating the number of templates in the selected
examples. As questions and SQL queries from the
same template are highly similar, we consider the
number of question and SQL query templates as a
diversity measurement for the selected instances.
As shown in Table 4, more question and SQL tem-

SInstead of no inluence, since the queries rewritten follow
the consistent style (e.g., always use ’!=" instead of ’!="and
’<>’ interchangeably), the Codex performance may still be
improved given rewritten queries in the prompt.

Dataset Template Random SrcSelfDis Hyperparameter ‘ Assignment
Question 37 43 Fituning (T5-large)
GeoQuer
Query gL 45 50 epochs 30
Advising Question 39 49 l'eammfg rate . le-4
SQL 50 50 per device train batch size 2
ATIS Question 27 30 beam size 1
SQL 43 50 maximum generation length 512
Table 4: The number of question and query templates in gradient accumulation steps 2

the 50 examples selected randomly and by SrcSelfDis.
With SrcSelfDis selection, more question and SQL tem-
plates are selected.

plates are selected when the selection method Src-
SelfDis is employed. It indicates the effectiveness
of SrcSelfDis in improving the diversity of the se-
lected examples. Similar results are also observed
when K-means, SelfDis and Agglo selection meth-
ods are used.

C Experiment Details

C.1 Computing Infrastructure

All experiments are implemented on RTX 3090
GPUs with 32GB memory.

C.2 Models

We use the pre-trained T5-large model from
Huggingface® and the version trained on Spider
from Scholak et al. (2021) to calculate input em-
beddings and finetune downstream tasks. Both
versions of T5-large models contain 770 million
parameters. For the in-context learning, we use
Codex® with 12 billion parameters.

C.3 Hyperparameters

We report experiment hyperparameters in Table
5. Since in the low-resource regime in terms of
annotation budgets and computational resources,
we consider it more worthwhile to use all avail-
able labeled instances for training TS or construct
prompts for Codex without validation split. There-
fore, we use the same set of hyperparameters in all
experiments.

C.4 Computational Budgets

We report the time to finetune and evaluate T5-
large model, and evaluate Codex model in nine
datasets.

®https://huggingface.co/t5-large
"https://huggingface.co/tscholak/1wnr382e
8https://openai.com/api/

12

In-context Learning (Codex)

temparature 1
maximum generation tokens 500
top probability 095
frequency penalty 0.0
presence penalty 0.0

stop token g e

Table 5: Hyperarameters used in finetuning and in-
context learning across nine datasets.

D Exact Experimental Results

We report the exact numbers of Fig 2, Fig 3, Fig
4, Fig 5, and Fig 6 in Table 7, Table 8, Table 9,
Table 10, and Table 11 respectively.

E Dataset Examples
E.1 Spider

Question:

Find the first and last names of the students who
are living in the dorms that have a TV Lounge as
an amenity.

SQL query:

SELECT T1l.fname, T1l.lname FROM
student AS T1 JOIN lives_in AS T2
ON T1l.stuid T2.stuid WHERE T2.
dormid IN (SELECT T3.dormid FROM
has_amenity AS T3 JOIN
dorm_amenity AS T4 ON T3.amenid
T4 .amenid WHERE T4.amenity_name
= 'TV Lounge’)

E.2

Question:
State the state with the largest area

SOL query:
SELECT STATE_NAME FROM STATE

WHERE AREA = (SELECT AREA FROM
STATE ORDER BY AREA DESC LIMIT 1)

GeoQuery

E.3 Advising

Question:

GeoQuery Advising ATIS Scholar IMDB Kaggle Restaurants Yelp Academic
Finetuning (T5-spider)
Finetune 309 312 312 308 311 309 307 310 309
Evaluation 214 428 3416 248 38 116 114 51 70
In-context Learning (Codex)
Evaluation 1236 1568 7580 1164 213 792 724 296 85
Table 6: Experiment time in the unit of second.
Model Query GeoQuery Advising ATIS
method number GeoQuery Advising ATIS T5 rewritten 68.0 26.4 40.6
Random 50 58.838 16.66.8 34.250 T5 not rewritten 60.5 18.2 35.8
SrcSelfDis 50 68.0 264 40.6 Codex rewritten 60.01.8 18.326 36.722
Random 250 77.322 59.624 38222 Codex not rewritten 59.81.6 17.623 35.514
SreSelfDis 250 80.2 69:0 48.6 Table 11: Impact of query style on model performance.
Random 500 81.114 81.313 42419
SrcSelfDis 500 83.4 85.8 53.2

Table 7: Impact of selection numbers on fine-tuning.

method number GeoQuery Advising ATIS
Random 50 57.92.1 16.232 31.623
SelfDis 50 65.41.1 20.62.6 36.722
Random 250 69.41.0 56.725 37.522
SelfDis 250 75.409 59.22.1 41.7 16
Random 500 80.41.0 75214 40.2 17
SelfDis 500 81.2038 79.210 43.8 1.1
Table 8: Impact of selection numbers on in-context

learning.

Embedding GeoQuery Advising ATIS
Finetuning (T5)
T5-trained 68.0 26.4 40.6
T5 63.1 20.5 36.6
SimCSE 61.1 19.3 353
In-context Learning (Codex)
T5-trained 60.01.8 18.326 36.722
TS 58.81.9 17.3238 32.523
SimCSE 58.320 16.629 31.823

Table 9: Impact of embedding methods.

Similarity ~ GeoQuery Advising ATIS
Finetuning (T5)
Consine 68.0 26.4 40.6
Euclidean 41.3 7.5 16.6
Dot 45.1 8.4 17.5
In-context Learning (Codex)
Consine 60.01.8 18.326 36.722
Euclidean 22.356 0.80.4 12.62.1
Dot 24.44.4 1.103 14.718

Table 10: Impact of similarity measures.

13

Which is the easiest class to get my Core require-
ment fulfilled

SQOL query:

SELECT DISTINCT T2.DEPARTMENT ,
T2.NAME , T2.NUMBER , T1.WORKLOAD

;, T1.WORKLOAD FROM
PROGRAM_COURSE AS Tl JOIN COURSE
AS T2 ON T1.COURSE_ID T2.
COURSE_ID WHERE T1.CATEGORY LIKE
"Core" AND T1.WORKLOAD = (SELECT
WORKLOAD FROM PROGRAM_COURSE
WHERE CATEGORY LIKE ORDER
BY WORKLOAD LIMIT 1)

"Core"

E4 ATIS

Question:
Are there any flights on 6 10 from BURBANK
to TACOMA

SQOL query:

SELECT DISTINCT T3.FLIGHT_ID FROM
CITY AS Tl JOIN AIRPORT_SERVICE
AS T2 ON T1.CITY_CODE T2.
CITY_CODE JOIN FLIGHT AS T3 ON T3.
TO_AIRPORT T2 .AIRPORT_CODE JOIN
ATIRPORT_SERVICE AS T4 ON T3.
FROM_AIRPORT T4 .ATIRPORT_CODE
JOIN DAYS AS T5 ON T3.FLIGHT_DAYS
T5.DAYS_CODE JOIN CITY AS T6
ON T6.CITY_CODE T4.CITY_CODE
JOIN DATE_DAY AS T7 ON T5.
DAY _NAME T7.DAY_NAME WHERE T1.
CITY_NAME "TACOMA" AND T7.
DAY_ NUMBER 10 AND T7.
MONTH_NUMBER 6 AND T7.YEAR
1991 AND T6.CITY_NAME = "BURBANK"

E.5 Academic

Question:
Return me the authors who have more than 10
papers in PVLDB

SOL query:

SELECT T4.NAME FROM PUBLICATION
AS Tl JOIN JOURNAL AS T2 ON TI1.
JID T2.JID JOIN WRITES AS T3 ON
T3.PID T1.PID JOIN AUTHOR AS
T4 ON T3.AID T4.AID WHERE T2.
NAME = \"PVLDB\" GROUP BY T4.NAME

HAVING COUNT(DISTINCT (T1.
TITLE)) > 10
E.6 Yelp

Question:

List all the businesses with more than 4.5 stars
SOL query:

SELECT NAME FROM BUSINESS WHERE
RATING > 4.5

E.7 IMDB

Question:
Find all movies directed by “Steven Spielberg"
after 2006

SOL query:

SELECT T3.TITLE FROM DIRECTOR AS
Tl JOIN DIRECTED_BY AS T2 ON T1.
DID T2.DID JOIN MOVIE AS T3 ON
T3.MID T2.MSID WHERE T1.NAME
"Steven Spielberg" AND T3.
RELEASE_YEAR > 2006

E.8 Scholar

Question:
What papers have been written by Peter Mertens
and Dina Barbian

SQOL query:

SELECT DISTINCT T1.PAPERID FROM
WRITES AS Tl JOIN AUTHOR AS T2 ON
T1.AUTHORID T2 .AUTHORID JOIN
WRITES AS T3 ON T3.PAPERID T1.
PAPERID JOIN AUTHOR AS T4 ON T3.
AUTHORID T4 .AUTHORID WHERE T2.
AUTHORNAME = "Peter Mertens" AND

T4 .AUTHORNAME = "Dina Barbian"

14

E.9 Restaurants

Question:
Where is the best restaurant in san francisco for
french food

SQOL query:

SELECT T2.HOUSE_NUMBER , T1.NAME
FROM RESTAURANT AS Tl JOIN
LOCATION AS T2 ON T1.ID T2.
RESTAURANT_ID WHERE T2.CITY_NAME

= "san francisco"™ AND T1.
FOOD_TYPE = "french" AND T1.
RATING = (SELECT T1.RATING FROM

RESTAURANT AS Tl JOIN LOCATION AS
T2 ON T1.ID T2 .RESTAURANT_ID
WHERE T2.CITY_NAME = "san
francisco" AND T1.FOOD_TYPE
ORDER BY T1.RATING DESC

— n

french"
LIMIT 1)

E.10 Kaggle

Question:
Which states have produced the largest number
of candidates inducted into the hall of fame

SQOL query:

SELECT T2.birth_state FROM player
AS T2 JOIN hall_of_fame as Tl ON
Tl.player_id T2.player_id
WHERE inducted = "Y" GROUP BY T2.
birth state ORDER BY count (T1.
player_id) DESC LIMIT 1

