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Abstract

Hyperbolic neural networks have shown great001
potential for modeling complex data. How-002
ever, existing hyperbolic networks are not003
completely hyperbolic, as they encode features004
in the hyperbolic space yet formalize most of005
their operations in the tangent space (a Eu-006
clidean subspace) at the origin of the hyper-007
bolic model. This hybrid method greatly lim-008
its the modeling ability of networks. In this009
paper, we propose a fully hyperbolic frame-010
work to build hyperbolic networks based on011
the Lorentz model by adapting the Lorentz012
transformations (including boost and rotation)013
to formalize essential operations of neural net-014
works. Moreover, we also prove that lin-015
ear transformation in tangent spaces used by016
existing hyperbolic networks is a relaxation017
of the Lorentz rotation and does not include018
the boost, implicitly limiting the capabilities019
of existing hyperbolic networks. The exper-020
imental results on four NLP tasks show that021
our method has better performance for build-022
ing both shallow and deep networks. Our023
code will be released to facilitate follow-up re-024
search.025

1 Introduction026

Various recent efforts have explored hyperbolic027

neural networks to learn complex non-Euclidean028

data properties. Nickel and Kiela (2017) learn hier-029

archical representations in a hyperbolic space for030

the first time and show that hyperbolic geometry031

can offer more flexibility than Euclidean geome-032

try when modeling complex data structures. Af-033

ter that, Ganea et al. (2018) and Nickel and Kiela034

(2018) propose hyperbolic frameworks based on035

the Poincaré ball model and the Lorentz model re-036

spectively1 to build hyperbolic networks, including037

hyperbolic feed-forward, hyperbolic multinomial038

logistic regression, etc.039

1Both the Poincaré ball model and the Lorentz model are
typical geometric models in hyperbolic geometry.

Encouraged by the successful formalization of 040

essential operations in hyperbolic geometry for neu- 041

ral networks, various Euclidean neural networks 042

are adapted into hyperbolic spaces. These efforts 043

have covered a wide range of scenarios, from shal- 044

low neural networks like word embeddings (Tifrea 045

et al., 2018; Zhu et al., 2020), network embed- 046

dings (Chami et al., 2019; Liu et al., 2019), knowl- 047

edge graph embeddings (Balazevic et al., 2019a; 048

Kolyvakis et al., 2019) and attention module (Gul- 049

cehre et al., 2018), to deep neural networks like 050

variational auto-encoders (Mathieu et al., 2019) and 051

flow-based generative models (Bose et al., 2020). 052

Existing hyperbolic neural networks equipped with 053

low-dimensional hyperbolic feature spaces can ob- 054

tain comparable or even better performance than 055

high-dimensional Euclidean neural networks. 056

Although existing hyperbolic neural networks 057

have achieved promising results, they are not fully 058

hyperbolic. In practical terms, some operations 059

in Euclidean neural networks that we usually use, 060

such as matrix-vector multiplication, are difficult 061

to be defined in hyperbolic spaces. Fortunately for 062

each point in hyperbolic space, the tangent space 063

at this point is a Euclidean subspace, all Euclidean 064

neural operations can be easily adapted into this 065

tangent space. Therefore, existing works (Ganea 066

et al., 2018; Nickel and Kiela, 2018) formalize 067

most of the operations for hyperbolic neural net- 068

works in a hybrid way, by transforming features 069

between hyperbolic spaces and tangent spaces via 070

the logarithmic and exponential maps, and perform- 071

ing neural operations in tangent spaces. However, 072

the logarithmic and exponential maps require a se- 073

ries of hyperbolic and inverse hyperbolic functions. 074

The compositions of these functions are compli- 075

cated and usually range to infinity, significantly 076

weakening the stability of models. 077

To avoid complicated transformations between 078

hyperbolic spaces and tangent spaces, we propose 079

a fully hyperbolic framework by formalizing oper- 080
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ations for neural networks directly in hyperbolic081

spaces rather than tangent spaces. Inspired by the082

theory of special relativity, which uses Minkowski083

space (a Lorentz model) to measure the spacetime084

and formalizes the linear transformations in the085

spacetime as the Lorentz transformations, our hy-086

perbolic framework selects the Lorentz model as087

our feature space. Based on the Lorentz model,088

we formalize operations via the relaxation of the089

Lorentz transformations to build hyperbolic neural090

networks, including linear layer, attention layer, etc.091

We also prove that performing linear transforma-092

tion in the tangent space at the origin of hyperbolic093

spaces (Ganea et al., 2018; Nickel and Kiela, 2018)094

is equivalent to performing a Lorentz rotation with095

relaxed restrictions, i.e., existing hyperbolic net-096

works do not include the Lorentz boost, implicitly097

limiting their modeling capabilities.098

To verify our framework, we build fully hyper-099

bolic neural networks for several representative100

scenarios, including knowledge graph embeddings,101

network embeddings, fine-grained entity typing,102

machine translation, and dependency tree probing.103

The experimental results show that our fully hyper-104

bolic networks can outperform Euclidean baselines105

with fewer parameters. Compared with existing hy-106

perbolic networks that rely on tangent spaces, our107

fully hyperbolic networks are faster, more stable,108

and achieve better or comparable results.109

2 Preliminaries110

Hyperbolic geometry is a non-Euclidean geome-111

try with constant negative curvature K. Several112

hyperbolic geometric models have been applied in113

previous studies: the Poincaré ball (Poincaré disk)114

model (Ganea et al., 2018), the Poincaré half-plane115

model (Tifrea et al., 2018), the Klein model (Gul-116

cehre et al., 2018) and the Lorentz (Hyperboloid)117

model (Nickel and Kiela, 2018). All these hyper-118

bolic models are isometrically equivalent, i.e., any119

point in one of these models can be transformed to120

a point of others with distance-preserving transfor-121

mations (Ramsay and Richtmyer, 1995). We select122

the Lorentz model as the framework cornerstone,123

considering the numerical stability and calculation124

simplicity of its exponential/logarithm maps and125

distance function.126

2.1 The Lorentz Model127

Formally, an n-dimensional Lorentz model is128

the Riemannian manifold LnK = (Ln, gKx ). K129

is the constant negative curvature. gKx = 130

diag(−1, 1, · · · , 1) is the Riemannian metric ten- 131

sor. Each point in LnK has the form x = 132

[ xtxs ] ,x ∈ Rn+1, xt ∈ R,xs ∈ Rn. Ln is 133

a point set satisfying Ln := {x ∈ Rn+1 | 134

〈x,x〉L = 1
K , xt > 0}, and 〈x,y〉L = 135

−xtyt + xᵀ
sys = xᵀ diag(−1, 1, · · · , 1)y is the 136

Lorentzian inner product. Ln is the upper sheet 137

of hyperboloid (hyper-surface) in an (n + 1)- 138

dimensional Minkowski space with the origin 139

(
√
−1/K, 0, · · · , 0). For simplicity, we denote 140

a point x in the Lorentz model as x ∈ LnK in the 141

latter sections. 142

The special relativity gives physical interpreta- 143

tion to the Lorentz model by connecting the last 144

n elements xs to space and the 0-th element xt 145

to time. We follow this setting to denote the 0-th 146

dimension of the Lorentz model as time axis, and 147

the last n dimensions as spatial axes. 148

Tangent Space Given x ∈ LnK , the tangent 149

space TxLnK := {y ∈ Rn+1 | 〈y,x〉L = 0} is 150

the orthogonal space of LnK at x with respect to 151

the Lorentzian inner product. Note that TxLnK is 152

a Euclidean subspace of Rn+1. Particularly, we 153

denote the tangent space at the origin as T0LnK . 154

Logarithmic and Exponential Maps As shown 155

in Figure 1a, the logarithmic and exponential maps 156

specifies the mapping of points between the hyper- 157

bolic space LnK and the Euclidean subspace TxLnK . 158

The exponential map expKx (z) : TxLnK → LnK 159

can map any tangent vector z ∈ TxLnK to LnK by 160

moving along the geodesic γ satisfying γ(0) = x 161

and γ′(0) = z. More specifically, expKx (z) = 162

cosh(α)x + sinh(α) zα , α =
√
−K‖z‖L, ‖z‖L = 163√

〈z, z〉L. 164

The logarithmic map logKx (y) : LnK → TxLnK 165

plays an opposite role to map y ∈ LnK to TxLnK . 166

More specifically, logKx (y) = cosh−1(β)√
β2−1

(y − 167

βx), β = K〈x,y〉L. 168

2.2 The Lorentz Transformations 169

In the special relativity, the Lorentz transformations 170

are a family of linear transformations from a coor- 171

dinate frame in spacetime to another frame moving 172

at a constant velocity relative to the former. Any 173

Lorentz transformation can be decomposed into 174

a combination of a Lorentz boost and a Lorentz 175

rotation by polar decomposition (Moretti, 2002). 176

Definition 1 (Lorentz Boost). Lorentz boost de- 177

scribes relative motion with constant velocity and 178
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Figure 1: Illustration of a hyperbolic linear layer based on the logarithmic and exponential maps as well as different
transformations in the Lorentz model. In Figure 1a, A is mapped to B in the tangent space at the origin T0Ln

K

through the logarithmic map. A Euclidean linear transformation is performed to obtain C. Finally, C is mapped
back to the hyperbolic space through the exponential map. Figures 1b and 1c are the visualization of the Lorentz
boost and rotation, where points on the intersection of a plane and the hyperboloid are still coplanar after the
Lorentz boost. Figure 1d is pseudo-rotation in §3.1, where a point is first transformed and then projected onto the
hyperboloid.

without rotation of the spatial coordinate axes.179

Given a velocity v ∈ Rn (ratio to the speed of light),180

‖v‖ < 1 and γ = 1√
1−‖v‖2

, the Lorentz boost ma-181

trices are given by B =

[
γ −γvᵀ

−γv I+ γ2

1+γvv
ᵀ

]
.182

Definition 2 (Lorentz Rotation). Lorentz rotation183

is the rotation of the spatial coordinates. The184

Lorentz rotation matrices are given by R =185 [
1 0ᵀ

0 R̃

]
, where R̃ᵀR̃ = I and det(R̃) = 1,186

i.e., R̃ ∈ SO(n) is a special orthogonal matrix.187

Both the Lorentz boost and the Lorentz rotation188

are the linear transformations directly defined in189

the Lorentz model, i.e., ∀x ∈ LnK ,Bx ∈ LnK and190

Rx ∈ LnK . Hence, we build fully hyperbolic neu-191

ral networks on the basis of these two types of192

transformations in this paper.193

3 Fully Hyperbolic Neural Networks194

3.1 Fully Hyperbolic Linear Layer195

We first introduce our hyperbolic linear layer in the196

Lorentz model, considering it is the most essential197

block for neural networks. Although the Lorentz198

transformations in §2.2 are linear transformations199

in the Lorentz model, they cannot be directly used200

for neural networks. On the one hand, the Lorentz201

transformations transform coordinate frames with-202

out changing the number of dimensions. On the203

other hand, complicated restrictions of the Lorentz204

transformations (e.g., special orthogonal matrices205

for the Lorentz rotation) make computation and op-206

timization problematic. Although the restrictions207

offer nice properties such as spacetime interval in- 208

variant to Lorentz transformation, we do not need 209

them in neural networks. 210

A Lorentz linear layer matrix should minimize 211

the loss while subject to M ∈ R(m+1)×(n+1), 212

∀x ∈ Ln,Mx ∈ Lm. It is a constrained 213

optimization difficult to solve. We instead re- 214

formalize our lorentz linear layer to learn a ma- 215

trix M =
[
vᵀ

W

]
,v ∈ Rn+1,W ∈ Rm×(n+1) 216

satisfying ∀x ∈ Ln, fx(M)x ∈ Lm, where fx : 217

R(m+1)×(n+1) → R(m+1)×(n+1) should be a func- 218

tion that maps any matrix to a suitable one for 219

the hyperbolic linear layer. Specifically, ∀x ∈ 220

LnK ,M ∈ R(m+1)×(n+1), fx(M) is given as 221

fx(M) = fx(

[
vᵀ

W

]
) =

[ √
‖Wx‖2−1/K

vᵀx
vᵀ

W

]
, (1) 222

Theorem 1. ∀x ∈ LnK ,∀M ∈ R(m+1)×(n+1), we 223

have fx(M)x ∈ LmK . 224

Proof 1. One can easily verify that ∀x ∈ LnK , 225

we have 〈fx(M)x, fx(M)x〉L = 1/K, thus 226

fx(M)x ∈ LmK . 227

Relation to the Lorentz Transformations In 228

this part, we show that the set of matrices {fx(M)} 229

defined in Eq.(1) contains all Lorentz rotation and 230

boost matrices. 231

Lemma 1. In the n-dimensional Lorentz model 232

LnK , we denote the set of all Lorentz boost matrices 233

as B , the set of all Lorentz rotation matrices asR 234

. Given x ∈ LnK , we denote the set of fx(M) at x 235

without changing the number of space dimension as 236

Mx = {fx(M) |M ∈ R(n+1)×(n+1)}. ∀x ∈ LnK , 237

we have B ⊆Mx andR ⊆Mx. 238
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Proof 2. We first proveMx covers all valid trans-239

formations.240

Considering A = {A ∈ R(n+1)×(n+1) | ∀x ∈241

LnK : 〈Ax,Ax〉L = 1
K , (Ax)0 > 0} is the242

set of all valid transformation matrices in the243

Lorentz model. Then ∀A =
[

vᵀ
A

WA

]
∈ A, vA ∈244

Rn+1,WA ∈ Rn×(n+1), ∃x ∈ Rn+1 : vᵀx > 0245

and ‖WAx‖2 − (vᵀ
Ax)

2
= 1

K . Furthermore,246

∀A ∈ A, we have fx(A) = fx(
[

vᵀ
A

WA

]
) =247 [ √

‖WAx‖2−1/K

v
ᵀ
A

x
vᵀ
A

WA

]
= A. Hence, we can see that248

A ⊆ Mx. Since B ⊆ A and R ⊆ A, therefore249

B ⊆Mx andR ⊆Mx.250

According to Theorem 1 and Lemma 1, both251

Lorentz boost and rotation can be covered by our252

linear layer.253

Relation to the Linear Layer Formalized in the254

Tangent Space In this part, we show that the255

conventional hyperbolic linear layer formalized in256

the tangent space at the origin (Ganea et al., 2018;257

Nickel and Kiela, 2018) can be considered as a258

Lorentz transformation with only a special rotation259

but no boost. Figure 1a visualizes the conventional260

hyperbolic linear layer.261

As shown in Figure 1d, we consider a special262

setting “pseudo-rotation" of our hyperbolic lin-263

ear layer. Formally, at the point x ∈ LnK , all264

pseudo-rotation matrices make up the set Px =265 {
fx(
[
w 0ᵀ

0 W

]
)
∣∣ w ∈ R,W ∈ Rn×n

}
. As we no266

longer require the submatrix W to be a special or-267

thogonal matrix, this setting is a relaxation of the268

Lorentz rotation.269

Formally, given x ∈ LnK , the conventional hy-270

perbolic linear layer relies on the logarithmic map271

to map the point into the tangent space at the ori-272

gin, a matrix to perform linear transformation in273

the tangent space, and the exponential map to map274

the final result back to LnK 2. The whole process 3275

is276

exp0(
[
∗ 0ᵀ

0 W

]
log0([

xt
xs ])) =

[
cosh(β)√
−Kxt

0ᵀ

0
sinh(β)W√
−K‖Wxs‖

]
[ xtxs ],

(2)277

where β =
√
−K cosh−1(

√
−Kxt)√

−Kx2t−1
‖Wxs‖.278

2Note that Mobius matrix-vector multiplication defined
in Ganea et al. (2018) also follows this process

3The 0-th dimension of any point in the tangent space
at the origin is 0, therefore the linear matrix has the form
diag(∗,W), where ∗ can be arbitrary number.

Lemma 2. ∀x ∈ LnK , we define 279

the set of the outcomes of Eq.(2) as 280

Hx =

{[
cosh(β)√
−Kxt

0ᵀ

0
sinh(β)√
−K‖Wxs‖

W

] ∣∣∣∣W ∈ Rn×n
}

, 281

we haveHx ⊆ Px andHx ∩ B = {I}. 282

Proof 3. ∀x ∈ LnK , ∀H ∈ Hx, H has the 283

form
[
w 0ᵀ

0 W

]
, satisfying ‖Wxs‖2 − (wxt)

2 = 1
K 284

and wxt > 0. We can verify that fx(H) = 285

fx(
[
w 0ᵀ

0 W

]
) =

[ √
‖Wxs‖2−1/K

wxt
w 0ᵀ

0 W

]
= H. Hence, 286

∀x ∈ LnK , ∀H ∈ Hx, we have H = fx(H) ∈ Px, 287

and thusHx ⊆ Px. 288

To proveHx ∩ B = I is trivial, we do not elab- 289

orate here. Therefore, a conventional hyperbolic 290

linear layer can be considered as a special rotation 291

where the time axis is changed according to the 292

space axes to ensure that the output is still in the 293

Lorentz model. Our linear layer is not only fully 294

hyperbolic but also equipped with boost operations 295

to be more expressive. Moreover, without using 296

the complicated logarithmic and exponential maps, 297

our linear layer has better efficiency and stability. 298

A More General Formula Here, we give a more 299

general formula of our hyperbolic linear layer 300

based on fx(
[
vᵀ

W

]
)x, by adding activation, dropout, 301

bias and normalization, 302

y = HL(x) =
[√
‖φ(Wx,v)‖2−1/K

φ(Wx,v)

]
, (3) 303

where x ∈ LnK , v ∈ Rn+1, W ∈ Rm×(n+1), 304

and φ is an operation function: for the dropout, 305

the function is φ(Wx,v) = Wdropout(x); 306

for the activation and normalization φ(Wx,v) = 307
λσ(vᵀx+b′)
‖Wh(x)+b‖(Wh(x) + b), where σ is the sigmoid 308

function, b and b′ are bias terms, λ > 0 controls 309

the scaling range, h is the activation function. We 310

elaborate φ(·) we use in practice in the appendix. 311

3.2 Fully Hyperbolic Attention Layer 312

Attention layers are also important for building net- 313

works, especially for the networks of Transformer 314

family (Vaswani et al., 2017). We propose an at- 315

tention module in the Lorentz model. Specifically, 316

we consider the weighted aggregation of a point 317

set P = {x1, . . . ,x|P|} as calculating the centroid, 318

whose expected (squared) distance to P is mini- 319

mum, i.e. argminµ∈LnK
∑|P|

i=1 νid
2
L(xi,µ), where 320

νi is the weight of the i-th point. Law et al. (2019) 321

prove that, with squared Lorentzian distance de- 322

fined as d2L(a,b) = 2/K − 2〈a,b〉L, the centroid 323
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w.r.t. the squared Lorentzian distance is given as324

µ = Centroid
(
{ν1, . . . , ν|P|}, {x1, . . . ,x|P|}

)
=

∑|P|
j=1 νjxj

√
−K

∣∣‖∑|P|i=1 νixi‖L
∣∣ .

(4)325

Given the query set Q = {q1, . . . ,q|Q|}, key326

set K = {k1, . . . ,k|K|}, and value set V =327

{v1, . . . ,v|V|}, where |K| = |V|, we exploit the328

squared Lorentzian distance between points to329

calculate weights. The attention is defined as330

ATT(Q,K,V) = {µ1, . . . ,µ|Q|} and given by:331

µi =

∑|K|
j=1 νijvj

√
−K

∣∣‖∑|K|k=1 νikvk‖L
∣∣ ,

νij =
exp(

−d2L(qi,kj)√
n

)∑|K|
k=1 exp(

−d2L(qi,kk)√
n

)
,

(5)332

where n is the dimension of points. Fur-333

thermore, multi-headed attention is defined as334

MHATT(Q,K,V) = {µ1, . . . ,µ|Q|}, and µi is335

µi = HL([µ1
i | . . . |µHi ]),

{µi1,µi2, . . .} = ATTi(HLiQ(Q),HLiK(K),HLiV(V)),
(6)336

where H is the head number, [·| . . . |·] is the con-337

catenation of multiple vectors, ATTi(·, ·, ·) is the338

i-th head attention, and HLiQ(·), HLiK(·), HLiV(·)339

are the hyperbolic linear layers of the i-th head340

attention.341

Other intuitive choices for the aggregation in342

the Lorentz attention module include Fréchet343

mean (Karcher, 1977) and Einstein midpoint (Un-344

gar, 2005). The Fréchet mean is the classical gen-345

eralization of Euclidean mean. However, it offers346

no closed-form solution. Solving the Fréchet mean347

currently requires iterative computation (Lou et al.,348

2020; Gu et al., 2019), which significantly slows349

down the training and inference, making it impossi-350

ble to generalize to deep and large model 4. On the351

contrary, Lorentz centroid is fast to compute and352

can be seen as Frechet mean in pseudo-hyperbolic353

space (Law et al., 2019). The computation of the354

Einstein midpoint requires transformation between355

Lorentz model and Klein model, bringing in numer-356

ical instability. The Lorentz centroid we use mini-357

mizes the sum of squared distance in the Lorentz358

4400 times slower than using Lorentz centroid in our ex-
periment, and no improvement in performance was observed

model, while the Einstein midpoint does not pos- 359

sess such property. Also, whether the Einstein 360

midpoint in the Klein model has its geometric in- 361

terpretation in the Lorentz model remains to be 362

investigated, and it is beyond the scope of our pa- 363

per. Therefore, we adopt the Lorentz centroid in 364

our Lorentz attention. 365

3.3 Fully Hyperbolic Residual Layer and 366

Position Encoding Layer 367

Lorentz Residual The residual layer is crucial 368

for building deep neural networks. Since there 369

is no well-defined vector addition in the Lorentz 370

model, we assume that each residual layer is pre- 371

ceded by a computational block whose last layer 372

is a Lorentz linear layer, and do the residual-like 373

operation within the preceding Lorentz linear layer 374

of the block as a compromise. Given the input x of 375

the computational block and the output o = f(x) 376

before the last Lorentz linear layer of the block, 377

we take x as the bias of the Lorentz linear layer. 378

Concretely, the final output of the block is 379

y =
[√
‖φ(Wo,v,x)‖2−1/K

φ(Wo,v,x)

]
,

φ(Wo,v,x) =
λσ(vᵀo)

‖Wh(o) + xs‖
(Wh(o) + xs),

(7) 380

where the symbols have the same meaning as those 381

in Eq.(3). 382

Lorentz Position Encoding Some neural net- 383

works require positional encoding for their embed- 384

ding layers, especially those models for NLP tasks. 385

Previous works generally incorporate positional in- 386

formation by adding position embeddings to word 387

embeddings. Given a word embedding x and its 388

corresponding learnable position embedding p, we 389

add a Lorentz linear layer to transform the word 390

embedding x, by taking the position embedding 391

p as the bias. The overall process is the same as 392

Eq.(7). Note that the transforming matrix in the 393

Lorentz linear layer is shared across positions. This 394

modification gives us one more d× d matrix than 395

the Euclidean Transformer. The increase in the 396

number of parameters is negligible compared to 397

the huge parameters of the whole model. 398

4 Experiments 399

To verify our proposed framework, we conduct 400

experiments on both shallow and deep neural net- 401

works. For shallow neural networks, we present 402

results on knowledge graph completion. For deep 403
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WN18RR FB15k-237
Model #Dims MRR H@10 H@3 H@1 #Dims MRR H@10 H@3 H@1

TRANSE (Bordes et al., 2013) 180 22.7 50.6 38.6 3.5 200 28.0 48.0 32.1 17.7
DISTMULT (Yang et al., 2015) 270 41.5 48.5 43.0 38.1 200 19.3 35.3 20.8 11.5
COMPLEX (Trouillon et al., 2017) 230 43.2 50.0 45.2 39.6 200 25.7 44.3 29.3 16.5
CONVE (Dettmers et al., 2018) 120 43.5 50.0 44.6 40.1 200 30.4 49.0 33.5 21.3
ROTATE (Sun et al., 2019) 1,000 47.3 55.3 48.8 43.2 1,024 30.1 48.5 33.1 21.0
TUCKER (Balazevic et al., 2019b) 200 46.1 53.5 47.8 42.3 200 34.7 53.3 38.4 25.4

MURP (Balazevic et al., 2019a) 32 46.5 54.4 48.4 42.0 32 32.3 50.1 35.3 23.5
ROTH (Chami et al., 2020a) 32 47.2 55.3 49.0 42.8 32 31.4 49.7 34.6 22.3
ATTH (Chami et al., 2020a) 32 46.6 55.1 48.4 41.9 32 32.4 50.1 35.4 23.6
HYBONET 32 48.9 55.3 50.3 45.5 32 33.4 51.6 36.5 24.4

MURP (Balazevic et al., 2019a) β 48.1 56.6 49.5 44.0 β 33.5 51.8 36.7 24.3
ROTH (Chami et al., 2020a) β 49.6 58.6 51.4 44.9 β 34.4 53.5 38.0 24.6
ATTH (Chami et al., 2020a) β 48.6 57.3 49.9 44.3 β 34.8 54.0 38.4 25.2
HYBONET β 51.3 56.9 52.7 48.2 β 35.2 52.9 38.7 26.3

Table 1: Link prediction results (%) on WN18RR and FB15k-237 in the filtered setting. β ∈ {200, 400, 500}
and we report the best result. The first group of models are Euclidean models, the second and third groups are
hyperbolic models with different dimensions. Following Balazevic et al. (2019a), RotatE results are reported
without their self-adversarial negative sampling for fair comparison. Best results are in bold. Best results among
hyperbolic networks with same dimensions are underlined.

neural networks, we propose a Lorentz Transformer404

and present results on machine translation. Depen-405

dency tree probing is also done on both Lorentz406

and Euclidean Transformers to compare their ca-407

pabilities of representing structured information.408

Due to space limitations, we report the results of409

network embedding and fine-grained entity typing410

experiments in the appendix A.411

In the following sections, we denote the mod-412

els built with our proposed framework as HY-413

BONET. We demonstrate that HyboNet not only414

outperforms Euclidean and Poincaré models on415

the majority of tasks, but also converges better416

than its Poincaré counterpart. All models in §4.1417

are trained with 1 NVIDIA 2080Ti, models in418

§4.2 are trained with 1 NVIDIA 40GB A100419

GPU. We optimize our model with Riemannian420

Adam (Kochurov et al., 2020). For pre-processing421

and hyper-parameters of each experiment, please422

refer to Appendix B.423

4.1 Experiments on Shallow Networks424

In this part, we leverage our Lorentz embed-425

ding and linear layers to build shallow neural net-426

works. We show that HyboNet outperforms previ-427

ous knowledge graph completion models on several428

popular benchmarks.429

4.1.1 Knowledge Graph Completion Models430

A knowledge graph contains a collection of factual431

triplets, each triplet (h, r, t) illustrates the existence432

of a relation r between the head entity h and the433
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Figure 2: Validation curves of knowledge graph mod-
els.

tail entity t. Since knowledge graphs are generally 434

incomplete, predicting missing triplets becomes 435

a fundamental research problem. Concretely, the 436

task aims to solve the problem (h, r, ?) and (?, r, t). 437

We use two popular knowledge graph comple- 438

tion benchmarks, FB15k-237(Toutanova and Chen, 439

2015) and WN18RR(Dettmers et al., 2018) in our 440

experiments. We report two evaluation metrics: 441

MRR (Mean reciprocal rank), the average of the 442

inverse of the true entity ranking in the prediction; 443

H@K, the percentage of the correct entities ap- 444

pearing within the top K positions of the predicted 445

ranking. 446

Setup Similar to Balazevic et al. (2019a), we 447

design a score function for each triplet as 448

s(h, r, t) = −d2L(fr(eh), et) + bh + bt + δ, 449

where eh, et ∈ LnK are the Lorentz embeddings 450

of the head entity h and the tail entity t, fr(·) is 451

a Lorentz linear transformation of the relation r 452
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and δ is a margin hyper-parameter. For each triplet,453

we randomly corrupt its head or tail entity with k454

entities and calculate the probabilities for triplets as455

p = σ(s(h, r, t)), where σ is the sigmoid function.456

Finally, we minimize the binary cross entropy loss457

L = − 1

N

N∑
i=1

log p(i) +
k∑
j=1

log(1− p̃(i,j))

 ,458

where p(i) and p̃(i,j) are the probabilities for correct459

and corrupted triplets respectively, N is the triplet460

number. We select the model with the best MRR461

on validation set and report its performance on test462

set.463

Results §3.3 shows the results on both464

datasets. As expected, low-dimensional hyper-465

bolic networks have already achieved compara-466

ble or even better results when compared to high-467

dimensional Euclidean baselines. When the dimen-468

sionality is raised to a maximum of 500, HYBONET469

outperforms all other baselines on MRR, H@3, and470

H@1 by a significant margin. And as shown in Fig-471

ures 2a and 2b, HYBONET converges better than472

other hyperbolic networks on both datasets and has473

a higher ceiling, demonstrating the superiority of474

our Lorentz linear layer over conventional linear475

layer formalized in tangent space.476

4.2 Experiments on Deep Networks477

In this part, we build a Transformer (Vaswani et al.,478

2017) with our Lorentz components introduced in479

§3. We omit layer normalization for the difficulty480

of defining hyperbolic mean and variance, but it is481

still kept in our Euclidean Transformer baseline. In482

fact, λ in Eq.(3) controls the scaling range, which483

normalize the representations to some extent.484

4.2.1 Machine Translation485

We conduct the experiment on two widely-used ma-486

chine translation benchmarks: IWSLT’14 English-487

German and WMT’14 English-German.488

Setup We use OpenNMT (Klein et al., 2017)489

to build Euclidean Transformer and our Lorentz490

one. Following previous hyperbolic work (Shimizu491

et al., 2021), we conduct experiments in low-492

dimensional settings. To show that our framework493

can be applied to high-dimensional settings, we ad-494

ditionally train a Lorentz Transformer of the same495

size as Transformer base, and compare their perfor-496

mance on WMT’14. We select the model with the497

lowest perplexity on the validation set, and report498

its BLEU scores on the test set.499

IWSLT’14 WMT’14

Model d=64 d=64 d=128 d=256

CONVSEQ2SEQ 23.6 14.9 20.0 21.8
TRANSFORMER 23.0 17.0 21.7 25.1

HYPERNN++ 22.0 17.0 19.4 21.8
HATT 23.7 18.8 22.5 25.5
HYBONET 25.9 19.7 23.3 26.2

Table 2: The BLEU scores on the test set of IWSLT’14
and WMT’14 under the low-dimensional setting.

Model WMT’14

TRANSFORMERbase (Vaswani et al., 2017) 27.3
TRANSFORMERbig (Vaswani et al., 2017) 28.4

HATTbase (Gulcehre et al., 2018) 27.5
HYBONETbase 28.2

Table 3: The BLEU scores on the test set of WMT’14
under the high-dimensional setting. The results of
TRANSFORMER and HATT are taken from their orig-
inal paper respectively.

Results The BLEU scores on the test set of 500

IWSLT’14 and newstest2013 test set of WMT’14 501

are shown in Table 2. Both Transformer-based hy- 502

perbolic models, HYBONET and HATT (Gulcehre 503

et al., 2018), outperform the Euclidean Transformer. 504

However, in HATT, only the calculation of atten- 505

tion weights and the aggregation are performed 506

in hyperbolic space, leaving the remaining com- 507

putational blocks in the Euclidean space. That is, 508

HATT is a partially hyperbolic Transformer. As a 509

result, the merits of hyperbolic space are not fully 510

exploited. On the contrary, HYBONET performs 511

all its operations in the hyperbolic space, thus 512

better utilizes the hyperbolic space, and achieve 513

significant improvement over both Euclidean and 514

partially hyperbolic Transformer. Apart from the 515

low-dimensional setting that is common in hyper- 516

bolic literature, we scale up the model to be the 517

same size as Transformer base (512-dimensional in- 518

put) (Vaswani et al., 2017). We report the results in 519

Table 3. HYBONET outperforms TRANSFORMER 520

and HATT with the same model size, and is very 521

close to the much bigger TRANSFORMERbig. 522

4.2.2 Dependency Tree Probing 523

In this part, we verify the superiority of HYBONET 524

in capturing latent structured information in un- 525

structured sentences through dependency tree prob- 526

ing. It has been shown that neural networks implic- 527

itly embed syntax trees in their intermediate con- 528

text representations (Hewitt and Manning, 2019; 529
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Distance Depth

Model UUAS Dspr. Root% Nspr.

TRANSFORMER 0.36 0.30 12 0.88

HATT 0.50 0.64 49 0.88
HYBONET 0.59 0.70 64 0.92

Table 4: The probing results on dependency tree con-
structed from the IWSLT’14 English corpus.

Raganato et al., 2018). One reason we think HY-530

BONET performs better in machine translation is531

that it better captures structured information in the532

sentences. To validate this, we perform a prob-533

ing on TRANSFORMER, HATT and HYBONET ob-534

tained in §4.2.1. We use dependency parsing result535

of stanza (Qi et al., 2020) on IWSLT’14 English536

corpus as our dataset. The data partition is kept.537

Setup For a fair comparison, we probe all the538

models in hyperbolic space following Chen et al.539

(2021). Four metrics are reported: UUAS (undi-540

rected attachment score), the percentage of undi-541

rected edges placed correctly against the gold tree;542

Root%, the precision of the model predicting the543

root of the syntactic tree; Dspr. and Nspr., the544

Spearman correlations between true and predicted545

distances for each word in each sentence, true depth546

ordering and the predicted ordering, respectively.547

Please refer to the appendix for details.548

Results The probing results are shown in Table 2.549

HYBONET outperforms other baselines by a large550

margin. Obviously, syntax trees can be better re-551

constructed from the intermediate representation552

of HYBONET’s encoder, which shows that HY-553

BONET better captures syntax structure. The result554

of HATT is also worth noting. Because HATT is555

a partially hyperbolic Transformer, intuitively, its556

ability to capture the structured information should557

be better than Euclidean Transformer, but worse558

than HYBONET. Our result confirms this suspicion559

indeed. The probing on HATT indicates that as560

the model becomes more hyperbolic, the ability to561

learn structured information becomes stronger.562

5 Related Work563

Hyperbolic geometry has been widely investigated564

in representation learning in recent years, due to its565

great expression capacity in modeling complex data566

with non-Euclidean properties. Nickel and Kiela567

(2017) first propose to use hyperbolic space to en-568

code the transitive closure of the WordNet noun569

hierarchy. They indicate that hyperbolic space 570

is superior to Euclidean space in terms of both 571

representation capacity and generalization ability, 572

especially in low dimensions. Moreover, Ganea 573

et al. (2018) and Nickel and Kiela (2018) intro- 574

duce the basic operations of neural networks in the 575

Poincaré ball and the Lorentz model respectively. 576

After that, researchers further introduce various 577

types of neural models in hyperbolic space includ- 578

ing hyperbolic attention networks (Gulcehre et al., 579

2018), hyperbolic graph neural networks (Liu et al., 580

2019; Chami et al., 2019), hyperbolic prototypi- 581

cal networks (Mettes et al., 2019) and hyperbolic 582

capsule networks (Chen et al., 2020). Recently, 583

with the rapid development of hyperbolic neural 584

networks, people attempt to utilize them in various 585

downstream tasks such as word embeddings (Tifrea 586

et al., 2018), knowledge graph embeddings (Chami 587

et al., 2020b), entity typing (López et al., 2019), 588

text classification (Zhu et al., 2020), question an- 589

swering (Tay et al., 2018) and machine transla- 590

tion (Gulcehre et al., 2018; Shimizu et al., 2021), 591

to handle their non-Euclidean properties, and have 592

achieved significant and consistent improvement. 593

Our work not only focus on the improvement in 594

the downstream tasks that hyperbolic space offers, 595

but also show that hyperbolic linear transformation 596

used in previous work is just a relaxation of Lorentz 597

rotation, giving a different theoretical interpretation 598

for the hyperbolic linear transformation. 599

6 Conclusion and Future Work 600

In this work, we propose a novel fully hyperbolic 601

framework based on the Lorentz transformations 602

to overcome the problem that hybrid architectures 603

of existing hyperbolic neural networks relied on 604

the tangent space limit network capabilities. The 605

experimental results on several representative NLP 606

tasks show that compared with other hyperbolic 607

networks, HYBONET has faster speed, better con- 608

vergence, and higher performance. In addition, we 609

also observe that some challenging problems re- 610

quire further efforts: (1) Though we have verified 611

the effectiveness of fully hyperbolic models in NLP, 612

exploring its applications in computer vision is still 613

a valuable direction. (2) Though HYBONET has 614

better performance on many tasks, it is slower than 615

Euclidean networks. Also, because of the floating- 616

point error, HYBONET cannot be sped up with half 617

precision training. We hope more efforts can be 618

devoted into this promising field. 619
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A Other Experiments 823

A.1 Graph Neural Networks 824

Previous works have shown that when equipped 825

with hyperbolic geometry, GNNs demonstrate 826

impressive improvements compared with its Eu- 827

clidean counterparts (Chami et al., 2019; Liu et al., 828
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2019). In this part, we extend GCNs with our pro-829

posed hyperbolic framework. Following Chami830

et al. (2019), we evaluate our HYBONET for link831

prediction and node classification on four network832

embedding datasets, and observe better or compa-833

rable results as compared to previous methods.834

Setup The architecture of GCNs can be summa-835

rized into three parts: feature transformation, neigh-836

borhood aggregation and non-linear activation. We837

use a Lorentz linear layer for the feature transfor-838

mation, and use the centroid of neighboring node839

features as the aggregation result. The non-linear840

activation is integrated into Lorentz linear layer841

as elaborated in §3.1. The overall operations of842

the l-th network layer can be formulated into the843

following manner:844

xli = Att(HL(xl−1i ), {HL(xl−1j∈N (i))}, {HL(x
l−1
j∈N (i))}),845

where xli refers to the representation of the i-th846

node at the layer l, N (i) denotes the neighboring847

nodes of the i-th node. With the node represen-848

tation, we can easily conduct link prediction and849

node classification. For link prediction, we cal-850

culate the probability of edges using Fermi-Dirac851

decoder (Krioukov et al., 2010; Nickel and Kiela,852

2017):853

p((i, j) ∈ E | xi,xj) =
(
exp((d2L(xi,xj)− r)/t) + 1

)−1
,

(8)854

where r and t are hyper-parameters. We minimize855

the binary cross entropy loss. For node classifica-856

tion, we calculate the squared Lorentzian distance857

between node representation and class representa-858

tions, and minimize the cross entropy loss.859

Results Following Chami et al. (2019), we re-860

port ROC AUC results for link prediction and861

F1 scores for node classification on four differ-862

ent network embedding datasets. The descrip-863

tion of the datasets can be found in our ap-864

pendix. Chami et al. (2019) compute Gromovs865

δ-hyperbolicity(Jonckheere et al., 2008; Adcock866

et al., 2013; Narayan and Saniee, 2011) for these867

four datasets. The lower the δ is, the more hyper-868

bolic the graph is.869

The results are reported in Appendix A.1. HY-870

BONET outperforms other baselines in those highly871

hyperbolic datasets. For Disease dataset, HY-872

BONET even achieves a 12% (absolute) improve-873

ment on node classification over previous hyper-874

bolic GCNs. On the less hyperbolic datasets such875

as PubMed and Cora, HYBONET still performs876

well on link prediction, and remains competitive 877

for node classification. Although HYBONET does 878

not significantly better than LGCN on all datasets, 879

we observe that HYBONET is far more stable than 880

LGCN. Out of 128 link prediction experiments in 881

grid search, there are 89 times that LGCN gen- 882

erates NaN and fails to finish training, while HY- 883

BONET remains stable and is faster than LGCN. 884

A.2 Fine-grained Entity Typing 885

Given a sentence containing a mention of entity e, 886

the purpose of entity typing is to predict the type of 887

e from a type inventory. It is a multi-label classifica- 888

tion problem since multiple types can be assigned 889

to e. For fine-grained entity typing, type labels are 890

divided into finer granularity, making the type in- 891

ventory contains thousands of types. We conduct 892

the experiment on Open Entity dataset (Choi et al., 893

2018), which divides types into three levels: coarse, 894

fine, and ultra-fine. 895

Setup Our entity typing model consists of a 896

mention encoder and a context encoder. To get 897

mention representation, the mention encoder first 898

obtain word representation si, then calculate the 899

centroid of si as mention representation m accord- 900

ing to Eq. (4) with uniform weight. The context en- 901

coder is a Lorentz Transformer encoder that shares 902

the same embedding module with mention encoder. 903

The context representation c is the distance-based 904

attention (López and Strube, 2020) result over the 905

Transformer encoder’s output. We combine m and 906

c in the way of combining multi-headed outputs 907

described in §3.2 by regarding m and c as a two- 908

headed output. We then calculate a probability 909

pi = σ(−d2L(r, ti)/αi + βi) for every type label, 910

where σ is sigmoid function, ti is the Lorentz em- 911

bedding of the i-th type label, and αi, βi are learn- 912

able scale and bias factor respectively. During train- 913

ing, we optimize the multi-task objective (Vaswani 914

et al., 2017). For evaluation, a type is predicted if 915

its probability is larger than 0.5. 916

Results Following previous works (Choi et al., 917

2018; López and Strube, 2020), we report the 918

macro-averaged F1 scores on the development set 919

of Open Entity dataset in Appendix A.2. HyboNet 920

outperforms LabelGCN (Xiong et al., 2019) and 921

MultiTask (Vaswani et al., 2017) on Total with 922

fewer parameters. Compared with large Euclidean 923

models Denoised and BERT, HyboNet achieves 924

comparable fine and ultra-fine results with signifi- 925

cantly fewer parameters. Compared with another 926
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Disease(δ = 0) Airport(δ = 1) PubMed(δ = 3.5) Cora(δ = 11)

Task LP NC LP NC LP NC LP NC

GCN (Kipf and Welling, 2017) 64.7±0.5 69.7±0.4 89.3±0.4 81.4±0.6 91.1±0.5 78.1±0.2 90.4±0.2 81.3±0.3

GAT (Veličković et al., 2018) 69.8±0.3 70.4±0.4 90.5±0.3 81.5±0.3 91.2±0.1 79.0±0.3 93.7±0.1 83.0±0.7

SAGE (Hamilton et al., 2017) 65.9±0.3 69.1±0.6 90.4±0.5 82.1±0.5 86.2±1.0 77.4±2.2 85.5±0.6 77.9±2.4

SGC (Wilson et al., 2014) 65.1±0.2 69.5±0.2 89.8±0.3 80.6±0.1 94.1±0.0 78.9±0.0 91.5±0.1 81.0±0.1

HGCN (Chami et al., 2019) 91.2±0.6 82.8±0.8 96.4±0.1 90.6±0.2 96.1±0.2 78.4±0.4 93.1±0.4 81.3±0.6

HAT (Zhang et al., 2021a) 91.8±0.5 83.6±0.9 / / 96.0±0.3 78.6±0.5 93.0±0.3 83.1±0.6

LGCN (Zhang et al., 2021b) 96.6±0.6 84.4±0.8 96.0±0.6 90.9±1.7 96.8±0.1 78.6±0.7 93.6±0.4 83.3±0.7

HYBONET 96.8±0.4 96.0±1.0 97.3±0.3 90.9±1.4 95.8±0.2 78.0±1.0 93.6±0.3 80.2±1.3

Table 5: Test ROC AUC results (%) for Link Prediction (LP) and F1 scores (%) for Node Classification (NC).
HGCN and HYBONET are hyperbolic models. δ refers to Gromovs δ-hyperbolicity, and is given by Chami et al.
(2019). The lower the δ, the more hyperbolic the graph.

Model Total C F UF #Para

LABELGCN 35.8 67.5 42.2 21.3 5.1M
MULTITASK 31.0 61.0 39.0 14.0 6.1M

HY BASE 36.3 68.1 38.9 21.2 1.8M
HY LARGE 37.4 67.6 41.4 24.7 4.6M
HY XLARGE 38.2 67.1 40.4 25.7 9.5M

LORENTZ (TANGENT) 37.2 68.0 40.3 22.4 2.9M
HYBONET 38.2 68.1 43.2 23.5 2.9M

Table 6: Macro F1 scores (%) on the development set
of Open Entity dataset for different baselines and mod-
els. Best results are underlined, and best results among
hyperbolic models are in bold.

hyperbolic model HY (López and Strube, 2020),927

which is based on the Poincaré ball model, Hy-928

boNet outperforms HY xLarge model on coarse929

and fine results. Note that HyboNet has only930

slightly more parameters than HY base, and fewer931

than HY Large.932

B Data Preprocessing Methods933

We describe data preprocessing methods for each934

experiment in this section.935

B.1 Knowledge Graph Completion936

The statistics of WN18RR and FB15k-237 are937

listed in Table 7. We keep our data preprocess-938

ing method for knowledge graph completion the939

same as Balazevic et al. (2019a). Concretely, we940

augment both WN18RR and FB15k-237 by adding941

reciprocal relations for every triplet, i.e. for every942

(h, r, t) in the dataset, we add an additional triplet943

(t, r−1, h).944

B.2 Machine Translation 945

For WMT’14, we use the preprocessing script pro- 946

vided by OpenNMT5. For IWSLT’14, we clean 947

and partition the dataset with script provided by 948

FairSeq6. We limit the lengths of both source and 949

target sentences to be 100 and do not share the 950

vocabulary between source and target language. 951

B.3 Network Embedding 952

We use four datasets, referred to as Disease, Air- 953

port, Pubmed and Cora. The four datasets are pre- 954

processed by Chami et al. (2019) and published 955

in their code repository7. We refer the readers to 956

Chami et al. (2019) for further information about 957

the datasets. 958

B.4 Entity Typing 959

The dataset consist of 6, 000 crowd sourced sam- 960

ples and 6M distantly supervised training samples. 961

We keep our data preprocessing method for knowl- 962

edge graph completion the same as López and 963

Strube (2020). For the input context, We trimmed 964

the sentence to a maximum of 25 words. During 965

the trimming, one word at a time is removed from 966

one side of the mention, trying to keep the men- 967

tion in the center of the sentence, and preserve the 968

context information of the mention. For the input 969

mention, we trimmed the mention to a maximum 970

of 5 words. 971

C Experiment Details 972

All of our experiments use 32-bit floating point 973

numbers, not 64-bit floating point numbers as in 974

5https://github.com/OpenNMT/
OpenNMT-tf/tree/master/scripts/wmt

6https://github.com/pytorch/fairseq/
tree/master/examples/translation

7https://github.com/HazyResearch/hgcn
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Dataset #Ent #Rel #Train #Valid #Test

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134

Table 7: Statistics of FB15k-237 and WN18RR.

Embedding
xi Geoopt default
Parameters in f Uniform(-0.02, 0.02)

Lorentz Linear Layer
W Uniform(-0.02, 0.02)
v Uniform(-0.02, 0.02)

Table 8: Initialization methods of different parameters.

most previous work. We use PyTorch as the neural975

networks’ framework. The negative curvature K976

of the Lorentz model in our experiments is −1.977
We take the function φ in Lorentz linear layer to978

have the form979

φ(Wx) =

√
(λσ(vTx+ b) + ε)2 + 1/K

‖Wh
(
dropout(x)

)
‖

Wh
(
dropout(x)

)
.

(9)980

To see what it means, we first compute y0 =981

λσ(vTx + b) + ε as the 0-th dimension of the982

output y, where σ is the sigmoid function, λ con-983

trols the 0-th dimension’s range, it can be either984

learnable or fixed, b is a learnable bias term, and985

ε >
√

1/K is a constant preventing the 0-th di-986

mension be smaller than
√

1/K. According to987

the definition of Lorentz model, y should satis-988

fies ‖y1:n‖2 − y0
2 = 1/K, that is, ‖y1:n‖ =989 √

y0
2 + 1/K =

√
(λσ(vTx+ b) + ε)2 + 1/K.990

Then equation (9) can be seen as first calculate991

ỹ1:n = Wh
(
dropout(x)

)
, then scale ỹ1:n to992

have vector norm ‖y1:n‖ to obtain y1:n. Finally,993

we concatenate y0 with y1:n as output.994

For residual and position embedding addition,995

we also use Eq.(9).996

C.1 Initialization997

We use different initialization method for different998

parameters, see Table 8. Geoopt(Kochurov et al.,999

2020) initialize the parameter with Gaussian distri-1000

bution in the tangent space, and map the embedding1001

to hyperbolic space with exponential map.1002

C.2 Knowledge Graph Completion1003

We list the hyper-parameters used in the experiment1004

in Table 9. Note that in this experiment, we restrict1005

the norm of the last n dimension of the embeddings1006

to be no bigger than a certain value, referred to as1007

Max Norm in Table 9. For each dataset, we explore1008

WN18RR FB15k-237
Dimension 32 500 32 500

Batch Size 1000 1000 500 500
Neg Samples 50 50 50 50
Margin 8.0 8.0 8.0 8.0
Epochs 1000 1000 500 500
Max Norm 1.5 2.5 1.5 1.5
λ 3.5 2.5 2.5 2.5
Learning Rate 0.005 0.003 0.003 0.003
Grad Norm 0.5 0.5 0.5 0.5
Optimizer rAdam rAdam rAdam rAdam

Table 9: Hyper-parameters for knowldge graph comple-
tion.

BatchSize ∈ {500, 1000}, Margin ∈ {4, 6, 8}, 1009

MaxNorm ∈ {1.5, 2.5, 3.5}, λ ∈ {2.5, 3.5, 5.5}, 1010

LearningRate ∈ {3e− 3, 5e− 3, 7e− 3}. 1011

C.3 Machine Translation 1012

Our code is based on OpenNMT’s Trans- 1013

former(Klein et al., 2017). The hyper-parameters 1014

are listed in Table 11 1015

C.4 Dependency Tree Probing 1016

The probing for the Euclidean Transformer is done 1017

by first applying an Euclidean linear mapping 1018

fP : Rn → Rm+1 followed by a projection to map 1019

Transformer’s intermediate context-aware represen- 1020

tation ci into points h̃i in tangent space of Lorentz 1021

model’s origin, then using exponential map to map 1022

h̃i to hyperbolic space pi. In the hyperbolic space, 1023

we construct the Lorentz syntactic subspace via a 1024

Lorentz linear layer fQ : LmK → LmK : 1025

pi = expK0 (fP (ci)),

qi = fQ(pi).
1026

We use the squared Lorentzian distance between 1027

qi and qj to recreate tree distances between word 1028

pairs wi and wj , the squared Lorentzian distance 1029

between qi and the origin o to recreate the depth 1030

of word wi. We minimize the following loss: 1031

Ldistance =
1

l2

∑
i,j∈{1,··· ,t}

|dT (wi, wj)− d2L(qi,qj)|

Ldepth =
1

l

∑
i∈{1,··· ,t}

|dD(wi)− d2L(qi,o)|,
1032

where dT (wi, wj) is the edge number of the short- 1033

est path from wi to wj in the dependency tree, and 1034

l is the sentence length. For the probing of Lorentz 1035

Transformer, we only substitute fP with a Lorentz 1036

one, and discard the exponential map. We probe 1037
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Disease(δ = 0) Airport(δ = 1) PubMed(δ = 3.5) Cora(δ = 11)

Task LP NC LP NC LP NC LP NC

Learning Rate 0.005 0.005 0.01 0.02 0.008 0.02 0.02 0.02
Weight Decay 0 0 0.002 0.0001 0 0.001 0.001 0.01
Dropout 0.0 0.1 0.0 0.0 0.5 0.8 0.7 0.9
Layers 2 4 2 6 2 3 2 3
Max Grad Norm None 0.5 0.5 1 0.5 0.5 0.5 1

Table 10: Hyper-parameters for network embeddings.

Hyper-parameter IWSLT’14 WMT’16

GPU Numbers 1 4 4 4
Embedding Dimension 64 64 128 256
Feed-forward Dimension 256 256 512 1024
Batch Type Token Token Token Token
Batch Size Per GPU 10240 10240 10240 10240
Gradient Accumulation Steps 1 1 1 1
Training Steps 40000 200000 200000 200000
Dropout 0.0 0.1 0.1 0.1
Attention Dropout 0.1 0.0 0.0 0.0
Max Gradient Norm 0.5 0.5 0.5 0.5
Warmup Steps 8000 6000 6000 6000
Decay Method noam noam noam noam
Label Smoothing 0.1 0.1 0.1 0.1
Layer Number 6 6 6 6
Head Number 4 4 8 8
Learning Rate 5 5 5 5
Optimizer rAdam rAdam rAdam rAdam

Table 11: Hyper-parameters for machine translation.

every layer for both models, and report the results1038

of the best layer.1039

We do the probing in the 64 dimensional hy-1040

perbolic space. The hyper-parameters and the1041

best layer we choose according to development1042

set are listed in Table 12. Because no Lorentz1043

embedding is involved, we simply use Adam as1044

the optimizer. For parameter selection, we explore1045

Learning Rate ∈ {5e−4, 3e−4, 1e−4, 5e−5, 3e−1046

5, 1e−5}, Weight Decay ∈ {0, 1e−6, 1e−5, 1e−1047

4}, Batch Size∈ {16, 32, 64}.1048

C.5 Network Embedding1049

The experiment setting is the same as Chami et al.1050

(2019). We list the hyper-parameters for the four1051

datasets in Table.101052

C.6 Entity Typing1053

We initialize the word embeddings by isometrically1054

projecting the pretrained Poincaré Glove word em-1055

beddings (Tifrea et al., 2018) to Lorentz model, and1056

fix them during training. A Lorentz linear layer is1057

applied to transform the word embeddings to a1058

higher dimension. To get mention representation,1059

the mention encoder first obtain word representa-1060

tion si through position encoding module described 1061

in section 3.4, then calculate the centroid of si as 1062

mention representation mi according to Eq. 14 1063

with uniform weight 1064

si = PE(HL(wi)),

mi = Centroid(1/l, si),
1065

where l is the length of sentence, wi is the pre- 1066

trained embedding of i-th word. The context en- 1067

coder is a Lorentz Transformer encoder that shares 1068

the same embedding module with mention encoder. 1069

The context representation c is the distance-based 1070

attention (López and Strube, 2020) result over the 1071

Transformer encoder’s output hi: 1072

xi = PE(hi), qi = HL(xi), ki = HL(xi),

νij = Softmax(−d2L(qi,kj)/
√
n),

c = Centroid(νij ,hi).

1073
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Table 12: Hyper-parameters for dependency tree prob-
ing.

Hyper-parameter Euclidean HAtt HyboNet

Learning Rate 5e-5 5e-5 5e-5
Weight Decay 0 1e-6 0
Best Layer 0 3 4
Batch Size 64 32 32
Steps 20000 20000 20000
Optimizer Adam Adam Adam
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