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Abstract
We study example selection methods for few-001
shot text-to-SQL tasks with unseen databases.002
Annotating natural language questions with cor-003
responding SQL queries is expensive, but we004
can use abundant unlabeled questions to effi-005
ciently select examples to annotate and then006
use them to adapt models. Many previous007
works only randomly sample a few instances008
for few-shot learning, but this random selec-009
tion is not sufficient to select representative and010
informative examples that provide specific do-011
main knowledge. We thus explore methods to012
efficiently choose annotation examples. We013
identify two important factors: the diversity of014
selected instances and the dissimilarity to the015
source training data if any. A diverse training016
set contains more domain knowledge, while017
dissimilar examples are selected to fill in the018
domain gap between the source and target. We019
show that our best example selection approach020
substantially improves few-shot text-to-SQL021
performance in both finetuning using T5 and022
in-context learning with Codex: average execu-023
tion accuracy gains of 8.7% and 4.3% over ran-024
dom selection. Our extensive analysis demon-025
strates the importance of the similarity metric026
and the embedding method for example repre-027
sentations. We also find that effective example028
selection reduces syntax errors on the target029
domains. Our results encourage future work to030
further explore example selection for efficient031
adaptation of text-to-SQL models.1032

1 Introduction033

Text-to-SQL semantic parsing is the task of gen-034

erating executable SQL queries from natural lan-035

guage utterances and relational database schemas.036

Most previous work aims to train and test a se-037

mantic parsing system on a single database (Price,038

1990; Dahl et al., 1994; Zelle and Mooney, 1996a;039

Zettlemoyer and Collins, 2005; Dong and Lapata,040

2016). However, it is inefficient to train a sepa-041

rate model from scratch for each possible target042

1Our code is available at anonymized.

Annotate SQL for selected questions
NL:    Can undergrads take 595?
SQL: SELECT DISTINCT ADVISORY_REQUIREMENT, 

ENFORCED_REQUIREMENT, NAME FROM COURSE 
WHERE DEPARTMENT = "EECS" AND NUMBER = 595

NL:    Give me some good restaurants in alameda.
SQL: SELECT T2.HOUSE_NUMBER, T1.NAME FROM 

RESTAURANT AS T1 JOIN LOCATION AS T2 ON 
T1.ID = T2.RESTAURANT_ID WHERE T2.CITY_NAME 
= ”alameda” AND T1.RATING > 2.5

Spider
NL:     Which student’s age is older than 18 and is 

majoring in 600? List each student’s first and 
last name

SQL: SELECT LEAGUE_ID FROM SALARY 
GROUP BY LEAGUE_ID ORDER BY 
sum(SALARY) DESC LIMIT 1

Unlabeled in-domain questions

Can undergrads take 595?
Are undergrads allowed to take 660?

…
Give me some good restaurants in alameda.

How many French restaurant are there in Palo Alto ?
Select

Figure 1: Our goal is to make the best use of the anno-
tation budget by selecting a few examples to annotate
from many unlabeled questions. The first two questions
are similar, and it is enough to annotate only one of
them. In the last two questions, we select the first one
to annotate because it requires domain knowledge (e.g.,
good restaurants means the ones with rating > 2.5) to
interpret its meaning.

database, as there are too many in the world. Fur- 043

thermore, annotating SQL queries for natural lan- 044

guage questions requires annotators with techni- 045

cal backgrounds. Thus, much recent progress on 046

this task has been driven by large-scale neural net- 047

work models (Guo et al., 2019; Wang et al., 2020; 048

Scholak et al., 2021) trained on cross-database se- 049

mantic parsing (XSP) datasets such as Spider (Yu 050

et al., 2018) that cover multiple databases and do- 051

mains. 052

Nonetheless, these recent models trained on 053

source domains (e.g., Spider) still perform poorly 054

when applied to a different target domain (e.g., 055

ATIS (Price, 1990)) with a wide variety of lan- 056

guage usage not covered during training (Suhr et al., 057

2020). One major failure mode is caused by ques- 058

tions that require domain-specific knowledge to 059
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correctly interpret. For example, a user might ask060

“can undergrads take 595?” in an academic advising061

domain (Fig. 1). A text-to-SQL model struggles062

to interpret this question as “return the name and063

advisory and enforce requirements for Course 595064

in the EECS department” unless it is trained on this065

particular domain.066

We thus explore techniques to efficiently select067

examples to annotate for domain adaptation in text-068

to-SQL. In addition to clustering approaches that069

have proven successful in other tasks (Chang et al.,070

2021), we propose simple but effective sample se-071

lection methods for few-shot text-to-SQL. In partic-072

ular, we focus on two important aspects as selection073

criteria: example diversity and dissimilarity to the074

source training data. We aim to select a few diverse,075

representative questions from the target domain and076

annotate corresponding SQL queries to maximize077

the limited annotation budget. For example, in078

Fig. 1 questions “Can undergrads take 595?” and079

“Are undergrads allowed to take 660” are similar,080

and models can learn from one of them. It is thus081

ideal to select one of the two instances to annotate082

and save annotation efforts. We also seek to se-083

lect examples dissimilar to the source XSP training084

data (e.g., Spider) so that we encourage the model085

to learn domain-specific information not covered in086

the training data. For example, the last question in087

Fig. 1 is about restaurants, but understanding good088

restaurants requires domain knowledge (rating >089

2.5), which differs from Spider whose questions090

usually specify such values.091

We demonstrate the effectiveness of our selec-092

tion methods on 9 datasets with varying domains093

under two settings: finetuning and in-context learn-094

ing. In the former scenario, we first train a T5-large095

model (Raffel et al., 2020) on Spider and then fine-096

tune the model on a small number of selected in-097

domain question-SQL pairs. Our example selection098

boosts the Spider model’s few-shot performance on099

target domains by 8.7% in execution accuracy, as100

compared to random selection. In-context learning,101

on the other hand, constructs demonstration exam-102

ples from the few annotated instances and feeds103

them to Codex (Chen et al., 2021), a variant of104

GPT-3 (Brown et al., 2020a) that is finetuned on105

publicly available code from Github. This approach106

has the advantage of avoiding the need for parame-107

ter updates of large language models. Our example108

selection is also effective in this setting with 4.3%109

accuracy improvement over random selection.110

We also provide extensive analysis that exam- 111

ines the importance of the similarity metric and the 112

embedding method used to produce representations 113

of examples. In summary, our contributions are: 114

• We explore example selection methods that 115

substantially improve the few-shot text-to- 116

SQL performance on 9 diverse datasets. 117

• We apply our methods to finetuning and in- 118

context learning, demonstrating the effective- 119

ness in both settings. 120

• To the best of our knowledge, we are the first 121

to develop a method for Codex in-context 122

learning under a small, predetermined anno- 123

tation budget. Our method consists of two 124

stages where the first stage selects a few exam- 125

ples to annotate and the second stage further 126

selects prompt demonstration examples from 127

the annotated ones. 128

• We conducted detailed analyses on embed- 129

ding methods and similarity metrics. We find 130

that syntactic errors are substantially reduced 131

by our example selection, compared to ran- 132

dom selection. 133

2 Few-shot Text-to-SQL Approaches 134

We describe two major approaches to few-shot 135

Text-to-SQL; each has its own strength, and we will 136

demonstrate that our example selection is effective 137

in both of them (§3). In both approaches, we first 138

select a few examples to annotate. Those exam- 139

ples are then used in standard finetuning (§2.1) or 140

prompt construction for in-context learning (§2.2). 141

2.1 Finetuning 142

Our finetuning proceeds over two steps: source 143

training and adaptation. In source training, we 144

finetune the pretrained T5-large encoder-decoder 145

model (Raffel et al., 2020) for the Text-to-SQL task 146

using the high-resource dataset of Spider (Yu et al., 147

2018). In the second step of adaptation, the model 148

is further finetuned on M samples from the tar- 149

get domain (e.g., the ATIS flight booking domain, 150

Price, 1990; Dahl et al., 1994). These M samples 151

are selected based on the methods described in §3. 152

We consider M = 50, and further explore the ef- 153

fects of increasing to M =250 and M =500. In 154

both steps, the encoder-decoder model takes as in- 155

put a concatenation of a natural language question 156

and a string representation of the database schema 157

(Hwang et al., 2019) and is trained to predict a 158

corresponding SQL query. We train the model by 159

minimizing the token-level cross entropy loss. 160
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2.2 In-context Learning161

In-context learning is a lightweight alternative162

to finetuning that keeps pretrained language model163

parameters frozen (Brown et al., 2020a). The lan-164

guage model takes as input a prompt that contains165

task descriptions, a few demonstration examples,166

and the input to be predicted on. While finetun-167

ing the whole network is a promising approach as168

discussed above, in-context learning has the advan-169

tage of avoiding finetuning on every target domain.170

This is particularly important for large-scale pre-171

trained language models such as GPT-3, because172

finetuning is prohibitively expensive.173

We introduce a method to apply in-context learn-174

ing to our few-shot Text-to-SQL problem. We use175

Codex (Chen et al., 2021), a variant of GPT-3 fine-176

tuned on publicly available code from Github.2177

Similar to the finetuning setting, we first select178

and only annotate M natural language questions179

with gold SQL queries for the target domain (M =180

50, 250, 500). Again similar to finetuning, we ex-181

plore various selection methods that make crucial182

use of example diversity (§3). We then create a183

prompt for every evaluation instance by finding m184

demonstration examples most similar to the partic-185

ular instance from the M annotated examples for186

demonstration; m is chosen to fit into the maximum187

length for Codex, and typically, 5 ≤m ≤10 (Zhao188

et al., 2021; Gao et al., 2021a). The similarity of189

a pair of examples is measured by their cosine dis-190

tance in the T5 embeddings with averaging pooling191

over all encoder time steps and normalization by192

subtracting the mean of all input embeddings.193

3 Selection Methods194

In few-shot text-to-SQL, we assume access to195

a large set of unlabeled user questions on the tar-196

get domain. This simulates many real-world sce-197

narios where we have a record of many natural198

language questions from customers, but not their199

SQL annotations. Our goal is to select a small sub-200

set of examples to be annotated with SQL queries201

that will be used for few-shot finetuning (§2.1) and202

in-context learning (§2.2). We hypothesize that203

effective examples should be diverse to represent204

different types of user questions. To this end, we205

propose two types of example selection strategies.206

The first strategy (§3.1) employs a sequential selec-207

tion process by iteratively picking examples that208

are dissimilar to the already selected ones. Further-209

2https://openai.com/blog/openai-codex/

more, for the sequential selection strategy in our 210

finetuning setup (§2.1), we also prioritize select- 211

ing the target domain examples that are dissimilar 212

to the source domain examples so that the model 213

can be better adapted using more domain-specific 214

information. The second strategy (§3.2) clusters 215

the user questions into groups of similar examples 216

and then selects the example closest to the centroid 217

from each cluster as the representative. 218

3.1 Sequential Selection based on Similarity 219

Our first strategy is sequential selection by pick- 220

ing examples iteratively while making sure they 221

are dissimilar to each other to promote sample di- 222

versity. We propose the following two methods of 223

sequential selection. SelfDis (self-dissimilar) uses 224

dissimilarity with the already chosen examples to 225

choose the next one. In the finetuning setup where 226

the model is first trained on the source domain, Src- 227

SelfDis (source-training-data-self-dissimilar) fur- 228

ther incorporates dissimilarity to the source domain 229

examples . 230

SelfDis Let Dsel denote the set of selected exam- 231

ples. We randomly select a seed example from the 232

training set to initialize Dsel, and we iteratively add 233

new examples. For each remaining training exam- 234

ple xi, we compute the dissimilarity between xi 235

and the already chosen examples xj in Dsel. 236

SelfDis(xi) = −
∑

xj∈Dsel

cos(xi,xj) 237

At each iteration, We choose the example with the 238

highest SelfDis score such that it is the farthest 239

from Dsel on average. We stop iteration when Dsel 240

includes M examples. The final Dsel is expected 241

to be a diverse subset of the unlabeled (i.e., natu- 242

ral language questions without SQL annotations) 243

training set. 244

SrcSelfDis When the model is first trained on the 245

source domain, we want to select target domain 246

examples that are dissimilar to the source training 247

examples for domain adaptation. Therefore, we 248

propose SrcSelfDis that combines the similarity to 249

the examples in the source domain and that to the 250

already selected examples. Let Dsrc denote the set 251

of source domain training examples. We first com- 252

pute the SrcDis (source-training-data-dissimilar) 253

score for dissimilarity to the source domain exam- 254

ples. 255

SrcDis(xi) = −
∑

xj∈Dsrc

cos(xi,xj) 256
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GeoQuery Advising ATIS Yelp Scholar Restaurants IMDB Academic Kaggle Spider
Database 1 1 1 1 1 1 1 1 8 160
Train 576 2756 15786 99 1139 266 102 141 272 7000

Evaluation 344 242 1757 42 252 112 45 59 185 1034

Table 1: Numbers of databases, train and evaluation instances in each dataset. We follow the dataset format in
Finegan-Dollak et al. (2018a), but report the number of question-SQL pairs instead of the separate question and
SQL query counts for the first 8 datasets.

Then, we add SelfDis and SrcDis as the SrcSelfDis257

score using α as the scaling parameter to balance258

the two terms. We use α = 1700 in the later exper-259

iments.260

SrcSelfDis(xi) = SrcDis(xi) + αSelfDis(xi)261

The first instance is chosen as the one with the262

maximum SrcDis score, and we sequentially add263

examples with the maximum SrcSelfDis score until264

M examples are selected.265

3.2 Selection by Clustering266

Alternatively, we can cluster the whole unlabeled267

dataset into M groups. Each cluster represents a268

group of similar examples. Therefore, we select269

one instance from each cluster. Since the exam-270

ple closest to the cluster centroid minimizes the271

total distance to the remaining examples in the272

same cluster, we consider it as the representative273

of this cluster. By selecting all cluster represen-274

tatives, we aim to maximize the diversity of the275

selected subset. In addition, the model prediction276

of an evaluation instance usually depends on the277

nearest neighbor in the training set (Khandelwal278

et al., 2019; Kwon et al., 2021). By diversifying279

the selected instances, we maximize the chance for280

an evaluation data point to find a similar example281

in the few-shot finetuning set. We consider the282

following two clustering algorithms.283

K-means K-means groups unlabeled training in-284

stances into M clusters based on their embedding285

representations. We then choose the example closet286

to the centroid of each cluster.287

Agglomerative Agglomerative clustering itera-288

tively merges the closest two clusters. It constructs289

a hierarchy of unlabeled instances, where clusters290

on a higher level are more dissimilar to each other.291

We terminate the Agglomerative clustering algo-292

rithm when only M clusters are left. Similar to293

K-means, we then choose the example closet to the294

centroid of each cluster.295

4 Experiments296

In this section, we first discuss our experimental297

setups (§4.1). We then describe the experimen-298

tal results and compare varying selection methods 299

extensively (§4.2). 300

4.1 Experimental Setup 301

Datasets Following Suhr et al. (2020), we use 302

Spider (Yu et al., 2018) as the source train- 303

ing dataset and 8 other single-domain datasets 304

to perform few-shot domain adaptation: Geo- 305

Query (Zelle and Mooney, 1996a), Advis- 306

ing (Finegan-Dollak et al., 2018a), ATIS (Price, 307

1990; Dahl et al., 1994), Scholar (Iyer et al., 2017), 308

Restaurants (Tang and Mooney, 2000; Popescu 309

et al., 2003; Giordani and Moschitti, 2012), Aca- 310

demic (Li and Jagadish, 2014), Yelp (Yaghmazadeh 311

et al., 2017), and IMDB (Yaghmazadeh et al., 312

2017). In addition, we further evaluate our methods 313

on the Kaggle dataset (Lee et al., 2021) contain- 314

ing multiple databases. We follow the the stan- 315

dard splits of train and evaluation in the datasets 316

if they have, and randomly split datasets into 70% 317

for training and 30% for evaluation otherwise. The 318

dataset information is summarized in Table 1; eval- 319

uation examples in each dataset are available in 320

Appendix E. 321

Evaluation Metrics Following Zhong et al. 322

(2020), we use the test suite accuracy for all 323

datasets as evaluation metrics. Instead of using 324

a single given database to compute execution ac- 325

curacy, it compares the execution results of the 326

predicted queries and the gold queries on a com- 327

pact test suite of databases with designed instances 328

to distinguish different values in each clause. This 329

setting reduces false positives of traditional execu- 330

tion accuracy (i.e., wrong SQL queries but happen 331

to have the same execution result as correct ones). 332

The test suite of databases are generated by modi- 333

fying one aspect of the gold queries, and therefore, 334

gives a tight upper bound compared to other evalu- 335

ation metrics such as the exact set match (Yu et al., 336

2018) and execution accuracy based on a small 337

database. 338

Implementation We implement two clustering- 339

based selection methods using scikit-learn pack- 340
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Method GeoQuery Advising ATIS Scholar Academic Restaurants Yelp IMDB Kaggle
Finetuning (T5-Spider)

Random 58.83.8 16.66.8 34.25.0 62.45.7 40.33.7 93.72.7 45.68.2 42.47.7 34.54.0

K-means 64.52.8 22.44.4 38.22.1 66.83.0 47.62.2 96.61.2 55.05.7 45.74.2 36.82.3

Agglo 66.9 25.1 39.0 75.6 49.2 98.2 57.1 48.9 35.2
SelfDis 65.53.3 24.45.3 38.82.5 69.84.1 48.22.7 97.41.8 55.76.3 46.65.6 35.73.2

SrcSelfDis 68.0 26.4 40.6 73.8 50.9 99.1 59.5 51.1 37.8
In-context Learning (Codex)

Random 57.92.1 16.23.2 31.62.3 64.34.7 51.23.4 90.21.8 33.35.6 41.24.5 2.41.0

K-means 62.40.8 18.32.4 34.51.4 63.22.4 54.81.8 90.70.5 34.52.6 42.52.7 2.80.6

Agglo 63.5 18.4 35.2 65.2 55.6 91.2 36.7 42.8 3.2
SelfDis 65.41.1 20.62.6 36.72.2 63.52.4 58.92.3 91.40.9 41.32.3 43.63.3 5.20.8

Table 2: Finetuning (T5-Spider) and in-context learning (Codex) performance with different selection methods. All
scores are based on the test suite accuracy (§4.1). 50 examples are selected to annotate. Among the five selection
methods for finetuning, SrcSelfDis performs best apart from Scholar (8.7% improvement on avg. compared to
Random). For in-context learning, SelfDis improves the average accuracy by 4.3% and reduces the variance. The
subscripts indicate standard deviations from 6 trials for the three methods involving random sampling (Random,
K-means, and SelfDis). Bold numbers indicate the best results in finetuning or in-context learning.

ages.3 We use the T5-large model checkpoint341

trained on Spider from Scholak et al. (2021) which342

achieves 65.3% exact matching accuracy. For sim-343

plicity, we refer to T5-large and T5-large trained344

on Spider as T5 and T5-Spider respectively. In all345

our experiments, the batch size per device is set to346

2 with gradient accumulation steps of 2. We use347

greedy search (i.e., beam size 1) since we found348

that a larger beam size did not improve the perfor-349

mance. We finetune the T5-Spider on in-domain350

selected examples of each evaluation dataset for 30351

epochs. Following Shaw et al. (2020) and Scholak352

et al. (2021), for the input sequence in finetuning,353

we also serialize the database schema as a string354

and append it to the question. For in-context learn-355

ing, we use the Davinci version of Codex; the input356

sequence is the concatenation of task descriptions,357

demonstration examples and a question without the358

database schema, as more examples can be added359

under the maximum input length in this case.4360

4.2 Results361

We evaluate the performance of our selection362

methods on the aforementioned datasets. As shown363

in Table 2 where M = 50 in-domain examples364

are selected, all selection selection methods (K-365

means, SelfDis, Agglo, and SrcSelfDis) show sub-366

stantial improvements over random selection both367

in the finetuning and in-context learning experi-368

ments. This confirms our hypothesis that random369

3https://scikit-learn.org/stable/
modules/clustering.html.

4We tried adding serialized schemas in the same way as
finetuning, but we found that it did not improve performance.

selection is suboptimal. K-means, SelfDis and 370

Agglo can greatly outperform the random base- 371

line. Even with random initial states, K-means and 372

SelfDis have smaller variance and are more stable 373

in selecting representative instances. Finally, Src- 374

SelfDis performs best among all five methods in 375

all datasets except Scholar. Overall, our combined 376

approach–using both the diversity and dissimilarity 377

to source training data as criteria–achieves a 8.7% 378

performance gain on average. 379

Moreover, K-means, Agglo and SelfDis give 380

substantial improvements on in-context learning. 381

The diversity in the M annotated examples can 382

help us find similar m demonstration examples 383

to every evaluation instance when its prompt is 384

created; when the annotated examples are more 385

homogeneous, it is possible that we cannot find 386

similar demonstration examples to some evaluation 387

instances, resulting in performance degradation. 388

In general, since questions in GeoQuery, Scholar 389

and Restaurants contain less unspecified do- 390

main knowledge (as mentioned in §1), T5-Spider 391

achieves higher performance compared to other 392

datasets. We also found that our best method Src- 393

SelfDis can select more question and SQL query 394

templates (see more details in Appendix B). 395

Comparison between T5 and Codex As shown 396

in Table 2, our example selection is effective in 397

both settings, but T5 generally outperforms Codex 398

when random, K-means, Agglo or SelfDis selection 399

is applied. The only exception is Academic, where 400

Codex outperforms T5 by a large margin. A poten- 401

tial reason is that, in both training and evaluation 402
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Figure 2: Effects of annotation sizes (i.e., number of
selected examples) for the finetuning setting. Boxplots
are random selection. The purple cross is SrcSelfDis se-
lection. With different in-domain training data size, Src-
SelfDis consistently improves the model performance.
Exact numbers in Table 7 of Appendix D.

splits of the Academic dataset, questions always403

start with “return me”. The consistent question404

patterns might particularly benefit Codex, which405

learns domain-specific knowledge directly from the406

demonstration examples in the prompt.407

Codex lags behind T5 most in Yelp and Kag-408

gle. Since Yelp has a significantly larger portion409

of templates with only one concrete examples, in410

the prompt construction for in-context learning, it411

is much more difficult to select similar instances412

to each test example. As for Kaggle, it is a dataset413

containing multiple databases, so it is difficult for414

the model to effectively learn much domain knowl-415

edge without the serialized schema or similar exam-416

ples in the prompt. This explains the performance417

degradation of Codex in Yelp and Kaggle.418

5 Analysis419

In this section, we analyze our example selec-420

tion methods along three dimensions: effects of421

annotation sizes, embedding methods for example422

representations, and the similarity metrics. We then423

provide an error analysis to better understand the424

improvement gained from our methods. For sim-425

plicity, we focus on three representative datasets426

with various sizes and complexity: GeoQuery, Ad-427

vising, and ATIS. We found similar results from428

the other datasets.429

5.1 Effects of Annotation Sizes430

As shown in Fig. 2, SrcSelfDis consistently im-431

proves the model performance when different num-432

bers of labeled instances are available. In particular,433

it achieves the most substantial improvement when434

only a small number of examples are annotated. For435

example, the model achieves the performance gain436

of 9.8% (M = 50), 9.4% (M = 250), and 4.5%437

(M = 500) on Advising. The largest improve-438
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Figure 3: Effects of annotation sizes (i.e., number of
selected examples) for the in-context learning setting.
SelfDis selection in the first phase improves the model
performance and reduces the variance across different
annotation sizes. See Table 8 in Appendix D for more
detailed results.

ment from M = 50 indicates that our approach 439

is particularly suitable when annotation budgets 440

are limited. Similar patterns are also observed in 441

the in-context learning, as shown in Fig. 3. Both 442

in finetuning and in-context learning, the model 443

performance variance decreases when the training 444

set is larger. Another interesting finding is that, in 445

the ATIS dataset, when 250 examples are selected 446

by SelfDis, the model performance surpasses that 447

when 500 examples are selected randomly. This in- 448

dicates that SelfDis helps the model achieve better 449

performance under lower annotation and computa- 450

tional budgets. 451

Comparison between T5 and Codex Combin- 452

ing the results from Figs. 2 and 3 (See more details 453

on Table 7 and 8 in Appendix), we can see that the 454

performance differences between T5 and Codex 455

are the largest when the annotated examples are of 456

medium size. For example, in GeoQuery, when T5 457

uses SrcSelfDis and Codex uses SelfDis to select 458

examples, their performance differences are 2.6%, 459

4.8% and 2.2% when M = 50, 250, 500 respec- 460

tively. The potential reason is that, very few ex- 461

amples cannot cover sufficient domain knowledge 462

for the models to learn, while many examples pro- 463

vide the models with abundant information. This 464

explains the relatively small differences when the 465

annotated examples are very limited (M = 50) or 466

abundant (M = 500). In contrast, when the la- 467

beled instances are of medium size (M = 250), 468

the gap between the two settings is large, which 469

implies that T5 captures additional domain infor- 470

mation more effectively when M increases from 471

50 to 250. Although this observation is not well 472

aligned with the ATIS dataset, it is probably due 473

to its much larger size than GeoQuery and Advis- 474
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Figure 4: Comparison of three embedding methods
(T5-Spider, T5, and SimCSE) in the finetuning and
in-context learning settings over three domains. T5
indicates embeddings obtained from off-the-shelf T5
without any finetuning. In all domains, T5-Spider per-
forms best. See Table 9 in Appendix D for more detailed
results.

ing (Table 1). In this case, 500 examples are still475

considered as medium size for ATIS.476

In summary, with the benefit of avoiding fine-477

tuning, it may be better to use Codex when we478

have very abundant or very few labeled instances,479

given the small performance difference from T5480

finetuning. However, when the labeled instances481

are of medium size, it is more important to con-482

sider the tradeoff between finetuning T5 and its483

performance gain over Codex, in addition to its484

accessibility and the large model size. Note that485

future advances in prompt engineering can push486

the Codex performance.487

5.2 Design Choices for Example Selection488

Embedding methods Fig. 4 compares finetuning489

and in-context learning results from three embed-490

ding methods: T5-Spider (our default, T5 finetuned491

on Spider), T5 (T5 without any finetuning), and the492

SimCSE model (Gao et al., 2021b) trained on un-493

labeled instances. For fair comparisons, we use494

SrcSelfDis to select examples in finetuning and495

SelfDis in in-context learning for all the embed-496

ding methods. T5-Spider is consistently best across497

three datasets. This illustrates the effectiveness of498

T5 finetuning on Spider for embedding learning499

and thus sample selection.500

Similarity metrics We then use the default em-501

beddings from T5-Spider and compare three sim-502

ilarity metrics for SrcSelfDis and SelfDis. Fig. 5503

shows that in both settings, when the cosine simi-504

larity is applied in the selection process, the model505

consistently performs better than Euclidean dis-506

tance and dot product. This indicates the impor-507

tance of similarity metrics for the success of Src-508
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Figure 5: Comparison of three similarity metrics (cosine
similarity, dot-product, and Euclidean distance) in the
finetuning and in-context learning settings over three
domains. In all domains, Cosine similarity performs
the best. See Table 10 in Appendix D for more detailed
results.

model GeoQuery Advising ATIS
Random T5 20.2 47.6 27.3
SrcSelfDis T5 16.4 40.7 23.2
Random Codex 19.64 18.34 16.7
SelfDis Codex 18.96 17.86 15.2

Table 3: Syntax error rates over 50 examples in three
domains. We compare random, SrcSelfDis for finetun-
ing (T5), and SelfDis for in-context learning (Codex).
With SrcSelfDis selection for T5 or SelfDis for Codex,
the syntax error rate is substantially reduced.

SelfDis and SelfDis. 509

5.3 Error Analysis 510

We consider two major error types: syntax er- 511

ror and semantic error. Syntax errors result in a 512

query execution failure, while semantic errors lead 513

to wrong execution results. We randomly select 50 514

examples from each of three domains and calcu- 515

late the percentage of wrong predictions caused by 516

syntax errors. 517

The results are in Table 3. When T5 and Codex 518

select examples by SrcSelfDis and SelfDis respec- 519

tively, the syntax error rate is substantially reduced 520

compared to the random baseline. This suggests 521

that diverse instances selected by SrcSelfDis and 522

SelfDis contribute to the model capacities of writ- 523

ing syntactically correct SQL queries in different 524

domains with various question styles. For example, 525

in the Advising dataset, the model trained on exam- 526

ples selected by SrcSelfDis predicts correctly on 527

the question, “of the upper-level courses, are any 528

taught by deorio?”; in contrast, the model trained 529

on randomly-selected examples does not. Indeed, 530

SrcSelfDis selected an example with a similar ques- 531

tion: “of the upper level courses, which does Artan 532

teach,” which corresponds to the same SQL query 533

7



template. In the in-context learning, we also ob-534

serve a reduction of the syntax error rate when535

SelfDis is applied.536

Furthermore, SQL annotation style divergence537

between source training and target finetuning sub-538

stantially decreases the model performance in T5-539

Spider finetuning, but not much in Codex in-540

context learning, as Codex is not trained on Spider541

(see more details in Appendix A).542

6 Related Work543

Text-to-SQL Semantic Parsing Semantic pars-544

ing has been researched for decades (Zelle and545

Mooney, 1996b; Miller et al., 1996; Zettlemoyer546

and Collins, 2005; Pasupat and Liang, 2015; Dong547

and Lapata, 2016). Among various logical forms,548

Text-to-SQL has attracted much interest for its prac-549

tical usefulness (Zhong et al., 2017; Yu et al., 2018;550

Finegan-Dollak et al., 2018b; Bogin et al., 2019;551

Wang et al., 2020). While they mainly work with552

full access to annotated training data, we study553

few-shot learning for Text-to-SQL for both domain554

adaptation finetuning and GPT-3 in-context learn-555

ing. Shin et al. (2021) recently proposed to map556

natural utterances into canonical formats that can557

be automatically converted to a target meaning rep-558

resentation and showed its effectiveness with large559

pretrained language models in a few-shot setting.560

In this work, we focus particularly on example se-561

lection for few-shot learning.562

Domain Adaptation for Semantic Parsing Sev-563

eral recent papers focus on adapting semantic564

parsers trained on source domains to target do-565

mains (Li et al., 2020; Chen et al., 2020), includ-566

ing Text-to-SQL (Suhr et al., 2020; Wang et al.,567

2021). Suhr et al. (2020) test a model performing568

well on Spider on another 8 Text-to-SQL datasets569

in varying domains, and the model does not gen-570

eralize well. Prior work (Suhr et al., 2020; Gan571

et al., 2021) find that the model fails to general-572

ize because of domain-specific phrases, diverging573

database and query structures, dataset conventions,574

and the challenges of identifying entities in nat-575

ural utterances and mapping entities to database576

columns. Wang et al. (2021) use meta-learning to577

better generalize models to different domains on578

Spider, where the model is optimized for the source579

and target domain performance simultaneously. In580

contrast to these works, we study example selection581

in few-shot learning for efficiently adapting models582

to low-resource target domains.583

Example Selection in Few-shot Learning Few- 584

shot learning for NLP has received increasing in- 585

terest with the emergence of prompt-based meth- 586

ods (Schick and Schütze, 2020) and large pre- 587

trained language models (Raffel et al., 2020; Brown 588

et al., 2020b). Empirical results of few-shot learn- 589

ing heavily depend on the choice of training exam- 590

ples. Liu et al. (2021) retrieve examples that are 591

semantically similar to a test sample to formulate 592

its prompt for GPT-3. Shin et al. (2021) use several 593

pretrained language models as few-shot semantic 594

parsers with GPT-3 for selecting the most relevant 595

training examples to create prompts. Chang et al. 596

(2021) study the effects of K-means example selec- 597

tion strategies on data-to-text generation, document 598

summarization, and question generation. Our work 599

also follows the line of work on unsupervised sub- 600

set selection where labels are not used for selecting 601

examples (Har-Peled and Mazumdar, 2004; Wei 602

et al., 2014, 2015; Karamcheti et al., 2021). Further- 603

more, active learning has also been used for dynam- 604

ically acquiring new labeled examples during the 605

training process based on uncertainty (Thompson 606

et al., 1999; Kasai et al., 2019; Yao et al., 2020), en- 607

tropy (Siddhant and Lipton, 2018; Gal et al., 2017) 608

and etc. In contrast, we study comprehensive ex- 609

ample selection methods including both clustering 610

and sequential selection based on similarity. Com- 611

pared with active learning, our example selection 612

approach is more efficient because we perform ex- 613

ample selection before training without updating 614

and querying models iteratively. 615

7 Conclusion 616

We explored several example selection methods 617

for Text-to-SQL that can be applied to the tradi- 618

tional few-shot learning via finetuning and prompt 619

construction of Codex (GPT-3) in-context learning. 620

We identified the diversity and the dissimilarity to 621

source training data as two important factors for 622

selection. We showed that with carefully-chosen 623

annotated instances, the model performance on the 624

9 target domains can be greatly enhanced. Our 625

further analyses examined the influence of embed- 626

dings and similarity metrics as well as the change 627

in syntax error rate. Our simple yet effective meth- 628

ods are easy to implement. We plan to apply them 629

to other tasks as future work. 630
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A Effects of SQL Annotation Styles892

The query styles in 9 downstream datasets are893

different from those in Spider. For example, in-894

stead of always using “!=”, the queries in Advising895

use “<>” to get the same output. We examine the896

effects of different query styles on finetuning the897

model. By applying the same selection method898

SrcSelfDis, we select the same set of training in-899

stances without rewriting queries. Fig. 6 shows that900

queries having styles that the models are unfamiliar901

with result in significantly worse performance in902
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Figure 6: We use SrcSelfDis(SelfDis) to select 50 ex-
amples for T5(Codex), and compare the T5(Codex) per-
formance between: 1) the SQL queries in the selected
examples are rewritten to follow query styles in Spider;
2) the SQL queries are not rewritten. The finetuning
performance drops significantly when if the query is not
rewritten, while the performance of Codex only drops a
little. Detailed results can be found in Table 11.

the finetuning. Since test suite accuracy compares 903

query execution results, surface style differences 904

are ignored during evaluation. This suggests that 905

the finetuning model benefits from the consistency 906

of query styles in source training, finetuning, and 907

evaluations. However, since Codex has no source 908

training stage, whether the queries follow the styles 909

in Spider or not has little influence on the perfor- 910

mance.5 911

B Selection Quality 912

We also use the question and SQL query tem- 913

plates provided by Finegan-Dollak et al. (2018a) 914

to conduct our analysis. The question and SQL 915

query templates omit specific values but preserve 916

sentence structures with patterns and styles. For 917

example, “What is the biggest city in state_name0” 918

is a question template, where “state_name0” can 919

be the name of any state in the United States. By 920

substituting different values in the templates, differ- 921

ent question-SQL pairs are generated. We confirm 922

that SrcSelfDis selects more diverse examples by 923

calculating the number of templates in the selected 924

examples. As questions and SQL queries from the 925

same template are highly similar, we consider the 926

number of question and SQL query templates as a 927

diversity measurement for the selected instances. 928

As shown in Table 4, more question and SQL tem- 929

5Instead of no inluence, since the queries rewritten follow
the consistent style (e.g., always use ’!=’ instead of ’!=’ and
’<>’ interchangeably), the Codex performance may still be
improved given rewritten queries in the prompt.
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Dataset Template Random SrcSelfDis

GeoQuery
Question 37 43

SQL 45 50

Advising
Question 39 49

SQL 50 50

ATIS
Question 27 30

SQL 43 50

Table 4: The number of question and query templates in
the 50 examples selected randomly and by SrcSelfDis.
With SrcSelfDis selection, more question and SQL tem-
plates are selected.

plates are selected when the selection method Src-930

SelfDis is employed. It indicates the effectiveness931

of SrcSelfDis in improving the diversity of the se-932

lected examples. Similar results are also observed933

when K-means, SelfDis and Agglo selection meth-934

ods are used.935

C Experiment Details936

C.1 Computing Infrastructure937

All experiments are implemented on RTX 3090938

GPUs with 32GB memory.939

C.2 Models940

We use the pre-trained T5-large model from941

Huggingface6 and the version trained on Spider942

from Scholak et al. (2021)7 to calculate input em-943

beddings and finetune downstream tasks. Both944

versions of T5-large models contain 770 million945

parameters. For the in-context learning, we use946

Codex8 with 12 billion parameters.947

C.3 Hyperparameters948

We report experiment hyperparameters in Table949

5. Since in the low-resource regime in terms of950

annotation budgets and computational resources,951

we consider it more worthwhile to use all avail-952

able labeled instances for training T5 or construct953

prompts for Codex without validation split. There-954

fore, we use the same set of hyperparameters in all955

experiments.956

C.4 Computational Budgets957

We report the time to finetune and evaluate T5-958

large model, and evaluate Codex model in nine959

datasets.960

6https://huggingface.co/t5-large
7https://huggingface.co/tscholak/1wnr382e
8https://openai.com/api/

Hyperparameter Assignment
Fituning (T5-large)

epochs 30
learning rate 1e-4

per device train batch size 2
beam size 1

maximum generation length 512
gradient accumulation steps 2

In-context Learning (Codex)
temparature 1

maximum generation tokens 500
top probability 0.95

frequency penalty 0.0
presence penalty 0.0

stop token “#”,“;”

Table 5: Hyperarameters used in finetuning and in-
context learning across nine datasets.

D Exact Experimental Results 961

We report the exact numbers of Fig 2, Fig 3, Fig 962

4, Fig 5, and Fig 6 in Table 7, Table 8, Table 9, 963

Table 10, and Table 11 respectively. 964

E Dataset Examples 965

E.1 Spider 966

Question: 967

Find the first and last names of the students who 968

are living in the dorms that have a TV Lounge as 969

an amenity. 970

SQL query: 971

SELECT T1.fname, T1.lname FROM 972

student AS T1 JOIN lives_in AS T2 973

ON T1.stuid = T2.stuid WHERE T2. 974

dormid IN (SELECT T3.dormid FROM 975

has_amenity AS T3 JOIN 976

dorm_amenity AS T4 ON T3.amenid = 977

T4.amenid WHERE T4.amenity_name 978

= ’TV Lounge’) 979

E.2 GeoQuery 980

Question: 981

State the state with the largest area 982

SQL query: 983

SELECT STATE_NAME FROM STATE 984

WHERE AREA = ( SELECT AREA FROM 985

STATE ORDER BY AREA DESC LIMIT 1) 986

E.3 Advising 987

Question: 988
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GeoQuery Advising ATIS Scholar IMDB Kaggle Restaurants Yelp Academic
Finetuning (T5-spider)

Finetune 309 312 312 308 311 309 307 310 309
Evaluation 214 428 3416 248 38 116 114 51 70

In-context Learning (Codex)
Evaluation 1236 1568 7580 1164 213 792 724 296 85

Table 6: Experiment time in the unit of second.

method number GeoQuery Advising ATIS
Random 50 58.83.8 16.66.8 34.25.0

SrcSelfDis 50 68.0 26.4 40.6
Random 250 77.32.2 59.62.4 38.2 2.2

SrcSelfDis 250 80.2 69.0 48.6
Random 500 81.11.4 81.31.3 42.4 1.9

SrcSelfDis 500 83.4 85.8 53.2

Table 7: Impact of selection numbers on fine-tuning.

method number GeoQuery Advising ATIS
Random 50 57.92.1 16.23.2 31.62.3

SelfDis 50 65.41.1 20.62.6 36.72.2

Random 250 69.41.0 56.72.5 37.5 2.2

SelfDis 250 75.40.9 59.22.1 41.7 1.6

Random 500 80.41.0 75.21.4 40.2 1.7

SelfDis 500 81.20.8 79.21.0 43.8 1.1

Table 8: Impact of selection numbers on in-context
learning.

Embedding GeoQuery Advising ATIS
Finetuning (T5)

T5-trained 68.0 26.4 40.6
T5 63.1 20.5 36.6

SimCSE 61.1 19.3 35.3
In-context Learning (Codex)

T5-trained 60.01.8 18.32.6 36.72.2

T5 58.81.9 17.32.8 32.52.3

SimCSE 58.32.0 16.62.9 31.82.3

Table 9: Impact of embedding methods.

Similarity GeoQuery Advising ATIS
Finetuning (T5)

Consine 68.0 26.4 40.6
Euclidean 41.3 7.5 16.6

Dot 45.1 8.4 17.5
In-context Learning (Codex)

Consine 60.01.8 18.32.6 36.72.2

Euclidean 22.35.6 0.80.4 12.62.1

Dot 24.44.4 1.10.3 14.71.8

Table 10: Impact of similarity measures.

Model Query GeoQuery Advising ATIS
T5 rewritten 68.0 26.4 40.6
T5 not rewritten 60.5 18.2 35.8

Codex rewritten 60.01.8 18.32.6 36.72.2

Codex not rewritten 59.81.6 17.62.3 35.51.4

Table 11: Impact of query style on model performance.

Which is the easiest class to get my Core require- 989

ment fulfilled 990

SQL query: 991

SELECT DISTINCT T2.DEPARTMENT , 992

T2.NAME , T2.NUMBER , T1.WORKLOAD 993

, T1.WORKLOAD FROM 994

PROGRAM_COURSE AS T1 JOIN COURSE 995

AS T2 ON T1.COURSE_ID = T2. 996

COURSE_ID WHERE T1.CATEGORY LIKE 997

"Core" AND T1.WORKLOAD = ( SELECT 998

WORKLOAD FROM PROGRAM_COURSE 999

WHERE CATEGORY LIKE "Core" ORDER 1000

BY WORKLOAD LIMIT 1) 1001

E.4 ATIS 1002

Question: 1003

Are there any flights on 6 10 from BURBANK 1004

to TACOMA 1005

SQL query: 1006

SELECT DISTINCT T3.FLIGHT_ID FROM 1007

CITY AS T1 JOIN AIRPORT_SERVICE 1008

AS T2 ON T1.CITY_CODE = T2. 1009

CITY_CODE JOIN FLIGHT AS T3 ON T3. 1010

TO_AIRPORT = T2.AIRPORT_CODE JOIN 1011

AIRPORT_SERVICE AS T4 ON T3. 1012

FROM_AIRPORT = T4.AIRPORT_CODE 1013

JOIN DAYS AS T5 ON T3.FLIGHT_DAYS 1014

= T5.DAYS_CODE JOIN CITY AS T6 1015

ON T6.CITY_CODE = T4.CITY_CODE 1016

JOIN DATE_DAY AS T7 ON T5. 1017

DAY_NAME = T7.DAY_NAME WHERE T1. 1018

CITY_NAME = "TACOMA" AND T7. 1019

DAY_NUMBER = 10 AND T7. 1020

MONTH_NUMBER = 6 AND T7.YEAR = 1021

1991 AND T6.CITY_NAME = "BURBANK" 1022
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E.5 Academic1023

Question:1024

Return me the authors who have more than 101025

papers in PVLDB1026

SQL query:1027

SELECT T4.NAME FROM PUBLICATION1028

AS T1 JOIN JOURNAL AS T2 ON T1.1029

JID = T2.JID JOIN WRITES AS T3 ON1030

T3.PID = T1.PID JOIN AUTHOR AS1031

T4 ON T3.AID = T4.AID WHERE T2.1032

NAME = \"PVLDB\" GROUP BY T4.NAME1033

HAVING COUNT( DISTINCT ( T1.1034

TITLE ) ) > 101035

E.6 Yelp1036

Question:1037

List all the businesses with more than 4.5 stars1038

SQL query:1039

SELECT NAME FROM BUSINESS WHERE1040

RATING > 4.51041

E.7 IMDB1042

Question:1043

Find all movies directed by “Steven Spielberg"1044

after 20061045

SQL query:1046

SELECT T3.TITLE FROM DIRECTOR AS1047

T1 JOIN DIRECTED_BY AS T2 ON T1.1048

DID = T2.DID JOIN MOVIE AS T3 ON1049

T3.MID = T2.MSID WHERE T1.NAME =1050

"Steven Spielberg" AND T3.1051

RELEASE_YEAR > 20061052

E.8 Scholar1053

Question:1054

What papers have been written by Peter Mertens1055

and Dina Barbian1056

SQL query:1057

SELECT DISTINCT T1.PAPERID FROM1058

WRITES AS T1 JOIN AUTHOR AS T2 ON1059

T1.AUTHORID = T2.AUTHORID JOIN1060

WRITES AS T3 ON T3.PAPERID = T1.1061

PAPERID JOIN AUTHOR AS T4 ON T3.1062

AUTHORID = T4.AUTHORID WHERE T2.1063

AUTHORNAME = "Peter Mertens" AND1064

T4.AUTHORNAME = "Dina Barbian"1065

E.9 Restaurants 1066

Question: 1067

Where is the best restaurant in san francisco for 1068

french food 1069

SQL query: 1070

SELECT T2.HOUSE_NUMBER , T1.NAME 1071

FROM RESTAURANT AS T1 JOIN 1072

LOCATION AS T2 ON T1.ID = T2. 1073

RESTAURANT_ID WHERE T2.CITY_NAME 1074

= "san francisco" AND T1. 1075

FOOD_TYPE = "french" AND T1. 1076

RATING = ( SELECT T1.RATING FROM 1077

RESTAURANT AS T1 JOIN LOCATION AS 1078

T2 ON T1.ID = T2.RESTAURANT_ID 1079

WHERE T2.CITY_NAME = "san 1080

francisco" AND T1.FOOD_TYPE = " 1081

french" ORDER BY T1.RATING DESC 1082

LIMIT 1) 1083

E.10 Kaggle 1084

Question: 1085

Which states have produced the largest number 1086

of candidates inducted into the hall of fame 1087

SQL query: 1088

SELECT T2.birth_state FROM player 1089

AS T2 JOIN hall_of_fame as T1 ON 1090

T1.player_id = T2.player_id 1091

WHERE inducted = "Y" GROUP BY T2. 1092

birth_state ORDER BY count(T1. 1093

player_id) DESC LIMIT 1 1094
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