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Abstract

In a crime scene, shoeprints are considered as an important evidence. The probe
shoeprint (query) needs to be matched against reference images from a large
database of shoe impressions. This is a computationally challenging task as the
probe image often contains partial patterns and is heavily induced with noise. In
this paper, we investigate approaches for image retrieval with very limited labeled
data. We propose our baselines and discuss various approaches including synthetic
data generation for data augmentation. Particularly, we describe and compare
different methods that (1) leverage class hierarchies (2) learn a distance metric (3)
adaptively perform canonical correlation analysis (CCA) (4) learn to ignore noisy
patterns through supervised alignments.

1 Introduction

Imagine you are at a crime scene and trying to match the shoeprint of the criminal to that of the
suspects. Given a large database of outsole tread patterns, how shall one figure out which reference
shoeprint it aligns the most to? Crime scene probe images are often partial and filled with unwanted
textures of soil, blood, snow, etc.

With few (or zero) labeled samples of these probe images, we aim to match and align the probe
shoeprint to its reference shoe tread. Our contributions are as follows (1) we propose both supervised
and unsupervised baselines for alignment techniques, (2) we utilize off-the-shelf image features [8]
for few-shot learning methods, (3) we identify structural priors in the label space and explore its
usage in learning more robust classification boundaries, (4) we evaluate and analyze various metric
learning approaches [16], (5) we propose an EM based algorithm for canonical correlation analysis
(CCA), (6) and finally we propose a Noise Removal method that fine-tunes the learnt image features
for the probe image features so as to capture the shoeprint texture instead of the noisy background
patterns.

1.1 Dataset

Footwear Impression Database (FID-300) [12] contains 300 probe images and 1175 reference
impressions. These limited probe images correspond to just 130 unique reference classes out of 1175.
We split the probe dataset between train and test by 130 reference class labels. We randomly pick
25 reference classes (≈ 20% of 130) which turned out to correspond 76 probe images out of 300.
We evaluate the top-k accuracies on a test set of size 224 corresponding to remaining 104 reference
classes. For the remaining 104 classes in probe set, we have never seen a probe image and we are
aiming to address the problem in a zero-shot manner.
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1.2 Synthetic Data Generation

We investigate ways to generate the probe-like synthetic data generation, by using standard data aug-
mentation techniques and also texture blending with Describable Textures Dataset (DTD) dataset [1].
For robust classification and clustering, we generate synthetic data using standard data augmentation
techniques like random crop, flip, scale, shear, etc. For synthetic probe-looking images, we blend the
reference images with textures from DTD dataset. We also superimpose the same shoeprint more
than once to produce a smudged texture (Refer to Appendix A for samples).

2 Our Baselines
2.1 Unsupervised approach: Basis Projection

The feature maps of the shoeprint images obtained from ResNet-34 are high dimensional vectors
but we hypothesize that the images lie on a lower dimensional manifold. To substantiate this, we
analyzed the singular values obtained from the SVD decomposition of the reference features XR.
From Fig. 1 we see that the magnitude of the singular values, that corresponds to variance of different
dimensions of XR, drops very quickly. Hence, we aim to project these images on to a subspace with
a smaller basis set comprised of a few “important" basis vectors that capture significant variance.

Let M ∈ Rk×p be the projection matrix obtained through dimensionality reduction for XR ∈ Rn×k

onto a basis of size p, i.e. they M ∈ Rk×p consists of the first p eigen vectors obtained from the eigen
value decomposition of the scaled empirical covariance XT

RXR = UDUT . The projected matrix
X̂R is given by X̂R = XRM. At inference, for a probe image xP ∈ Rk we obtain the projected
features x̂P = xTPM. We then use the cosine similarity (dot product) distance metric to find its
closest reference images in the lower dimensional sub-space with the basis given by M. Finally, we
compute the rank of each reference (for a given probe) and plot the cumulative distribution (CDF)
plot of the ranks of the true references for all probe images.

Figure 1: Few singular vectors
for reference images captures
most of the variance

Figure 2: CDF of the ranks by
Basis Projection Figure 3: CDF of the ranks by

CCA

From Fig. 2, we can note that having 5 basis vectors leads to a significant loss of information and
for very high values like 4096, the noise induced by the dimensions with low eigen values leads to
a drop in performances. We also implemented the kernel-PCA 2 but didn’t achieve any noticeable
gains with it.

2.2 Supervised approach: Canonical Correlation Analysis

The reference and probe images are drawn from different distributions. The ResNet features for
paired samples would most likely not correlate. Drawing from [11], we aim to find the a pair of
orthonormal linear transformations U for XR and V for XP such that UXR and VXP would be
have the maximum correlation.

ρ =
Cov(UXR,VXP )√

V ar(UXR)
√
V ar(VXP )

=
(UXR)

T (VXP )√
(UXR)T (UXR) ·

√
(VXP )T (VXP )

(1)

Further, UXR is fed as a feature matrix to the classification network. Here, XR refers to all reference
images including synthetic data. We hold out 50 probe images out of 300 to evaluate the alignment
learnt by CCA . Fig 3 indicates the proportion of the probe data used for alignment to evaluate on

2rbf kernel, γ = 0.001
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this held-out dataset. In this case, we see that for a good accuracy, we need to utilize almost all the
alignments between the probe & reference images. Hence, this method is not very interesting for our
problem and we only explore it to study the possibility of using a variation of CCA which would
require fewer aligned samples.

3 Proposed Methods

3.1 Identifying structural prior in the reference class labels

The database has several reference images that look very similar. We can use this structure such that
while learning to associate a probe image to a particular reference impression, we penalize the model
less for a similar reference image.

Hierarchical Clustering: We investigated the hierarchical clusters formed by reference feature maps
obtained from the pre-trained neural networks. On visual inspection, we found the clusters to capture
meaningful patterns in the footprint images. Refer Fig 12 (in Appendix) to see that the shoeprints
with dense empty circles get clustered together earlier than with prints with filled dark circles. We
experimented with different linkage methods and found complete linkage with euclidean distance to
be most informative. We also experimented with k-means++ but the hierarchical information is most
relevant to our task.

Hierarchical Softmax: In order to use the latent hierarchy present in the reference classes instead of
using one-hot vectors to represent the targets, we use the cluster tree for the target classes. The cluster
tree is obtained using hierarchical clustering as described above and is constructed with the metric
euclidean and linkage type as complete. The tree constructed from N = 1175 classes has N − 1
edges. Each node has at most two edges: left (0), right (1). Since we know the path from root to leaf
for each reference, the classification left vs right is enforced for every internal node on thee path.

3.2 Robust Embeddings

Our probe images contain high noise compared to the 1175 reference footprints. We first experimented
with a simple model consisting of pre-trained ResNet-34 with a classifier layer on the top. We found
this model to generalize poorly to the probe data owing to high noise. Therefore, we propose to
modify the embedding space to deal better with noise by making use of our data augmentation
techniques.

Metric Learning: In Section. 1.1, we presented various transformations that can help with data
augmentation in our low-resource setting. We want our embedding space to capture the similarity
between original reference images to their noisy versions, while differentiating between reference
footprints. For this purpose, we perform similarity learning to maximize and minimize the intra-label
and inter-label similarity respectively. We used an open-source metric learning library 3 for our
experiments. In a recent work, [16] proposed Multi-similarity loss to improve over traditional losses
like TripletMargin [10] and Contrastive [7] with a special weighting scheme. Their MS-loss is given
below,

L =
1

m

∑
i

[
1

α
log

[
1 +

∑
k∈Pi

e−α(Sik−λ)
]
+

1

β
log

[
1 +

∑
k∈Ni

e−β(Sik−λ)
]]

where, Pi and Ni denote the sets of positive and negative pairs for the anchor i, and Sik being the
similarity between i and k.

Our architecture consists of a trunk model, an embedder model and a classifier network. We used
ResNet-34 as our trunk, with embedding layer being a two-layer fully connected network (4096→
2048→ 512). We train our model with data augmented reference labels with scaling transforms and
alpha blending. For every reference footprint, we use 10 randomly selected images for each of the
above transforms. We experimented with standard metric losses like TripletMargin and Contrastive
but found the best performance with Multi-similarity loss. Along with the pair weighting, the original
paper also proposes a pair mining scheme but we didn’t find mining particularly helpful in our task.

We jointly optimize for metric loss and classifier loss with weights being, 3:1. We fine-tuned for the
hyper-parameters (α, β) in multi-similarity loss and found the best performance on validation set

3https://github.com/KevinMusgrave/pytorch_metric_learning
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with α=10 and β=2. Along with embedding and classifer layers, we found fine-tuning the ResNet
trunk to be helpful.

3.3 Adaptive CCA : Alignment with reduced sample complexity

In Sec. 2.2 we saw that if we were given a significantly large number of alignments for probe
images and their true references it would be easy to use an alignment algorithm like CCA to learn
transformations that maximally align the basis of the probe and reference subspaces. In this section
we explore an E-M based approach to infer the alignments of probe images while estimating the
transformation matrices simultaneously. Our algorithm infers the alignment labels and performs the
CCA alignment in an iterative way. The transformation matrices are constantly adapting (M-step) to
the inferred alignments (E-step). Hence we coin the name of our algorithm as “Adaptive CCA". Yger
et al. [17] also propose an “Adaptive CCA" approach but they focus on estimating transformation
matrices and satisfying certain matrix constraints iteratively. Instead in our formulation, we focus on
estimating the alignment for the probes to their true references while updating the transformations.

Let yr be the reference class label & xr = fθ(Ir) represent the ResNet-34 features for reference
image Ir. Let Îr sampled from the synthetic dataset be one of the probe-looking distortions for Ir.
For a probe image features xp = fθ(Ip), we aim to estimate its label probabilities (E-step) and then
use it to minimize the classification and alignment objective (M-step). Finally, we use x̃i to represent
a lower dimensional projection of image features xi.

3.3.1 E-step : Estimate posterior q(z|xp)

In order to infer the alignment for a probe image we compute the distribution q(z|xp) over the
reference images. For this we model the distribution q(xp|z) using non-parametric kernel density
estimation [6] and assume a uniform prior q(z) over the reference classes. q(z|xp) would then be
given by the Bayes rule in Eq. 2.

Once we have q(z|xp) we use it to compute the convex combination of the reference features xr,
given by g(xp). If we consider the case where we know the true alignment yp for the probe image
Ip, the discrete distribution q(z|xp) would resolve to point mass with q(yr|xp) = 1.0, in which case
g(xp) = xyp . And this would lead to a solution given by the closed form CCA. Hence the method we
propose is generic and can be applied to a large class of alignment problems. Since non-parametric
estimates suffer from the curse of dimensionality [6] we estimate the class conditional distribution
q(z|xp) using projected features x̂. In Eq. 3 Kh is a Gaussian kernel of bandwidth 0.001 and z is the
estimated soft label.

q(z|xp) =
q(xp|z) · q(z)

q(xp)
q(z|xp) =

q(xp|z)∑
z′
q(xp|z′)

(2)

q(z|xp) =
∑
i∈yr Kh(x̃p − x̃i)∑

j

∑
j∈yr Kh(x̃p − x̃j)

; g(xp) =
∑
r

xr · q(z = r|xp) (3)

3.3.2 M-step: Learn the alignment and classification parameters

min
U,V,θ

− log pθ(yr|Uxr)− log pΘ(yr|Vx̂r) +
∑
p ||Ug(xp)−Vxp||22 (4)

st. UTU = I VTV = I (5)

In Eq.4 θ are the parameters involved in feature representation and classification, U, V are the
matrices learnt for alignment. The orthonormal constraints are enforced using Lagrange multipliers,
i.e. as an auxiliary loss.

In the E-step we had sampled a batch of reference and probe images. For the probe image xp we had
estimated the posterior q(z|xp). All the parameters of the classifier and ResNet (feature extractor)
were frozen. Since we begin training with a few known alignments (for the 76 probe images in
our training data) we had to only infer the alignment for the rest of the (224) probe samples. In
the M-step step, with the knowledge of the true alignments (for the 76 images) and the inferred
alignments (g(xp)) for the rest, we compute the classification and alignment loss. Finally, we use
Gradient Descent to update the model parameters before the E-step of the next iteration.
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3.4 Noise Removal Network (NRN): learning to capture the shoeprint texture amidst
structured noise

The reference images are clean aligned imprints while the probe images have complex distortions
and occlusions. As image features are biased towards textures [4], we consider separate networks to
represent both types of images.

We obtain reasonable features for the reference images as their images have one consistent texture
throughout. This is evident with basis projection too in sec 2.1. As the probed images capture more
than one texture: the shoeprint and structured noise textures. Therefore, we aim to fine-tune this
network to be biased towards representing shoeprints more than the noise textures.

We learn the noise removal network (NRN) using a few probe images and probe-like synthetic data.
We obtain cosine similarity between the projected probe image features with the all reference class
projected features, and expect to have maximum similarity value aligned to its respective groundtruth
reference.

The projection matrix is used to initialize the parameters of the final layer in the NRN, while rest of
the model is initialized with pre-trained ResNet-34 features. This ensures that we obtain results at
least as in basis projection baseline (Section 2.1). We improve over this baseline’s performance by
fine-tune the NRN parameters with cross entropy loss.

Otherwise, we observe a local minima setting where the loss function decreases rapidly without much
change in the top-k accuracies.

Figure 4: Schema for noise removal

4 Background and Related Works

MCNCC [11] use normalized cross-correlation for CNN features, and perform normalization on a
per-channel and per-exemplar basis. As PCA/CCA can be seen as a linear layer in neural network, it
is used to initialize the weights of the CNN features. These weights are later learned by Siamese loss
on the calculated correlation of the image features. MCNCC used Israeli shoeprint dataset which
provided good alignment while we obtain similar results with a smaller dataset part: 75% of 250
probe data, evaluated on the 50 held out set.

CABM [12] use probabilistic learning process to learn the even and odd Gabor wavelets as basis
filters, a linear additive model can be applied on ensemble of image patches in a greedy EM-type
clustering. However, these model work on the assumption of fixed pose of the object.

Although handcrafted features worked well for rotation and translation invariance like in [2], their
assumptions came out too restricted for real-world images. The data-driven CNN feature maps seems
to be robust to these situation, provided sufficient training data. The idea of metric learning has been
extensively studied in the literature [9; 13; 14] including one the prior works on footprint recognition,
MCNCC work [11]. A survey [15] shows several previous work in shoeprint identification task that
study the distortions of noise, rotation and translation primarily. Along with these standard data
augmentation techniques, we also explore synthetic data creation with texture blending reference
prints with their same shoeprint to capture the smudging effect and amidst different textures in DTD
dataset by [1].
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5 Results

Table 1 shows the top-k accuracy of the various techniques described in Sec. 3. We compute accuracy
over 1175 reference images (or class labels) for all 224 probe images in our test set. The rest 76 out
of the 300 probe images were either used for fine-tuning or validating the methods. Results from
prior works [12; 11] are not directly comparable with the accuracies for any of our methods since
they train their modules on a much higher number of labeled samples from FID-300. Additionally,
they also have labeled samples of shoeprints from external sources4.

Table 1: Top-k Accuracies for Shoeprint Image Matching. † with large private dataset ∗ with top 100
eigenvectors.

Method Top-1 Top-5 Top-50 Top-100 Top-500
Prior Work

MCNCC† 0.45 0.49 0.78 0.85 -
CABM 0.07 0.10 0.42 0.58 -

Our Baselines
Basis Projection∗ 0.08 0.15 0.35 0.47 0.78

Our Methods
Adaptive CCA 0.03 0.07 0.45 0.69 1.00

Hierarchical S-max 0.05 0.14 0.27 0.39 0.75
Metric Learning 0.10 0.24 0.46 0.57 0.84

Noise Removal Network∗ 0.12 0.26 0.56 0.71 0.94

The Noise Removal Network has higher accuracies in general since we refrain from making strong
assumptions while modelling it. The data augmentation from our curated synthetic dataset aids in
the end-to-end training of the NRN. Additionally, since we compute the similarity of the probe and
reference features in a lower dimensional space the network requires fewer samples/epochs to reach a
local optima [5].

For Adaptive CCA, although we observe good accuracies (≥ 0.7) for higher values of K, the training
is unstable and on several occasions a posterior collapse is observed. Also, since we don’t enforce the
algorithm to output posterior distributions with low entropy, during inference the retrieval mechanism
finds multiple reference images (for the same probe) with similar confidence values. This leads to
low accuracy values for K ≤ 10.

Hierarchical S-max certainly converges faster and has higher top-K accuracy as compared to tradi-
tional softmax but it struggles to beat our unsupervised baseline Basis Projection. The retrieval for
this method is most interpretable since we can clearly see which path (in the hierarchical clustering
tree) is traversed. So it is easier to observe if there was an error made near a leaf node or close to the
root node itself.

Adding a metric-loss objective to our model, we are able to achieve competitive results for all k
reinforcing the need for capturing similarity among noisy synthetic data. In metric learning, we are
aiming to make our embedding space to be robust to noise but we are not accounting for structural
similarity between reference footprints (Sec. 3.1). One interesting future direction would be to take
advantage of this structural prior. This can potentially done by using the hierarchical structure in the
classifier like in hierarchical softmax.

6 Discussion

6.1 Analysis of Metric Learning

We have evaluated our various model and parameter choices on held-out validation probe set and we
provide a detailed analysis below and compare it to our best model of joint optimization of metric
loss and classifier loss, with multi-similarity loss being the metric loss and scaling, blending as
our transforms and fine-tuning ResNet-34. Traditionally, similarity learning methods are evaluated
through k-NN on the global embedding space. Since we are using multi synthetic images for each

4https://forensicstats.org/shoeoutsoleimpressionstudy/
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original reference, this evaluation would be less informative for our ranking task. Therefore, we
evaluated our methods via the output logits. To make sure our learnt embedding space maps the
different noisy versions of our reference set close-by, we performed the nearest neighbor evaluation
on original reference footprints (not directly used in train) and as we expect, we get near perfect
precision @ k = 20.

Joint Training: We experiment with three different optimization functions, only metric loss, only
classifier loss and joint metric, classifier loss. Given the nature of our task, we always use a classifier
loss. Table. 2 shows the performance of the two variants. The overall mean rank was 201 for cross-
entropy loss but 175 with joint loss training, showing a significant increase in overall performance.

Table 2: Model Selection in Metric Learning (numbers of validation set)
Top-1 Top-5 Top-50 Top-100

Best model 0.09 0.29 0.53 0.66
w/o metric loss

only cross-entropy loss 0.16 0.25 0.47 0.54
other metric losses

w. contrastive loss 0.08 0.21 0.37 0.45
other transforms

scale(im) 0.05 0.09 0.29 0.36
crop(im) 0.00 0.01 0.21 0.29
blend(im) 0.08 0.21 0.45 0.57

crop(scale(blend(im))) 0.04 0.07 0.28 0.37
freezing ResNet

Frozen 0.04 0.08 0.26 0.37

Choice of Metric Loss: Along with the multi-similarity loss, we experimented with triplet margin
and contrastive losses. Table. 2 presents the metrics when we use contrastive loss instead of multi-
similarity loss (as in Best). We found triplet-margin loss to be poor. We think the crucial aspect for a
metric loss function in our setting is appropriate weighting of positive and negative pairs, therefore,
contrastive and multi-similarity losses are more suitable to our task.

Data Augmentation: The three types of image transformation proposed in Section. 1.1 can have
different impact on the final performance. To this end, we created a fixed number of synthetic images
(10) for each of the scale, crop and alpha-blend transformations. We trained our metric learning
framework on this data and evaluated it on held-out validation probe set to see the individual impact
of each. Using scale(im) ∪ blend(im) gives the best performance as reported in Best.

Fine-tuning ResNet: We also experimented with fine-tuning our pre-trained trunk model, ResNet-34
on the noise augmented training data. Table. 2 compares the metrics for best and frozen model, and
we clearly see significant gain in performance with fine-tuning. ResNet-34 is originally trained on
generic and clean image corpus, and we believe it is therefore necessary to fine-tune the weights to
adapt to our noisy domain.

6.2 Analysis of Adaptive CCA
To infer the predicted class values for the probe images in the test set, we run the Adaptive CCA EM
algorithm for 150 epochs. Figures 7, 8, 9 gives the posterior distribution q(z|xp) for epochs 0, 30
and 80 respectively. The given progression is for noisy image from reference class 320. We observe
that this distribution over reference labels is almost uniform in the beginning. As the iterations
of the EM algorithm progress we can see that the distribution becomes peakier. With a certain
probability, after 150 epochs the latent class z converges in distribution to the point mass at value
320. The maximization step at this stage would be equivalent to that of the supervised CCA. This is
substantiated by the comparable performance given by the Adaptive CCA model which is trained on
fully labeled data.

6.3 Analysis of Noise Removal Method

The basis projection is unsupervised selection of a ordered set of basis along maximum variance in
the data. This set may or may not help in the downstream task of matching shoeprints.
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Figure 5: Visual image retrieval results by
Adaptive CCA. The red boxes indicate the
true references for a query.

Figure 6: CDF Plot of the ranks of the true
reference classes for every probe image in the
test set (across EM epochs).

Figure 7: q(z|xp) at epoch 0. Figure 8: q(z|xp) at epoch 30. Figure 9: q(z|xp) at epoch 80.

In the ablation study in Table 3, we observe only a slight difference with and without basis projection
to improve top-k accuracies.

More important difference is due to presence of actual probe labeled dataset, as we obtain slightly
lower top-k accuracies without it. The heuristic function for synthetic data still seems to give
reasonable accuracies as compared to other methods in Table 1.

Table 3: Ablation results for Noise Removal Method

Method Top-1 Top-5 Top-50 Top-100 Top-500
Without Labelled Probe Images 0.09 0.23 0.45 0.58 0.90

Without Basis Projection 0.11 0.33 0.51 0.64 0.91
Top-1000 basis 0.10 0.28 0.58 0.736 0.959

4096 (Full) basis 0.09 0.29 0.58 0.741 0.959

7 Conclusion and Future Work
We evaluated baselines based on identifying important “directions" (Sec. 2.1, 2.2) in the refer-
ence/probe feature spaces and carried out an analysis of the hierarchical structure in the label space
(Sec. 3.1). We also did an exhaustive analysis of metric learning approaches and proposed an EM
type algorithm “Adaptive CCA" to find maximally correlated directions with limited number of
aligned samples. Finally, we proposed a simple noise removal pipeline which works well when paired
with data augmentation and basis projection.

Lack of public benchmarks like Imagenet [3] makes it difficult to propose and evaluate new techniques
as there is no standard way to compare them against private datasets used by others. The limited
training data is a logistic restriction and data-driven models can be better compared by collecting
a sufficient collection of shoeprints in different textured surfaces to train and evaluate upon. Shoe
marks may vary based on depth i.e. they may 3-dimensional information (like at the beach) or just
2-dimensional (like on a floor) [2]. The latter corresponds to the reference images in FID-300 while
the actual probe ones are of the former type. Future work in this area can be focused on harnessing
by putting efforts into the collection of reference impressions on snow, soil etc.
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A Synthetic Data with Texture Blending

The synthetic data can be generated using the reference images. The objective of generating synthetic data
images are:

• Use as a slightly perturbed version of reference image: Update the pre-trained network’s parame-
ters and evaluate if the slightly perturbed image is close to its reference image (or its cluster)

• Use as probe image: Learn a model to convert the probe image into its corresponding reference
image. We hope that this generated reference image should lie close to its actual reference image (or
its cluster) for shoeprint matching

We can use the following ways to transform on the reference image into its slightly perturbed version:
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• Crop

• Flip Horizontally

• Brightness and Contrast

• Rotation and shear

• translation and scale distortions (Rida et al, Forensic Survey)

In addition to the above transforms, we can use the following to generate probe-like images:

• Texture blending

• Smudge resulting in same shoeprint more than once

• Occlusion (in part of shoeprint and at image corners)

Figure 10: Standard data augmentation Figure 11: Texture blending with DTD
Dataset

B Hierarchical Clustering

Figure 12: Sample hierarchical clusters in Shoeprints
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