
Linear and Kernel Classification in the Streaming
Model: Improved Bounds for Heavy Hitters

Arvind Mahankali
CMU

amahanka@andrew.cmu.edu

David P. Woodruff
CMU

dwoodruf@cs.cmu.edu

Abstract

We study linear and kernel classification in the streaming model. For linear clas-
sification, we improve upon the algorithm of [1], which solves the `1 point query
problem on the optimal weight vector w∗ ∈ Rd in sublinear space. We first give
an algorithm solving the more difficult `2 point query problem on w∗, also in
sublinear space. We then give an algorithm which solves the related `2 heavy hitter
problem on w∗, in sublinear space and running time. Finally, we give an algorithm
which can deterministically solve the `1 point query problem on w∗, with sublinear
space, improving upon that of [1]. For kernel classification, if w∗ ∈ Rdp is the
optimal weight vector classifying points in the stream according to their pth-degree
polynomial kernel, then we give an algorithm solving the `2 point query problem
on w∗ in poly(p log dε) space, and an algorithm solving the `2 heavy hitter problem
in poly(p log dε) space and running time. Note that our space and running time is
polynomial in p, making our algorithms well-suited to high-degree polynomial
kernels and the Gaussian kernel (approximated by the polynomial kernel of degree
p = Θ(log T)). Our algorithms for kernels are in fact a special case of a more
general algorithm we give for low-rank tensor inputs.

1 Introduction

We consider logistic regression, and more generally, linear classification, in the streaming model.
In our setting, we are given a dataset consisting of T examples (xt, yt), where t ∈ [T], xt ∈ Rd,
yt ∈ {−1, 1}. The examples arrive one by one, and moreover, the nonzero coordinates of each
example xt arrive one by one. Our goal is to estimate the weights w∗ ∈ Rd of the optimal linear
classifier for these examples. Here, w∗ := argminw∈Rd

1
T

∑T
t=1 `(ytw

Txt) + λ
2 ‖w‖

2
2 where ` is a

loss function satisfying certain conditions described in Section 1.3 — the prototypical example of
` that we consider is the logistic regression loss function — and λ controls the strength of the `2
regularization. Finally, we assume that d is very large, and we therefore wish to estimate the weights
of w∗ in space that is sublinear in d. This is important both in settings with devices with limited
memory constraints, such as routers or sensors on a network, as well as in machine learning problems
with many features. Machine learning problems with a very large number of features arise in many
natural language processing tasks, for example — one motivation for [1], the precursor to our work,
is that the use of n-gram features when analyzing text data can lead to a very large memory cost. 1

Our goal, and that of [1], is to find features which are the most useful for classification — as pointed
out in [1], previously known sketches for compressing classifiers do not achieve this goal.

Formally, we consider the following problems in this work:

1In [1] it is mentioned that in an experiment on the dataset of [2], “we recorded 47M unique word pairs that
co-occur within 5-word spans of text ... [requiring] approximately 560MB of memory.”

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Problem 1 (`p Point Query, for p = 1, 2). Let ε ∈ (0, 1). At any time t ∈ [T] in the stream, given an
arbitrary query i ∈ [d], the goal is to output ŵi such that |ŵi − w∗,i| ≤ ε‖w∗‖p.

Problem 2 (`2 Heavy Hitters). Let ε ∈ (0, 1). At any time t ∈ [T] in the stream, the goal is to output
a list L ⊂ [d] of size at mostO(1

ε2) such that L contains all indices i ∈ [d] such that |w∗,i| ≥ ε‖w∗‖2.

Interpretability is one of the main motivations for the above problem formulations — as argued by [1],
finding the largest weights in w∗ is equivalent to determining which features are the most important
in classification. Also, note that `2 point query is strictly more difficult than `1 point query — to see
why, note that in the worst case, ‖w∗‖1 can be larger than ‖w∗‖2 by a

√
d factor. Thus, for instance,

if an algorithm uses poly(ε−1 log d) space to solve `1 point query, then it will use at least dO(1) space
to solve `2 point query (by replacing ε with ε/

√
d), which is far too large in streaming settings.

1.1 Our Contributions

`2 point query and heavy hitters (via a reduction to turnstile `2 point query and heavy hitters)
We give efficient algorithms for solving `2 point query and `2 heavy hitters. In the approach of [1], a
single Countsketch matrix [3] is used to maintain a sketch zt of the weights. zt is updated by online
gradient descent according to zt+1 ← (1−ληt)zt−ηtyt`′(ytzTt Rxt)Rxt, where R is a Countsketch
matrix scaled by 1/

√
s, where s is the column sparsity of R — by [4], R is a Johnson-Lindenstrauss

(JL) transform if s is chosen to be large enough. To estimate the coordinates of w∗, the recovery
procedure of [3] is applied to

√
sz, where z = (

∑T
t=1 zt)/T . In addition, [1] only obtains the `1

point query guarantee, since the JL property of R is only applied to show that R preserves the inner
products between e1, e2, . . . , ed.

To resolve both of these issues, we decouple the JL matrix from the point query/heavy hitters sketch,
i.e., we use a JL matrix R, and a separate sketch S for `2 point query/heavy hitters in the well-studied
turnstile streaming model. First, we maintain zt, which is updated using online gradient descent
as in [1]. In addition, we maintain an additional vector ŵt ∈ Rd, which is updated according to
ŵt+1 ← (1− ληt)ŵt − ηtyt`′(ytzTt Rxt)xt. The motivation for this update is that it is essentially
the online gradient descent update wt+1 ← (1 − ληt)wt − ηtyt`′(ytwTt xt)xt we would perform
without any sketching, but we replace `′(ytwTt xt) with `′(ytzTt Rxt) due to space constraints. We
do not have enough space to explicitly maintain ŵt, but since the updates to ŵt are additive, we can
still give it as the input to a turnstile streaming algorithm for `2 point query/heavy hitters. We show
that ŵT = 1

T

∑T
t=1 ŵt is close to w∗ in `2 norm, and thus it suffices to solve `2 point query and

`2 heavy hitters on ŵT . In summary, we give algorithms for `2 point query and heavy hitters with
O(ε−2 log(dT/δ)) space and 1− δ success probability.

Deterministic `1 point query In addition, we show that `1 point query can be solved determin-
istically, and with space complexity O(ε−2 log(d)), which is smaller than the O(ε−4 log3(d/δ))
space complexity of [1]. Deterministic sketches are useful as they allow for inputs to be chosen
as a function of past responses of the sketching algorithm, and thus provide adversarial robustness
[5]. To obtain a deterministic algorithm, we replace the Countsketch matrix used by [1] with an
ε-incoherent matrix. Here, an ε-incoherent matrix R ∈ Rs×d is one whose columns are almost
orthonormal, meaning that for all i 6= j, |〈Ri, Rj〉| ≤ ε, and all columns of R have `2 norm 1.
Matrices that are ε-incoherent were previously applied to streaming problems by [6], and can be
constructed deterministically. To improve on the space complexity of [1], we change the recovery
procedure: to estimate w∗,i, we simply compute 〈Ri, z〉 where z is the compressed weight vector,
rather than applying the Countsketch recovery procedure of [3].

`2 point query (via a combined JL/point query sketch) Inspired by our deterministic `1 point query
algorithm, we provide an alternative algorithm for `2 point query, for which the space complexity
has a smaller dependence on 1/λ. We observe that the sparse JL transform of [4] can be used not
only to preserve norms with high probability (i.e., to satisfy the JL lemma) but also to provide an
`2 point query sketch directly, using a different `2 point query recovery procedure. Our procedure
does not involve any median based operations. Instead, to estimate w∗,i given the compressed weight
vector z, we simply compute 〈Ri, z〉. Recall that [1] multiplies the sketching matrix R by

√
s in

order to perform the recovery procedure of [3] — our new procedure also avoids this rescaling, and
thus achieves a space complexity of O(ε−2 log(dT/δ)) up to problem-dependent parameters. The
space complexity of this algorithm has a smaller dependence on 1/λ compared to our `2 point query

2

algorithm discussed above. In addition, we use online gradient descent regret bounds to show that the
estimation error of our algorithms involves a term that is proportional to 1

T 1/4 . Thus, for the error
to be at most ε‖w∗‖2 or ε‖w∗‖1, T must be at least a certain value. Our `2 point query algorithm
using a combined JL/point query sketch requires T to grow as 1

λ4 , as opposed to our `2 point query
algorithm which makes a black-box reduction to the turnstile model, which requires T to grow as 1

λ8 .

The main idea of this algorithm is the observation that if w∗ is the optimal weight vector, then
〈Rw∗, Rei〉 is a good estimate of 〈w∗, ei〉 = w∗,i — this motivates our query procedure. Note that
this fact is implicit in the guarantees of a JL matrix. This recovery procedure has also been used for
turnstile `1 point query by [6] (which motivated our deterministic `1 point query algorithm above).
The same recovery procedure was also used by [7], in the context of distributed differentially private
heavy hitters. To our knowledge, our work is the first to use this idea in the setting of `2 point
query for linear classification. Note that for `2 point query in the turnstile model, it is preferable
to use Countsketch (Countsketch is also used by [1]), since for an update to a single coordinate,
the update time with Countsketch is O(log(1/δ)), while the update time when using a sparse JL
matrix [4] is O(ε−1 log(1/δ)). However, in the context of linear classification, we find that using a JL
matrix with the recovery procedure 〈Rw∗, Rei〉 ≈ w∗,i reduces the space complexity by a factor of
poly(ε−1 log(d/δ)), as long as T = O(d). This is because the sketching matrix already needs to be a
JL matrix in order to preserve certain inner products. In this case, using the Countsketch recovery
procedure requires scaling z by a factor of

√
s where s is the column sparsity of R, which in turn

requires increasing the accuracy parameter ε of R in order to solve `2 point query (or `1 point query).

Worst-case data order guarantees For all of our algorithms, we do not make assumptions on the
order of the xt, unlike [1]. In [1] the pairs in the set {(x1, y1), . . . , (xT , yT)} are required to arrive
in the stream in a uniformly random order. The following is given in [1] as a heuristic explanation:
“we believe this condition is necessary to avoid worst-case adversarial orderings of the data points -
since the WM-Sketch update at any time step depends on the state of the sketch itself, adversarial
orderings can potentially lead to high error accumulation ... Intuitively, it seems reasonable to expect
that we would need an ‘average case’ ordering of the stream in order to obtain a similar recovery
guarantee to the batch setting." It is perhaps surprising then that we are able to entirely remove this
assumption. We do this by showing that instead of using Corollary 1 of [8] (which is used by [1]) we
can use an argument from first principles based on online gradient descent regret bounds.

Classification with tensor inputs We consider a variant of linear classification where the inputs
xt and the weight vector w∗ are p-th order tensors (i.e., are vectors in Rdp) and moreover, the xt
have rank at most k, meaning xt =

∑k
i=1 x

(i,1)
t ⊗ x(i,2)t ⊗ . . .⊗ x(i,p)t , where the x(i,j)t ∈ Rd. This

is motivated by applications of tensor regression, for instance in neuroimaging [9, 10], where the
covariates have a tensor product structure. Furthermore, the xt may be of low rank in applications —
for instance, in the case p = 2, [9] mentions that in [10], tensor regression is performed after principal
component analysis is first performed on the xt. In such a setting, we wish to obtain `2 point query
and heavy hitters algorithms with at most a polynomial dependence on log d and 1/ε, and moreover
a polynomial dependence on p. To achieve this, we use tensor sketching techniques of [11], which
develops a sketching matrix M ∈ Rm×dp , where m = poly(ε−1p log d), such that M is a JL matrix,
and Mx⊗p can be computed very efficiently for x ∈ Rd (specifically, in poly(ε−1p log d) · nnz(x)
time), without explicitly forming x⊗p. Thus, for `2 point query, we can use M in the same way we
use the sparse JL matrix of [4] in the combined JL/point query sketch above.

For `2 heavy hitters, our algorithm is as follows: (1) for each mode i ∈ [p], we determine the
coordinates j ∈ [d] which contribute more than an ε fraction of the `2 norm of w∗ — in other words,
we want to find all j ∈ [d] such that ‖w∗(:, . . . , :, j, :, . . . , :)‖2 ≥ ε‖w∗‖2, where w∗(:, . . . , :, j, :
, . . . , :) consists of those coordinates of w∗ which have index j in the ith mode. This gives us a list
Li ⊂ [d] of size at most O(1/ε2), for each i ∈ [p]. (2) Then, we find the (at most O(1/ε2)) indices
(i1, . . . , ip) of w∗ in [d]p such that |w∗(i1, i2, . . . , ip)| ≥ ε‖w∗‖2. We do step (2) using the Li, by
inductively constructing prefixes of these coordinates, one mode at a time. For each i ∈ [p], we build
an auxiliary data structure which can estimate ‖w(j1, . . . , ji, :, . . . , :)‖2 for any prefix (j1, . . . , ji)
of length i — this is also done by using the sketching matrix of [11]. Both our `2 point query and
`2 heavy hitters algorithms for pth-order tensor inputs have poly(ε−1p log(dT/δ)) space and query
time, and poly(ε−1p log(dT/δ))

∑
nnz(x

(i,j)
t) update time, up to problem-dependent parameters.

3

When the inputs are pth order tensors of low rank, our `2 point query and heavy hitters algorithms for
tensor inputs give significant savings in update time when compared to standard `2 point query/heavy
hitters algorithms. To see why, note that when the xt are rank-k tensors, the update to ŵt (defined
above) is ŵt+1 ← (1 − ληt)ŵt − ηtyt`′(ytzTt Mxt)

∑k
i=1 x

(i,1)
t ⊗ x(i,2)t ⊗ . . . ⊗ x(i,p)t . Using a

standard `2 heavy hitters algorithm on ŵt requires explicitly forming x(i,1)t ⊗ x(i,2)t ⊗ . . .⊗ x(i,p)t —
if the x(i,j)t are dense, then standard `2 heavy hitters algorithms would require at least dp update time,
as opposed to our algorithm, which only has poly(ε−1p log(dT/δ)) · kd update time — even when
p = 2, if k is small, then this is a significant improvement.

Kernel classification Kernel logistic regression (KLR) is a well-known classification method in the
field of statistical learning, see e.g., [12] and its many citations. We obtain the first results for finding
the large weights of a classifier in the kernel space for the polynomial and Gaussian kernels. A
succinct summary of the classifier, such as its list of heavy hitters with their approximate values,
is especially important for kernel classification, since the dimension of the kernel space can be
much larger than d, and in the case of the Gaussian kernel, even infinite. In this setting, for the
polynomial kernel, classification is done using x⊗pt to predict yt — thus, this is a special case of the
setting where xt is a tensor of rank at most k, discussed above. As in [11], we can approximate the
Gaussian kernel via a Taylor expansion, using a polynomial kernel of degree O(log T). Note that
if (i1, i2, . . . , ip) is an index in [d]p and (j1, j2, . . . , jp) is a re-ordering of (i1, i2, . . . , ip), then one
may want to consider xi1 . . . xip and xj1 . . . xjp to be the same feature. To get around this, suppose
(i1, i2, . . . , ip) has a Hamming distance of at most c from the set of indices of the form (i, i, . . . , i)
and it is an ε-heavy hitter when ignoring permutations (formally defined in the appendix). Then, if
we apply our algorithms from the low-rank tensor setting with an accuracy of ε/pc/2, (i1, i2, . . . , ip)
will be detected as a heavy hitter. An interesting open question is whether this can be done in
poly(ε−1p log(dT/δ)) space even when c is equal to p. We leave this question to future work.

Experiments We empirically compare both of our algorithms for `2 point query with the WM-Sketch
algorithm of [1], 2 where all three algorithms are restricted to certain memory budgets, following the
setup of [1]. Our `2 point query algorithm that makes use of a combined JL/point query sketch leads
to improved performance in estimating w∗ compared to the WM-Sketch algorithm, with significantly
improved performance for a larger memory budget on the RCV1 dataset [13], though the WM-Sketch
algorithm performed better than our black-box reduction-based `2 point query algorithm. For smaller
memory budgets, these two algorithms appeared to have similar weight recovery performance on
the RCV1 dataset, but our other `2 point query algorithm using a black-box reduction to turnstile `2
point query had much lower error in recovering the top weights.

Using the Top Weights or Compressed Classifiers for Classification Here we give additional
motivation for estimating the top weights of w∗, or applying sketching to classifiers. We performed an
experiment on the RCV1 dataset [13], which we divided into a training and testing half — we obtained
a weight vector w ∈ Rd by using online logistic regression on the training half, and computed the
accuracy when using wK for linear classification on the testing half (where wK is the K-sparse
vector whose entries are the top K entries of w). One noteworthy result of this experiment is that
when K = 400, the accuracy on the testing half is 93.9%, while the full weight vector w (which has
41130 nonzero coordinates) achieves 95.7% accuracy. The full details of these experiments are given
in Appendix F. We do acknowledge that there are no theoretical guarantees for using only the top K
weights for K � d, and there may be datasets where using the top K weights of w∗ may not lead
to good performance unless K is very large. We give theoretical guarantees for using a compressed
classifier, that is, using zTR instead of w∗ where R is a sparse JL matrix and z is the average iterate
of sketched online logistic regression: if L = 1

T

∑T
t=1 `(ytw

T
∗ xt) and L̂ = 1

T

∑T
t=1 `(ytz

TRxt),
then |L∗ − L̂| ≤ ε‖w∗‖2 as long as R has O(ε−2H2 log(dT/δ)) rows (up to problem dependent
parameters) and T is a certain value. We give full details in Appendix E. Finally, we note that in
a stream, finding `2 heavy hitters in the turnstile model requires min(

√
d/ε, log(1/δ)/ε2) space,

by Theorem 4.3 of [14]. In particular, estimating all the coordinates would require poly(d) space,
meaning that if we wish to obtain sublinear space complexity in our setting, it is reasonable to expect
that we cannot do better than estimating the heavy hitters, without additional assumptions.

2We use the implementation by the authors of [1] at https://github.com/stanford-futuredata/
wmsketch. Our implementations of our `2 point query algorithms are also based on their code.

4

https://github.com/stanford-futuredata/wmsketch
https://github.com/stanford-futuredata/wmsketch

1.2 Related work

Turnstile Point Query and Heavy Hitters There is a large body of work on finding the heavy
hitters in a data stream. For a survey, see, e.g., [15]. Of particular relevance to this work is the
CountSketch algorithm of [3] for finding `2 heavy hitters. We note that [16, 17] improve the memory
of the algorithm of [3] by a logarithmic factor, but do not handle negative updates, which may arise
in our setting. We also need deterministic algorithms for finding `1 heavy hitters, and we use the
algorithms of [6] which use ε-incoherent matrices, and improve upon the earlier work of Ganguly
[18]. We note that the CountMin algorithm of [19] also achieves the `1 heavy hitter guarantee, though
it is randomized, while here we seek a stronger deterministic guarantee. Indeed, for randomized
algorithms, we can achieve the stronger `2 heavy hitter guarantee.

Point Query and Heavy Hitters for Classification/Regression The work that is most closely re-
lated to ours is [1], which solves `1 point query on w∗ in the streaming model, and achieves
O(ε−4 log3(d/δ)) space up to problem-dependent parameters. Unlike [1], we give an algorithm with
provable guarantees for finding the at most ε−2 heavy hitters in sublinear time, and we solve the
stronger `2 point query and heavy hitters problems in addition to `1 point query.

Another related work with a somewhat different focus from ours is MISSION [20]. The MISSION
algorithm finds a k-sparse solution for least-squares regression in low space, using Countsketch. [20]
modifies the SGD algorithm: in each iteration, a uniformly random training example is selected and
the SGD update is given to a Countsketch data structure — then, Countsketch is used to select the
top k features, and the vector with these k non-zero coordinates is used for the next SGD update.
MISSION focuses on convergence of the iterates βt to a k-sparse vector β∗, while in the analyses
of our `2 point query/heavy hitters algorithms, we desire/show convergence in `2 norm of ŵT to w∗
up to additive error ε‖w∗‖2 for a potentially dense w∗. Our gradient updates are thus different, as
we perform the update ŵt+1 ← (1− ληt)ŵt − ηt`′(ytzTt Rxt)xt, i.e. our update does not involve
truncation by taking the top k estimates from Countsketch. We also note that [20] gives a theoretical
analysis in the setting where the xt have i.i.d. Gaussian entries, and yt = xTt β

∗ + w, where w is
Gaussian noise and β∗ is a k-sparse vector, while we do not assume the inputs/noise are Gaussian.

One more work [21] proposes the BEAR algorithm, which is a sketched version of the online L-BFGS
algorithm. The setting of [21] is similar to ours — this work aims to estimate the top coordinates of
the weight vector and achieve the `2 point query guarantee. The proof of Lemma 3 in [21], that BEAR
minimizes a “sketched” version of the loss function, appears to rely on the claim that MISSION
minimizes this sketched loss function — however, as noted above, MISSION instead aims to find an
optimal k-sparse weight vector. We also note that [21] does not propose/analyze an algorithm for
recovering all the heavy hitters for the optimal weight vector in sublinear time, while we show how
this can be done using turnstile `2 heavy hitters algorithms with a small overhead in space/update
time and no overhead in query time — fast query time can be useful when the xt, and therefore the
gradient updates, are sparse.

Other Works on Sketching for Classification We also note that there are a number of other (less
closely related) works which use sketching for linear classification — we compare to these works in
Appendix A.

To our knowledge, our work is the first to consider linear classification with tensor inputs, and kernel
classification, in the streaming model, with the goal of recovering the top weights of these classifiers.

1.3 Preliminaries

As in [1], we are given a loss function `, training examples {(xt, yt)}t∈[T], λ > 0, and w∗ :=

argminw∈Rd
1
T

∑T
t=1 `(ytw

Txt) + λ
2 ‖w‖

2
2. We use online gradient descent regret bounds, specifi-

cally Theorem 3.1 of [22]. We use a learning rate of ηt = D/(G
√
t), where D is an upper bound on

‖w∗‖2 and G is an upper bound on the norm of the gradient (D and G are discussed further in the
supplementary material). The following assumptions hold throughout the paper:
Definition 1.1 (Running Assumptions). (1) ` is convex, β-smooth, and H-Lipschitz. (2) For all
t ∈ [T], ‖xt‖2 ≤ 1. (3) There exists a constant τ > 0 independent of T such that ‖w∗‖2 ≥ τ .

The last assumption above is not explicitly made in [1], but in Theorem 2 of [1], one of the hy-
potheses is that T is at least 1/‖w∗‖21 (omitting other dependencies). Since w∗ itself may depend on

5

x1, x2, . . . , xT , and thus T , we explicitly make this assumption to prevent circularity. This assump-
tion is necessary for making use of online gradient descent regret bounds, to ensure ‖w∗‖2 does not
decrease faster than the average regret.

2 `2 Point Query and Heavy Hitters

First, we define a “sketched” loss function L̂(z) = 1
T

∑T
t=1 `(ytz

TRxt) + λ
2 ‖z‖

2
2 as in [1]. Here, R

is a sparse Johnson-Lindenstrauss matrix — let us recall the properties of sparse JL matrices:

Theorem 2.1 (Sparse JL Matrices [4]). Let d ∈ N, and ε, δ ∈ (0, 1). Then, there exists a distribution
on matrices S ∈ Rk×d, where k = Θ(ε−2 log(1/δ)) and S has s = Θ(ε−1 log(1/δ)) nonzero entries
per column, such that for any x ∈ Rd, with probability 1− δ, (1− ε)‖x‖2 ≤ ‖Sx‖2 ≤ (1 + ε)‖x‖2.

If z∗ := argmin L̂(z), then z∗ is a compressed version of w∗ in the following sense:

Theorem 2.2 (Batch Setting). Let ε, δ ∈ (0, 1), and suppose ` is β-smooth and ‖xt‖2 ≤ 1 for all t.
Definew∗ = argminL(w) and z∗ = argmin L̂(z). IfR is a sparse JL matrix withO(ε−2 log(dT/δ)·
β/λ) rows, then with probability 1− δ over R, ‖z∗ −Rw∗‖2 ≤ ε‖w∗‖2.

The proof of Theorem 2.2 is in the appendix. It uses a primal-dual argument that is similar to the
one used to prove Theorem 1 of [1]. The main difference is that [1] only shows that ‖z∗ −Rw∗‖2 ≤
ε‖w∗‖1. This is because they only apply the JL property of R to approximately preserve inner
products between the vectors e1, e2, . . . , ed. To prove Theorem 2.2, we modify their analysis by also
using the JL property of R to additionally show that the inner products 〈xt, w∗〉 and 〈ei, w∗〉 are
well-approximated by 〈Rxt, Rw∗〉 and 〈Rei, Rw∗〉 respectively, for all i ∈ [d], and t ∈ [T].

Our algorithm proceeds by a reduction to standard `2 point query and heavy hitters, in the turnstile
streaming model. Let us recall the definition of the turnstile streaming model, and the best known
results for these two problems in the turnstile model.

Definition 2.3 (Turnstile Streaming Model). In the turnstile streaming model, the input is a vector
v ∈ Rn. Updates are of the form (i,∆) where i ∈ [n] and ∆ ∈ R, signifying that vi is incremented
by ∆. For `2 point query in the turnstile model, queries i ∈ [d] should be answered with an estimate
v̂i of vi such that |v̂i − vi| ≤ ε‖v‖2. For `2 heavy hitters in the turnstile model, queries should be
answered with a list L of length O(1/ε2) containing all i ∈ [d] such that |vi| ≥ ε‖v‖2.

Theorem 2.4 (Turnstile `2 Point Query [3], Theorem 2 of [23], Lemma 1 of [24]). There is an algo-
rithm for turnstile `2 point query with space complexity O(ε−2 log(1/δ)), update time O(log(1/δ))
and query time O(log(1/δ)), and success probability 1− δ.

Theorem 2.5 (Turnstile `2 Heavy Hitters [25]). There is an algorithm for turnstile `2 heavy hitters
with O(ε−2 log n) space complexity, O(log n) update time and O(ε−2poly(log n)) query time, and
success probability 1− 1/poly(n).

The key new idea of Algorithm 1 is that we implicitly maintain a vector ŵt ∈ Rd which is updated
according to ŵt+1 ← (1 − ληt)ŵt − ηtyt`

′(ytz
T
t Rxt)xt. Note that ŵt is an approximation to

wt ∈ Rd which is obtained by the standard update wt+1 ← (1 − ληt) − ηtyt`′(ytwTt xt)xt. We
cannot maintain ŵt explicitly, but we give it as input to the linear sketch which we refer to as A in
Algorithm 1. 3 For `2 point query, A is a Countsketch matrix, and for `2 heavy hitters it is Expander
Sketch [25]. In our QUERY procedure in Algorithm 1, we apply the query procedure of A to AŵT ,
where ŵT = 1

T

∑T
t=1 ŵt. This is justified since ŵT is a good approximation to w∗:

Theorem 2.6 (Approximating w∗ with ŵT). Let ε, δ ∈ (0, 1). Suppose all of the assumptions in
Definition 1.1 hold. Suppose R is a sparse JL matrix with O(λ−2ε−2β2 log(dT/δ) max(1, β/λ))

rows. If ŵt is updated according to ŵt+1 ← (1−ληt)ŵt−ηtyt`′(ytzTt Rxt)xt, and ŵt = 1
T

∑T
t=1 ŵt,

then ‖ŵT − w∗‖2 ≤ ε‖w∗‖2 as long as T ≥ Ω(max((β4H4)/(λ8ε4τ4), H4/(λ4ε4τ4))).

Theorem 2.7 (`2 Point Query and Heavy Hitters for Linear Classification). Suppose ε, δ ∈ (0, 1),
all of the assumptions in Definition 1.1 hold, and T ≥ Ω(max((β4H4)/(λ8ε4τ4), H4/(λ4ε4τ4))).

3Here, A is a linear sketch meaning that, if Av is itself considered a vector, then Av is a linear map in terms
of v. Thus, the update ŵt+1 ← (1− ληt)ŵt − ηtyt`′(ytzTt Rxt)xt can be implicitly done in sublinear space.

6

Algorithm 1 In this algorithm, we give our black-box reduction to `2 point query or heavy hitters.
Here, A denotes a linear sketching data structure for `2 point query or `2 heavy hitters. At denotes
the contents of the sketch at time step t, and A denotes the sketch containing the average of the
contents of A1, . . . ,AT . Since A is a linear sketch, A can be maintained using only a constant factor
more space than that needed to store At. Here, QUERY denotes the query procedure of A, that is, the
query procedure described in Theorem 2.4 for `2 point query and Theorem 2.5 for `2 heavy hitters.
Note that we can skip the step used in [1] where zt+1 is projected onto an `2 unit ball, since even
without projection, ‖zt+1‖2 ≤ O(H/λ) by the triangle inequality and induction.

function INITIALIZATION()
R ∈ Rk×d is a sparse JL matrix with k = O(ε−2 log(dT/δ) ·max(1, β/λ)) rows.
z1 ∈ Rk is set to 0 ∈ Rk.
The contents of the sketch A are set to 0 ∈ Rd.

end function

function UPDATE(xt, yt)
zt+1 ← (1− ληt)zt − ηtyt`′(ytzTt Rxt)Rxt
Rescale the contents of A by (1− ληt).
For each nonzero coordinate i ∈ [d] of xt, update A according to

(i,−ηtyt`′(ytzTt Rxt)xt,i)

end function

function QUERY()

A ← 1
T

∑T
t=1At

Return QUERY(A)
end function

For `2 point query, Algorithm 1 has O(λ−2ε−2β2 log(dT/δ) max(1, β/λ) + ε−2 log(1/δ))

space complexity, O(λ−1ε−1β log(dT/δ) max(1,
√
β/λ) + log(1/δ)) · nnz(xt) update

time, O(log(1/δ)) query time, and success probability 1 − δ. For `2 heavy hitters,
Algorithm 1 has O(λ−2ε−2β2 log(dT/δ) max(1, β/λ) + ε−2 log d) space complexity,
O(λ−1ε−1β log(dT/δ) max(1,

√
β/λ) + log d) · nnz(xt) update time, O(ε−2poly(log d))

query time, and success probability 1− 1/poly(d)− δ.

The proofs of Theorems 2.6 and 2.7 are given in the supplementary. Note that the query times are
simply those of CountSketch [3] / ExpanderSketch [25] respectively.

3 Deterministic `1 Point Query and a Second Algorithm for `2 Point Query

We now give a simple deterministic algorithm for `1 point query with sublinear space. The algorithm
is based on that of [1]. However, the sketching matrix R is now an ε-incoherent matrix:

Theorem 3.1 (ε-Incoherent Matrices [6]). Let n ∈ N and ε > 0. Then, there exists a matrix
A ∈ Rm×n, where m = O(ε−2 min(log n, (log n/(log log n + log 1/ε))2)), such that for all i ∈
[n], ‖Ai‖2 = 1, and for all distinct i, j ∈ [n], 〈Ai, Aj〉 ≤ ε. Moreover, A can be constructed
deterministically in poly(n) time. A does not need to be stored explicitly, and each column can be
generated on demand in low space (we describe this in the supplementary).

We first analyze the algorithm in the batch setting, showing that ‖RT z∗ − w∗‖∞ ≤ ε‖w∗‖1, and
then using online gradient descent regret bounds to show that the same is true for z. Our analysis of
this algorithm is similar to [1] — however, using the recovery procedure in Algorithm 2 leads to an
improved space complexity compared to [1] (here we assume ‖xt‖1 ≤ γ as in [1]):

Theorem 3.2 (Analysis of `1 Point Query on w∗ with Incoherent Matrix). Suppose all of the
assumptions in Definition 1.1 hold, ‖xt‖1 ≤ γ for all t ∈ [T], and there exists some constant θ > 0
independent of T such that ‖w∗‖1 ≥ θ. If R and z are defined as in Algorithm 2, with R being an
incoherent matrix, then ‖RT z − w∗‖∞ ≤ ε‖w∗‖1, as long as T ≥ Ω(H4(1 +

√
εγ)4/(λ4ε4θ4)).

7

Algorithm 2 Algorithm for `1 point query and `2 point query. For `1 point query, R is an incoherent
matrix with O(ε−2 log d ·max(1, γ2β/λ)) rows, while for `2 point query, R is a sparse JL matrix
with O(ε−2 log(dT/δ) max(1, β/λ)) rows.

1: function INITIALIZATION()
2: R ∈ Rk×d is defined as in the caption.
3: z1 ∈ Rk is initially set to 0.
4: end function

5: function UPDATE(xt, yt)
6: zt+1 ← (1− ληt)zt − ηtyt`′(ytzTt Rxt)Rxt
7: end function

8: function ESTIMATE-WEIGHTS(i)

9: zT ← 1
T

∑T
t=1 zt

10: return RTi zT
11: end function

If R is instead a sparse JL matrix with O(ε−2 log(dT/δ) max(1, β/λ)) rows, Algorithm 2 gives an
`2 point query algorithm. Note that for `2 point query, the space complexity of Algorithm 2 has a
better dependence on λ compared to Algorithm 1.
Theorem 3.3 (`2 Point Query using only a JL Matrix). Let ε, δ ∈ (0, 1), and suppose all of the
assumptions in Definition 1.1 hold. If R and z are defined as in Algorithm 2, with R being a sparse
JL matrix, then ‖RT z − w∗‖∞ ≤ ε‖w∗‖2 with probability 1− δ, as long as T ≥ Ω(H4/(λ4ε4τ4)).

4 Low Rank Tensor Classification and Kernel Classification

We next consider `2 point query and heavy hitters in the case where xt ∈ Rdp is a pth order tensor,
of rank at most k, and is provided as the sum of k rank-1 tensors. This is motivated by polynomial
kernel classification as well as other applications in classification with tensor inputs mentioned above.
Our main tool will be a JL matrix which can be quickly applied to outer products of vectors [11]:
Theorem 4.1 (Recursive Tensor Sketch — Follows from the Proof of Theorem 2 of [11]). Let
n, p, d ∈ N, ε, δ > 0. Then, there is a random matrix R ∈ Rm×dp , with m = Θ(ε−2p log(1/εδ)3),
such that for x, y ∈ Rdp , PrM [|〈Rx,Ry〉 − 〈x, y〉| ≥ ε‖x‖2‖y‖2] ≤ 1− δ and for x1, x2, . . . , xp ∈
Rd, R(x1 ⊗ x2 ⊗ . . .⊗ xp) can be computed in poly(ε−1p log(1/δ))

∑p
i=1 nnz(xi) time. 4

This immediately gives us an algorithm for `2 point query, since in Algorithm 2, R can be replaced
by any JL matrix. Note that the query procedure can be done in poly(p log(dT/δ)/ε) time (up to
problem-dependent parameters), since for i = (i1, . . . , ip) ∈ [d]p, Ri = R(ei1 ⊗ . . .⊗ eip) can be
computed in poly(p log(dT/δ)/ε) time. For completeness, we explicitly give the pseudocode for this
algorithm in the supplementary — the guarantees of this algorithm are stated below:
Theorem 4.2 (Tensor Classification Point Query). Let ε, δ ∈ (0, 1) and suppose all of the assump-
tions in Definition 1.1 hold. Let R be the JL matrix of Theorem 4.1, with poly(ε−1p log(dT/δ)(1 +
β/λ)) rows, and suppose T ≥ Ω(H4/(λ4ε4τ4). Then, with probability 1 − δ, ‖RT z −
w∗‖∞ ≤ ε‖w∗‖2. Thus, there is an algorithm for `2 point query on w∗ with space complex-
ity and query time poly(ε−1p log(dT/δ)(1 + β/λ)), and update time poly(ε−1p log(dT/δ)(1 +

β/λ))
∑k
i=1

∑p
j=1 nnz(x(i,j)t) ≤ kdpoly(ε−1p log(dT/δ)(1 + β/λ)).

Next we consider `2 heavy hitters on w∗ ∈ Rdp . To simplify the problem, we reduce to the setting
where we are given v ∈ Rdp and v is given updates of the form v ← v + x1 ⊗ . . .⊗ xp (where we
are given x1, . . . , xp). This reduction is valid by Theorem 2.6, since updates to ŵt are of this form.
Our algorithm for this setting is shown in Algorithm 3, with the following guarantees:

4R(x1 ⊗ x2 ⊗ . . . ⊗ xp) can be computed in one pass over the nonzero entries of x1, x2, . . . , xp: by the
construction of [11], R is essentially a tree of sketching matrices, with 2p− 1 nodes. At the base of this tree
are matrices R1, . . . , Rp, which can be separately applied to x1, . . . , xp respectively — from this point, only
poly(ε−1p log(d/δ)) space is needed to finish the computation.

8

Figure 1: Blue is Algorithm 2, green is Algorithm 1, and red is the algorithm of [1]. We show the
median of 5 trials, with error bars showing the smallest and largest relative errors across those trials.

Theorem 4.3 (Tensor `2 Heavy Hitters Algorithm). Let ε, δ ∈ (0, 1). Let v ∈ Rdp , which
can be incrementally updated by a rank-1 tensor. Then, Algorithm 3 returns a list contain-
ing all (i1, i2, . . . , ip) ∈ [d]p such that |v(i1, . . . , ip)| ≥ ε‖v‖2. The space complexity is
poly(ε−1p log(d/δ)), the query time is poly(ε−1p log(d/δ)), and the time needed for the update
v ← v + x, for a rank-1 tensor x = x1 ⊗ . . .⊗ xp, is poly(ε−1p log(d/δ))

∑p
j=1 nnz(xj).

Theorem 4.3 implies that, by adapting Algorithm 1, but with R being the JL matrix of Theorem 4.1
instead of a sparse JL matrix, we can get an algorithm for heavy hitters in the linear classification
setting, where the xt are rank-k tensors, and with space and time complexity polynomial in p:

Theorem 4.4 (Tensor Classification `2 Heavy Hitters). Let ε, δ ∈ (0, 1). Suppose all assumptions
in Definition 1.1 hold, and T ≥ Ω(max((β4H4)/(λ8ε4τ4), H4/(λ4ε4τ4))). Then, there is an algo-
rithm for `2 heavy hitters on w∗ with space complexity poly(ε−1p log(dT/δ)(1 + β/λ)), query time
poly(ε−1p log(d/δ)), and update time poly(ε−1p log(dT/δ)(1 + β/λ))

∑k
i=1

∑p
j=1 nnz(x(i,j)t) ≤

kd · poly(ε−1p log(dT/δ)(1 + β/λ)).

As corollaries, we give results for heavy hitters for kernel classification in the supplementary.

5 Point Query Experiments

We compare Algorithms 1 and 2 (where R is a JL matrix for Algorithm 2) with the algorithm of [1].

Datasets: We use the following datasets (which were also used in [1]): RCV1 [13], KDD Cup 2010
Algebra [27] (we use a transformed version due to [28]), and the malicious URL dataset of [29].

Parameters: We perform online logistic regression λ ∈ {10−3, 10−4, 10−5}. Each algorithm is
subject to a memory constraint M ∈ {2KB, 4KB, 8KB, 16KB, 32KB}. For Algorithm 2
and the algorithm of [1], the dimensions of the JL/Countsketch matrices for a particular memory
constraint are given by the corresponding row in Table 1 of [1] (noted in [1] to be the best performing
configurations for Countsketch). For Algorithm 1, which uses a JL matrix and a separate Countsketch
matrix, we also use the same configuration for both matrices, but with the width divided by 2.

Error Metric: We compare the algorithms in terms of how well they recover the top weights of
w∗. We use a similar relative error metric to that used in Subsection 7.2 of [1]. To estimate how
well one of the three algorithms recovers the top K weights, we let wK be the K-sparse vector
whose entries are the K largest estimated coordinates obtained by this algorithm. We let wm∗ be
the m-sparse vector whose entries are the m largest coordinates of w∗, for any m. Then, we use
‖wK −wD∗ ‖2/‖wK∗ −wD∗ ‖2 as our metric, where D = 512� K. This is similar to the metric used
in [1] (that is, ‖wK −w∗‖2/‖wK∗ −w∗‖2) — we use wD∗ instead since this omits the smaller weights
and might therefore better measure how well the algorithms recover the larger weights. We also note
that in place of w∗, we use the weight vector that is obtained by online logistic regression for these
experiments — this was also done by [1] in their experiments.

Results: Here we show a few plots on the RCV1 dataset in Figure 5, with λ = 10−5 — all plots
are in the supplementary. With a memory budget of 16 KB, when K = 120, Algorithm 2 gives an
improvement of roughly 15% over the algorithm of [1], which in turn performs better than Algorithm
1. With memory budgets of 2 KB and 4 KB, Algorithm 1 has the best performance.

9

Algorithm 3 Algorithm for `2 heavy hitters (i.e., without classification) where the input is v ∈ Rdp

which is updated according to v ← v + x, where x = x1 ⊗ . . .⊗ xp. For ease of presentation, we
do not distinguish between a sketch S : Ra → Rb (i.e., S ∈ Rb×a) and its contents Sv ∈ Rb (for
v ∈ Ra). We make use of a standard `2 heavy hitters data structure ONEMODESKETCH(i), whose
size has a logarithmic dependence on 1/δ — while such a dependence is not stated by [25] (which
achieves the optimal space complexity for `2 heavy hitters), we use the dyadic trick, which still has
sublinear time and space complexity — see Theorem 1 of [26].
Require: ε, δ ∈ (0, 1)
Ensure: Return a list L ⊂ [d]p with |L| ≤ O(1/ε2) containing all i ∈ [d]p such that |vi| ≥ ε‖v‖2.

function INITIALIZATION()

— For each i ∈ [p], COMPRESSOTHERMODES(i) : Rdp−1 → Rpoly(p log(d/δ)) is the sketch of
[11], with ε = O(1).
— For each i ∈ [p], ONEMODESKETCH(i) : Rd·poly(p log(d/δ)) → Rpoly(log(d/δ)/ε) is a usual
`2 heavy hitter data structure (such as that of [25]) with accuracy ε′ = ε

poly(p log(d/δ)) .

— For each i ∈ [p− 1], COMPRESSSUFFIX(i) : Rdp−i → Rpoly(p log(d/δ)) is the sketch of [11]
with p− i in place of p and ε = O(1).
— For each i ∈ [p− 1], PREFIXPOINTQUERY(i) : Rdi·poly(p log(d/δ)) → Rpoly(p log(d/δ)/ε) is
the sketch of [11] with the first i input modes being d-dimensional and the last mode being
poly(p log(d/δ)) dimensional, with accuracy ε′ = ε

poly(p log(d/δ)) . PREFIXPOINTQUERY(p)

from Rdp to Rpoly(p log(d/δ)/ε) is simply the sketch of [11].
end function

// Here we allow x to be a rank-1 tensor without loss of generality. The case where x is a rank-k
// tensor is the same, except the update time increases by a factor of k.
function UPDATE(x = x1 ⊗ . . .⊗ xp)

— For each i ∈ [p], update ONEMODESKETCH(i) by

xi ⊗ COMPRESSOTHERMODES(i)(x1 ⊗ . . .⊗ xi−1 ⊗ xi+1 ⊗ . . .⊗ xp)

— Update PREFIXPOINTQUERY(p) by xt. For i ∈ [p− 1] update PREFIXPOINTQUERY(i) by

x1 ⊗ . . .⊗ xi ⊗ COMPRESSSUFFIX(xi+1 ⊗ . . .⊗ xp)

function QUERY()
— For each i ∈ [p], find all ε

poly(p log(d/δ)) -heavy hitters (j, k) ∈ [d]× [poly(p log(d/δ)] from

ONEMODESKETCH(i).
— Collect a list Li of length at most poly(ε−1p log(d/δ)), of coordinates j ∈ [d] such that
(j, k) was returned by ONEMODESKETCH(i) in the previous step, for some
k ∈ [poly(p log(d/δ))]. Note that Li contains all coordinates in the ith mode potentially
comprising an ε fraction of ‖w∗‖2.
— L← L1 // initial list of prefixes of heavy hitters
— L← top O(1/ε2) elements of L according to JL-based point query on
PREFIXPOINTQUERY(1).
for i = 2, . . . , p do

— L′ ← L× Li = {((j1, j2, . . . , ji−1), j) | (j1, . . . , ji−1) ∈ L, j ∈ Li}.
— L← top O(1/ε2) elements of L′ according to JL-based point query on
PREFIXPOINTQUERY(i).

end for
Return L

end function

10

Acknowledgments and Disclosure of Funding

D. Woodruff was supported by NSF CCF-1815840, Office of Naval Research grant N00014-18-1-
2562, and a Simons Investigator Award.

References
[1] Kai Sheng Tai, Vatsal Sharan, Peter Bailis, and Gregory Valiant. Sketching linear classifiers

over data streams. In Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein, edi-
tors, Proceedings of the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15, 2018, pages 757–772. ACM, 2018.

[2] Ciprian Chelba, Tomás Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, and Phillipp Koehn.
One billion word benchmark for measuring progress in statistical language modeling. CoRR,
abs/1312.3005, 2013.

[3] Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent items in data
streams. Theor. Comput. Sci., 312(1):3–15, 2004.

[4] Daniel M. Kane and Jelani Nelson. Sparser johnson-lindenstrauss transforms. J. ACM, 61(1):4:1–
4:23, 2014.

[5] Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A framework for
adversarially robust streaming algorithms. SIGMOD Rec., 50(1):6–13, 2021.

[6] Jelani Nelson, Huy L. Nguyên, and David P. Woodruff. On deterministic sketching and
streaming for sparse recovery and norm estimation. In Anupam Gupta, Klaus Jansen, José D. P.
Rolim, and Rocco A. Servedio, editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques - 15th International Workshop, APPROX 2012, and
16th International Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012.
Proceedings, volume 7408 of Lecture Notes in Computer Science, pages 627–638. Springer,
2012.

[7] Justin Hsu, Sanjeev Khanna, and Aaron Roth. Distributed private heavy hitters. In Artur Czumaj,
Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer, editors, Automata, Languages, and
Programming - 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012,
Proceedings, Part I, volume 7391 of Lecture Notes in Computer Science, pages 461–472.
Springer, 2012.

[8] Ohad Shamir. Without-replacement sampling for stochastic gradient methods: Convergence
results and application to distributed optimization. CoRR, abs/1603.00570, 2016.

[9] Hua Zhou, Lexin Li, and Hongtu Zhu. Tensor regression with applications in neuroimaging
data analysis. Journal of the American Statistical Association, 108(502):540–552, 2013. PMID:
24791032.

[10] Brian S. Caffo, Ciprian M. Crainiceanu, Guillermo Verduzco, Suresh Joel, Stewart H. Mostofsky,
Susan Spear Bassett, and James J. Pekar. Two-stage decompositions for the analysis of functional
connectivity for fmri with application to alzheimer’s disease risk. NeuroImage, 51(3):1140–
1149, 2010.

[11] Thomas D Ahle, Michael Kapralov, Jakob BT Knudsen, Rasmus Pagh, Ameya Velingker,
David P Woodruff, and Amir Zandieh. Oblivious sketching of high-degree polynomial kernels.
In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
141–160. SIAM, 2020.

[12] Ji Zhu and Trevor Hastie. Kernel logistic regression and the import vector machine. Journal of
Computational and Graphical Statistics, 14(1):185–205, 2005.

[13] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. RCV1: A new benchmark collection
for text categorization research. J. Mach. Learn. Res., 5:361–397, 2004.

11

[14] Akshay Kamath, Eric Price, and David P. Woodruff. A simple proof of a new set disjointness
with applications to data streams. In Valentine Kabanets, editor, 36th Computational Complexity
Conference, CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada (Virtual Conference),
volume 200 of LIPIcs, pages 37:1–37:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021.

[15] David P Woodruff. New algorithms for heavy hitters in data streams. arXiv preprint
arXiv:1603.01733, 2016.

[16] Vladimir Braverman, Stephen R Chestnut, Nikita Ivkin, and David P Woodruff. Beating
countsketch for heavy hitters in insertion streams. In Proceedings of the forty-eighth annual
ACM symposium on Theory of Computing, pages 740–753, 2016.

[17] Vladimir Braverman, Stephen R Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu Wang, and
David P Woodruff. Bptree: an `2 heavy hitters algorithm using constant memory. In Proceedings
of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
pages 361–376, 2017.

[18] Sumit Ganguly and Anirban Majumder. Cr-precis: A deterministic summary structure for
update data streams. In IntErnational Symposium on Combinatorics, Algorithms, Probabilistic
and Experimental Methodologies, pages 48–59. Springer, 2007.

[19] Shanmugavelayutham Muthukrishnan. Data streams: Algorithms and applications. Now
Publishers Inc, 2005.

[20] Amirali Aghazadeh, Ryan Spring, Daniel LeJeune, Gautam Dasarathy, Anshumali Shrivastava,
and Richard G. Baraniuk. MISSION: ultra large-scale feature selection using count-sketches. In
Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pages 80–88. PMLR, 2018.

[21] Amirali Aghazadeh, Vipul Gupta, Alex DeWeese, O. Ozan Koyluoglu, and Kannan Ramchan-
dran. Bear: Sketching bfgs algorithm for ultra-high dimensional feature selection in sublinear
memory, 2020.

[22] Elad Hazan. Introduction to online convex optimization. CoRR, abs/1909.05207, 2019.

[23] Anna C. Gilbert and Piotr Indyk. Sparse recovery using sparse matrices. Proc. IEEE, 98(6):937–
947, 2010.

[24] Hossein Jowhari, Mert Saglam, and Gábor Tardos. Tight bounds for lp samplers, finding
duplicates in streams, and related problems. In Maurizio Lenzerini and Thomas Schwentick,
editors, Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS 2011, June 12-16, 2011, Athens, Greece, pages 49–58. ACM, 2011.

[25] Kasper Green Larsen, Jelani Nelson, Huy L. Nguyen, and Mikkel Thorup. Heavy hitters via
cluster-preserving clustering. In Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations
of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New
Jersey, USA, pages 61–70. IEEE Computer Society, 2016.

[26] Daniel M. Kane, Jelani Nelson, Ely Porat, and David P. Woodruff. Fast moment estimation in
data streams in optimal space. In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of
the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June
2011, pages 745–754. ACM, 2011.

[27] J. Stamper, A. Niculescu-Mizil, S. Ritter, G. J. Gordon, and K.R. Koedinger. Algebra 1 2008-
2009. challenge data set from kdd cup 2010 educational data mining challenge. Find it at
http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp.

[28] Hsiang-Fu Yu, Hung-Yi Lo, Hsun-Ping Hsieh, Jing-Kai Lou, Todd G. McKenzie, Jung-Wei
Chou, Po-Han Chung, Chia-Hua Ho, Chun-Fu Chang, Yin-Hsuan Wei, Jui-Yu Weng, En-Syu
Yan, Che-Wei Chang, Tsung-Ting Kuo, Yi-Chen Lo, Po Tzu Chang, Chieh Po, Chien-Yuan
Wang, Yi-Hung Huang, Chen-Wei Hung, Yu-Xun Ruan, Yu-Shi Lin, Shou-De Lin, Hsuan-Tien
Lin, and Chih-Jen Lin. Feature engineering and classifier ensemble for kdd cup 2010. In JMLR
Workshop and Conference Proceedings, 2011. To appear.

12

[29] Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker. Identifying suspicious
urls: an application of large-scale online learning. In Andrea Pohoreckyj Danyluk, Léon Bottou,
and Michael L. Littman, editors, Proceedings of the 26th Annual International Conference on
Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009, volume 382 of
ACM International Conference Proceeding Series, pages 681–688. ACM, 2009.

[30] Kilian Q. Weinberger, Anirban Dasgupta, John Langford, Alexander J. Smola, and Josh At-
tenberg. Feature hashing for large scale multitask learning. In Andrea Pohoreckyj Danyluk,
Léon Bottou, and Michael L. Littman, editors, Proceedings of the 26th Annual International
Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009,
volume 382 of ACM International Conference Proceeding Series, pages 1113–1120. ACM,
2009.

[31] Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alex Smola, Alex Strehl, and
S. V. N. Vishwanathan. Hash kernels. In David van Dyk and Max Welling, editors, Proceedings
of the Twelth International Conference on Artificial Intelligence and Statistics, volume 5 of
Proceedings of Machine Learning Research, pages 496–503, Hilton Clearwater Beach Resort,
Clearwater Beach, Florida USA, 16–18 Apr 2009. PMLR.

[32] Lior Kamma, Casper Benjamin Freksen, and Kasper Green Larsen. Fully understanding
the hashing trick. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman,
Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS
2018, December 3-8, 2018, Montréal, Canada, pages 5394–5404, 2018.

[33] Ryan Spring, Anastasios Kyrillidis, Vijai Mohan, and Anshumali Shrivastava. Compressing
gradient optimizers via count-sketches. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 5946–5955. PMLR, 09–15 Jun 2019.

[34] Robert Calderbank, Sina Jafarpour, and Robert Schapire. Compressed learning: Universal
sparse dimensionality reduction and learning in the measurement domain. Technical report,
2009.

[35] Alexander Munteanu, Simon Omlor, and David P. Woodruff. Oblivious sketching for logistic
regression. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pages 7861–7871. PMLR, 2021.

[36] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Found. Trends Mach.
Learn., 8(3-4):231–357, 2015.

[37] D. Sivakumar. Algorithmic derandomization via complexity theory. In Proceedings of the
Thiry-Fourth Annual ACM Symposium on Theory of Computing, STOC ’02, page 619–626, New
York, NY, USA, 2002. Association for Computing Machinery.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...

13

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We included
the code in the supplemental material. Instructions for downloading the datasets we
used and reproducing the results are in the README files.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See the paragraph titled "Parameters" in Section 5 of the main
paper.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Our code for our

experiments is largely based on that of [1], as mentioned in the footnote at the bottom
of page 4. We cite the datasets we used at the beginning of Section 5.

(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

