
Under review as a conference paper at ICLR 2021

BEBOLD: EXPLORATION BEYOND THE BOUNDARY OF
EXPLORED REGIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficient exploration under sparse rewards remains a key challenge in deep rein-
forcement learning. To guide exploration, previous work makes extensive use of
intrinsic reward (IR). There are many heuristics for IR, including visitation counts,
curiosity, and state-difference. In this paper, we analyze the pros and cons of each
method and propose the regulated difference of inverse visitation counts as a sim-
ple but effective criterion for IR. The criterion helps the agent explore Beyond
the Boundary of explored regions and mitigates common issues in count-based
methods, such as short-sightedness and detachment. The resulting method, Be-
Bold, solves the 12 most challenging procedurally-generated tasks in MiniGrid
with just 120M environment steps, without any curriculum learning. In compar-
ison, previous SoTA only solves 50% of the tasks. BeBold also achieves SoTA
on multiple tasks in NetHack, a popular rogue-like game that contains more chal-
lenging procedurally-generated environments.

1 INTRODUCTION

Deep reinforcement learning (RL) has experienced significant progress over the last several years,
with impressive performance in games like Atari (Mnih et al., 2015; Badia et al., 2020a), Star-
Craft (Vinyals et al., 2019) and Chess (Silver et al., 2016; 2017; 2018). However, most work re-
quires either a manually-designed dense reward (Brockman et al., 2016) or a perfect environment
model (Silver et al., 2017; Moravčı́k et al., 2017). This is impractical for real-world settings, where
the reward is sparse; in fact, the proper reward function for a task is often even unknown due to
lack of domain knowledge. Random exploration (e.g., ε-greedy) in these environments is often
insufficient and leads to poor performance (Bellemare et al., 2016).

Recent approaches have proposed to use intrinsic rewards (IR) (Schmidhuber, 2010) to motivate
agents for exploration before any extrinsic rewards are obtained. Various criteria have been pro-
posed, including curiosity/surprise-driven (Pathak et al., 2017), count-based (Bellemare et al., 2016;
Burda et al., 2018a;b; Ostrovski et al., 2017; Badia et al., 2020b), and state-diff approaches (Zhang
et al., 2019; Marino et al., 2019).

Each approach has its upsides and downsides: Curiosity-driven approaches look for prediction errors
in the learned dynamics model and may be misled by the noisy TV (Burda et al., 2018b) problem,
where environment dynamics are inherently stochastic. Count-based approaches favor novel states
in the environment but suffer from detachment and derailment (Ecoffet et al., 2019), in which the
agent gets trapped into one (long) corridor and fails to try other choices. Count-based approaches are
also short-sighted: the agent often settles in local minima, sometimes oscillating between two states
that alternately feature lower visitation counts (Burda et al., 2018b). Finally, state-diff approaches
offer rewards if, for each trajectory, representations of consecutive states differ significantly. While
these approaches consider the entire trajectory of the agent rather than a local state, it is asymptoti-
cally inconsistent: the intrinsic reward remains positive when the visitation counts approach infinity.
As a result, the final policy does not necessarily maximize the cumulative extrinsic reward.

In this paper, we propose a novel exploration criterion that combines count-based and state-diff ap-
proaches: instead of using the difference of state representations, we use the regulated difference of
inverse visitation counts of consecutive states in a trajectory. The inverse visitation count is approx-
imated by Random Network Distillation (Burda et al., 2018b). Our IR provides two benefits: (1)
This addresses asymptotic inconsistency in the state-diff, since the inverse visitation count vanishes
with sufficient explorations. (2) Our IR is large at the end of a trajectory and at the boundary be-
tween the explored and the unexplored regions (Fig. 1). This motivates the agent to move Beyond

1

Under review as a conference paper at ICLR 2021

Start

EndRND

BeBold

1. BeBold assigns high IR
(dark red) near the start
and low IR for the rest
(light red)

2. BeBold pushes every
direction to the frontier of
exploration uniformly
(yellow)

3. BeBold continuously
pushes the exploration
frontier

4. BeBold reaches the end
of exploration

1. RND assigns high IR
(dark green) throughout
the environment

2. RND temporarily focuses
on the upper right corner
(yellow)

3. RND by chance starts
exploring the bottom right
corner heavily, resulting in
the IR at top right higher
than bottom right

4. RND re-explores the
upper right and forgets the
bottom right, gets trapped

Figure 1: A Hypothetical Demonstration of how exploration is done in BeBold versus Random Network
Distillation (Burda et al., 2018b), in terms of distribution of intrinsic rewards (IR). BeBold reaches the goal by
continuously pushing the frontier of exploration while RND got trapped. Note that IR is defined differently in
RND (1/N(st)) versus BeBold (max(1/N(st+1)− 1/N(st), 0), See Eqn. 3), and different color is used.

the Boundary of the explored regions and step into the unknown, mitigating the short-sighted issue
in count-based approaches.

Following this simple criterion, we propose a novel algorithm BeBold and evaluate it on two very
challenging procedurally-generated (PG) environments: MiniGrid (Chevalier-Boisvert et al., 2018)
and NetHack (Küttler et al., 2020). MiniGrid is a popular benchmark for evaluating exploration
algorithms (Raileanu and Rocktäschel, 2020; Campero et al., 2020; Goyal et al., 2019) and NetHack
is a much more realistic environment with complex goals and skills. BeBold manages to solve the
12 most challenging environments in MiniGrid within 120M environment steps, without curriculum
learning. In contrast, (Campero et al., 2020) solves 50% of the tasks, which were categorized
as “easy” and “medium”, by training a separate goal-generating teacher network in 500M steps.
In NetHack, a more challenging procedurally-generated environment, BeBold also outperforms all
baselines with a significant margin on various tasks. In addition, we analyze BeBold extensively
in MiniGrid. The quantitative results show that BeBold largely mitigates the detachment problem,
with a much simpler design than Go-Explore (Ecoffet et al., 2020) which contains multiple hand-
tune stages and hyper-parameters.

Most Related Works. RIDE (Raileanu and Rocktäschel, 2020) also combines multiple criteria to-
gether. RIDE learns the state representation with curiosity-driven approaches, and then uses the
difference of learned representation along a trajectory as the reward, weighted by pseudo counts
of the state. However, as a two-stage approach, RIDE heavily relies on the quality of generaliza-
tion of the learned representation on novel states. As a result, BeBold shows substantially better
performance in the same procedurally-generated environments.

Go-Explore (Ecoffet et al., 2020) stores many visited states (including boundaries), reaches these
states without exploration, and explores from them. BeBold focuses on boundaries, perform explo-
ration without human-designed cell representation (e.g., image downsampling) and is end-to-end.

Frontier-based exploration (Yamauchi, 1997; 1998; Topiwala et al., 2018) is used to help specific
robots explore the map by maximizing the information gain. The “frontier” is defined as the 2D
spatial regions out of the explored parts. No automatic policy optimization with deep models is used.
In contrast, BeBold can be applied to more general partial observable MDPs with deep policies.

2 BACKGROUND

Following single agent Markov Decision Process (MDP), we define a state space S, an action space
A, and a (non-deterministic) transition function T : S × A → P (S) where P (S) is the probability
of next state given the current state and action. The goal is to maximize the expected reward R =

E[
∑T
k=0 γ

krt+k=1] where rt is the reward, γ is the discount factor, and the expectation is taken
w.r.t. the policy π and MDP transition P (S). In this paper, the total reward received at time step t is
given by rt = ret +αr

i
t, where ret is the extrinsic reward given by the environment, rit is the intrinsic

reward from the exploration criterion, and α is a scaling hyperparameter.

2

Under review as a conference paper at ICLR 2021

3 EXPLORATION BEYOND THE BOUNDARY

Our new exploration criterion combines both counting-based and state-diff-based criteria. Our crite-
rion doesn’t suffer from short-sightedness and is asymptomatically consistent. We’ll first introduce
BeBold and then analyse the advantages of BeBold over existing criteria in Sec. 4.

Exploration Beyond the Boundary. BeBold gives intrinsic reward (IR) to the agent when it ex-
plores beyond the boundary of explored regions, i.e., along a trajectory, the previous state st has
been sufficiently explored but st+1 is new:

ri(st,at, st+1) = max

(
1

N(st+1)
− 1

N(st)
, 0

)
, (1)

Here N is the visitation counts. We clip the IR here because we don’t want to give a negative IR to
the agent if it transits back from a novel state to a familiar state. From the equation, only crossing the
frontier matters to the intrinsic reward; if both N(st) and N(st+1) are high or low, their difference
would be small. As we will show in Sec. 4, for each trajectory going towards the frontier/boundary,
BeBold assigns an approximately equal IR, regardless of their length. As a result, the agent will
continue pushing the frontier of exploration in a much more uniform manner than RND and won’t
suffer from short-sightedness. This motivates the agent to explore different trajectories uniformly.
Also Eq. 1 is asymptotically consistent as ri → 0 when N →∞.

Like RIDE (Raileanu and Rocktäschel, 2020), in our implementation, partial observation ot are used
instead of the real state st, when st is not available.

Episodic Restriction on Intrinsic Reward (ERIR). In many environments where the state tran-
sition is reversible, simply using intrinsic reward to guide exploration would result in the agent
going back and forth between novel states st+1 and their previous states st. RIDE (Raileanu and
Rocktäschel, 2020) avoids this by scaling the intrinsic reward r(s) by the inverse of the state visita-
tion counts. BeBold puts a more aggressive restriction: the agent is only rewarded when it visits the
state s for the first time in an episode. Thus, the intrinsic reward of BeBold becomes:

ri(st,at, st+1) = max

(
1

N(st+1)
− 1

N(st)
, 0

)
∗ 1{Ne(st+1) = 1} (2)

Ne here stands for episodic state count and is reset every episode. In contrast, the visitation count
N is a life-long memory bank counting state visitation across all of training.

Inverse visitation counts as prediction difference. We use the difference between a teacher φ and
a student network φ′ to approximate visitation counts: N(st+1) ≈ 1

||φ(ot+1)−φ′(ot+1)||2 , here ot+1

is the observation of the agent in state st+1. This yields the following implementation of BeBold:

ri(st,at, st+1) =max(||φ(ot+1)− φ′(ot+1)||2 − ||φ(ot)− φ′(ot)||2, 0) ∗ 1{Ne(ot+1) = 1})
(3)

Shared visitation counts N(st) in the training of Procedurally-Generated (PG) Environments.
During training, the environment changes constantly (e.g., blue keys becomes red), while the se-
mantic links of these objects remain the same. We use a shared RND (φ, φ′) across different PG
environments, and treat these semantically similar states as new without using domain knowledge
(e.g., image downsampling like in Go-Explore (Ecoffet et al., 2019)). Partial observability and gen-
eralization of neural network φ handles these differences and leads to count-sharing. For episodic
count Ne(ot+1), since it is not shared across episodes (and environments), we use a hash table.

4 CONCEPTUAL ADVANTAGES OF BEBOLD OVER EXISTING CRITERIA

Short-sightedness and Detachment. One issue in the count-based approach is its short-sightedness.
Let’s assume in a simple environment, there are M corridors {τj}Mj=1 starting at s0 and extending
to different parts of the environment. The corridor τj has a length of Tj . The agent starts at s0.
For each visited state, the agent receives the reward of 1

N(s) where N(·) is the visitation count, and
learns with Q-learning. Then with some calculation (See Appendix), we see that the agent has a
strong preference on exploring the longest corridor first (say τ1), and only after a long period does
it start to explore the second longest. This is because the agent initially receives high IR in τ1 due to
its length, which makes the policy π visit τ1 more often, until it depletes the IR in τ1.

This behavior of “dedication” could lead to serious issues. If M ≥ 3 and 2 corridors are long
enough (say τ1 and τ2 are long), then before the agent is able to explore other corridors, its policy π

3

Under review as a conference paper at ICLR 2021

has already been trained long enough so that it only remembers how to get into τ1 and τ2. When τ1
has depleted its IR, the agent goes to τ2 following the policy. After that, the IR in τ1 revives since the
visitation counts in τ1 is now comparable or even smaller than τ2, which lures the agent to explore
τ1 again following the policy. This leaves other corridors (e.g., τ3) unexplored for a very long time.
Note that using a neural-network-approximated IR (RND) instead of tabular IR could potentially
alleviate this issue, but it is often far less than enough in complex environments.

As mentioned in Go-Explore series (Ecoffet et al., 2019; 2020), count-based approaches also suffer
from detachment: if the agent by chance starts exploring τ2 after briefly exploring the first few
states of τ1, it would not return and explore τ1 further since τ1 is now “shorter” than τ2 and has
lower IR than τ2 for a long period. Go-Explore tries to resolve this dilemma between “dedication”
and “exploration” by using a two-stage approach with many hand-tuned parameters.

In contrast, IR of BeBold depends on the difference of the visitation counts along the trajectory,
and is insensitive to the length of the corridor. This leads to simultaneous exploration of multiple
corridors and yields a diverse policy π (See Sec. 5.2 for empirical evidence). Moreover, the IR
focuses on the boundary between explored and unexplored regions, where the two goals (dedication
and exploration) align, yielding a much cleaner, one-stage method.

Asymptotic Inconsistency. Approaches that define IR as the difference between state representa-
tions ‖ψ(s) − ψ(s′)‖ (ψ is a learned embedding network) (Zhang et al., 2019; Marino et al., 2019)
suffer from asymptotic inconsistency. In other words, their IR does not vanish even after sufficient
exploration: ri 6→ 0 whenN →∞. This is because when the embedding network ψ converges after
sufficient exploration, the agent can always obtain non-zero IR if a major change in state represen-
tation occurs (e.g., opening a door or picking up a key in MiniGrid). Therefore, the learned policy
does not maximize the extrinsic reward re, deviating from the goal of RL. Automatic curriculum
approaches (Campero et al., 2020)) have similar issues due to an ever-present IR.

For this, (Zhang et al., 2019) proposes to learn a separate scheduler to switch between intrinsic and
extrinsic rewards, and (Raileanu and Rocktäschel, 2020) divides the state representation difference
by the square root of visitation counts. In comparison, BeBold does not require any extra stage and
is a much simpler solution.

5 EXPERIMENTS

We evaluate BeBold on challenging procedurally-generated environment MiniGrid (Chevalier-
Boisvert et al., 2018) and the hard-exploration environment NetHack (Küttler et al., 2020). These
environments provide a good testbed for exploration in RL since the observations are symbolic rather
than raw sensor input (e.g., visual input), which decouples perception from exploration. In MiniGrid,
we compare BeBold with RND (Burda et al., 2018b), ICM (Pathak et al., 2017), RIDE (Raileanu
and Rocktäschel, 2020) and AMIGo (Campero et al., 2020). We only evaluate AMIGo for 120M
steps in our experiments, the algorithm obtains better results when trained for 500M steps as shown
in (Campero et al., 2020). For all the other baselines, we follow the exact training paradigm from
(Raileanu and Rocktäschel, 2020). Mean and standard deviation across four runs of different seeds
are computed. BeBold successfully solves the 12 most challenging environments provided by Min-
iGrid. By contrast, all the baselines end up with zero reward on half of the environments we tested.
In NetHack, BeBold also achieves SoTA results with a large margin over baselines.

5.1 MINIGRID ENVIRONMENTS

We mainly use three challenging environments from MiniGird: Multi-Room (MR), Key Corridor
(KC) and Obstructed Maze (OM). We use these abbreviations for the remaining of the paper (e.g.,
OM2Dlh stands for ObstructedMaze2Dlh). Fig. 2 shows one example of a rendering on OMFull as
well as all the environments we tested with their relative difficulty.

In MiniGrid, all the environments are size N × N (N is environment-specific) where each tile
contains an object: wall, door, key, ball, chest. The action space is defined as turn left, turn right,
move forward, pick up an object, drop an object, and toggle an object (e.g., open or close a door).
MR consists of a series of rooms connected by doors and the agent must open the door to get to the
next room. Success is achieved when the agent reaches the goal. In KC, the agent has to explore the
environment to find the key and open the door along the way to achieve success. OM is the hardest:
the doors are locked, the keys are hidden in boxes, and doors are obstructed by balls.

4

Under review as a conference paper at ICLR 2021

Agent

Door

Obstruction

Goal

Box

MRN6 MRN7S-
8

MRN12-
S10

KCS3R3 KCS4R3 KCS5R3 KCS6R3 OM2Dl-
h

OM2Dl-
hb

OM1Q OM2Q OMFULL

ICM

RND

RIDE

AMIGO

BeBold

*MR is short for MultiRoom, KC is for KeyCorridor, OM is for ObstructedMaze: Solved within 120M
steps

: Unsolved

Figure 2: MiniGrid Environments. Left: a procedurally-generated OMFull environment. Right: BeBold
solves challenging tasks which previous approaches cannot solve. Note that we evaluate all methods for 120M
steps. AMIGo gets better results when trained for 500M steps as shown in (Campero et al., 2020).

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

Easy: MultiRoom-N6

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
Re

tu
rn

Easy: MultiRoom-N7-S8

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

Easy: MultiRoom-N12-S10

0 1 2 3 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

Easy: KeyCorridorS3R3

0 1 2 3 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

Medium: KeyCorridorS4R3

0 1 2 3 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

Medium: KeyCorridorS5R3

0 2 4 6
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

Medium: KeyCorridorS6R3

0 1 2 3 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

Medium: ObstructedMaze-2Dlh

0 2 4 6
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

Hard: ObstructedMaze-2Dlhb

0 2 4 6
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

Hard: ObstructedMaze-1Q

0 2 4 6 8
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

Hard: ObstructedMaze-2Q

0.0 0.5 1.0
Environment Steps 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

Hard: ObstructedMaze-Full

IMPALA ICM RND RIDE AMIGO BeBold

Figure 3: Results for various hard exploration environments from MiniGrid. BeBold successfully solves all
the environments while all other baselines only manage to solve two to three relatively easy ones.

Results. We test BeBold on all environments from MiniGrid. BeBold manages to solve the 12 most
challenging environments. By contrast, all baselines solve only up to medium-level tasks and fail to
make any progress on more difficult ones. Note that some medium-level tasks we define here are
categorized as hard tasks in RIDE and AMIGo (e.g., KCS4R3 is labeled as “KCHard” and KCS5R3
is labeled as “KCHarder”). Fig. 3 shows the results of our experiments. Half of the environments
(e.g., KCS6R3, OM1Q) are extremely hard and all the baselines fail. In contrast, BeBold easily solves
all such environments listed above without any curriculum learning. We also provide the final testing
performance for BeBold in Tab. 1. The results is averaged across 4 seeds and 32 random initialized
environments.

Multi Room environments are relatively easy in MiniGrid. However, all the baselines except RIDE
fail. As we increase the room size and number (e.g., MRN12S10), BeBold can achieve the goal
quicker than RIDE. Our method easily solves these environments within 20M environment steps.

On Key Corridor environments, RND, AMIGo, RIDE, IMPALA and BeBold successfully solves
KCS3R3 while ICM makes reasonable progress. However, when we increase the room size (e.g.,
KCS5R3), none of the baseline methods work. BeBold manages to solve these environments in 40M
environment steps. The agent demonstrates the ability to explore the room and finds the correspond-
ing key to open the door in a randomized, procedurally-generated environment.

Obstructed Maze environments are also difficult. As shown in Fig. 3, RIDE and RND manage to
solve the easiest task OM2Dlh which doesn’t contain any obstructions. In contrast, BeBold not only
rapidly solves OM2Dlh, but also solves four more challenging environments including OMFull.
These environments have obstructions blocking the door (as shown in Fig. 2) and are much larger in
size than OM2Dlh. In these environments, our agent learns to move the obstruction away from the
door to open the door and enter the next room. This “skill” is hard to learn since there is no extrinsic
reward assigned to moving the obstruction. However, learning the skill is critical to achieve the goal.

5

Under review as a conference paper at ICLR 2021

Table 1: Final testing performance for BeBold and all baselines.
MRN6 MRN7S8 MRN12S10 KCS3R3 KCS4R3 KCS5R3

ICM 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 0.45 ± 0.052 0.00 ± 0.0 0.00 ± 0.0
RIDE 0.65 ± 0.005 0.67 ± 0.001 0.65 ± 0.002 0.91 ± 0.003 0.93 ± 0.002 0.00 ± 0.0
RND 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 0.91 ± 0.003 0.00 ± 0.0 0.00 ± 0.0
IMPALA 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 0.91 ± 0.004 0.00 ± 0.0 0.00 ± 0.0
AMIGO 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 0.89 ± 0.005 0.00 ± 0.0 0.00 ± 0.0
BeBold 0.64 ± 0.003 0.67 ± 0.001 0.65 ± 0.002 0.92 ± 0.003 0.93 ± 0.003 0.94 ± 0.001

KCS6R3 OM2Dlh OM2Dlhb OM1Q OM2Q OMFULL

ICM 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0
RIDE 0.00 ± 0.0 0.95 ± 0.015 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0
RND 0.00 ± 0.0 0.95 ± 0.0066 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0
IMPALA 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0
AMIGO 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0
BeBold 0.94 ± 0.017 0.96 ± 0.005 0.89 ± 0.063 0.88 ± 0.067 0.93 ± 0.028 0.96 ± 0.058

259K

MultiRoomN7S8

Explore All
Rooms!

BeBold

1.7M 2.8M 4.6M

160K 2.5M

…

9.8M

Environment
Steps

RND
Stuck in the
5th Room!

Figure 4: Normalized visitation counts N(st)/Z (Z is a normalization constant) for the location of agents.
BeBold successfully explores all rooms at 4.6M steps while RND gets stuck in the fifth room at 9.8M steps.

5.2 ANALYSIS OF INTRINSIC REWARD USING PURE EXPLORATION

We analyze how BeBold mitigates the short-sightedness issue by only using IR to guide exploration.

Shorted-Sighted Problem in Long-Corridor Environment. To verify Sec. 4, we design a toy
environment with four disconnected corridors with length 40, 10, 30, and 10 respectively starting
from the same state. In this example, there is no extrinsic reward and the exploration of the agent
is guided by IR. We combine Q-learning with tabular IR (count-based and BeBold tabular) and
neural-network-approximated IR (RND and BeBold) respectively for this experiment. We remove
clipping from BeBold for a fair comparison. Tab. 2 shows the visitation counts across 4 runs w.r.t.
each corridor after 600 episodes of training. It is clear that BeBold tabular explores each corridor
in a much more uniform manner. On the other hand, count-based approaches are greatly affected
by short-sightedness and focus only on two out of four corridors. BeBold also shows much more
stable performance across runs as the standard deviation is much lower comparing with RND. Note
that comparing to the analysis in Sec. 4, in practical experiments, we perceive that the preference of
the corridors for count-based methods can be arbitrary because of the random initialization of the
Q-network.

Visitation Counts Analysis in MiniGrid. To study how different intrinsic rewards can affect the
exploration of the agent, we test BeBold and RND in a fixed (instead of procedurally-generated for
simplicity) MRN7S8 environment. The environment contains 7 rooms connected by doors. To be a
successful exploration strategy, the agent should explore all states and give all states equal amount
of exploration. We define two metrics to measure the effectiveness of an exploration strategy: (1)
visitation counts at every state over trainingN(s), and (2) entropy of visitation counts in each room:
H(ρ′(s)) where ρ′(s) = N(s)∑

s∈Sr N(s) . We do not calculate entropy across all states, because the
agent always starts in the first room and may not visit the last one as frequently. As a result, the
visitation counts for states in the first room will be several magnitudes larger than the last room.

Fig. 4 shows the heatmap of normalizd visitation counts N(st)/Z, where Z is the normalization
constant. At first, RND enters the second room faster than BeBold. However, BeBold consistently
makes progress by pushing the frontier of exploration and discovers all the rooms in 5M steps, while
RND gets stuck in the fifth room even trained with 10M steps.

In Tab. 3, the entropy of distribution in each room H(ρ′(s)) for BeBold is larger than that of RND.
This suggests that BeBold encourages the agent to explore the state in a much more uniform manner.

6

Under review as a conference paper at ICLR 2021

Table 2: Visitation counts for the toy corridor environment
after 3K episodes. BeBold explores corridors more uniformly
than count-based approaches.

C1 C2 C3 C4 Entropy

Length 40 10 30 10 –

Count-Based 66K ± 28K 8K ± 8K 23K ± 35K 13K ± 18K 1.06 ± 0.39
BeBold Tabular 26K ± 2K 28K ± 8K 25K ± 6K 29K ± 9K 1.97 ± 0.02
RND 0.2K ± 0.2K 70K ± 53K 0.2K ± 0.07K 26K ± 44K 0.24 ± 0.28
BeBold 27K ± 6K 23K ± 3K 31K ± 12K 26K ± 8K 1.96 ± 0.05

Table 3: Entropy of the visitation counts of
each room. Such state distribution of Be-
Bold is much more uniform than RND.

0.2M 0.5M 2.0M 5.0M

Room1 3.48 / 3.54 3.41 / 3.53 3.51 / 3.56 3.49 / 3.56
Room2 2.87 / − 3.09 / 3.23 3.51 / 3.53 3.35 / 3.56
Room3 − / − − / − − / 4.02 3.42 / 4.01
Room4 − / − − / − − / 2.74 2.85 / 2.87
∗ Results are presented in the order of “RND / BeBold”.

1.5M Steps 3.1M Steps

RND

BeBold

6.4M Steps4.6M Steps 7.5M Steps 9.8M Steps

1.0M Steps 1.4M Steps 3.4M Steps2.4M Steps 3.9M Steps 4.8M Steps

Figure 5: IR heatmaps for the location of agents. BeBold mitigates the short-sighted problem.

0 1 2 3 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

KeyCorridorS4R3

0 1 2 3 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

KeyCorridorS5R3

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
Re

tu
rn

MultiRoom-N7-S8

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MultiRoom-N12-S10

RND RND with ERIR BeBold w.o. ERIR BeBold w.o. Clipping BeBold

Figure 6: Ablation Study on BeBold comparing with RND with episodic intrinsic reward. BeBold significantly
outperforms RND with episodic intrinsic reward on all the environments.

Intrinsic Reward Heatmap Analysis in MiniGrid. We also plot the heatmap of IR at different
training steps. We generate the plot by running the policy from different checkpoints for 2K steps
and plot the IR associated with each state in the trajectory. States that do not receive IR from the
sampled trajectories are left blank. For BeBold, the IR is computed as the difference of inverse
visitation counts (approximated by RND) between consecutive states st and st+1 in the trajectory.
From Fig. 5, we can see that BeBold doesn’t suffer from short-sighted problem, as we can clearly
see that the areas with high IRs are continuously pushed forward from room1 to room7. This is
true of the whole training process. On the contrary, the IR heatmap for RND bounces between
two consecutive rooms. This is due to short-sightedness: when exploring the second room, the IR
of that room will significantly decrease. Since (a) the policy has assigned the first room non-zero
probability and (b) the first room now has lower vistation count, RND will revisit the first room.
This continues indefinitely, as the agent oscillates between the two rooms.

5.3 ABLATION STUDY

Episodic Restriction on Intrinsic Reward. We analyze the importance of each component in
BeBold. To illustrate the importance of exploring beyond the boundary, we compare BeBold with a
slightly modified RND: RND with ERIR. We only give RND intrinsic reward when it visits a new
state for the first time in an episode. We can see in Fig. 6 that although ERIR helps RND to solve
KCS4R3 and MRN7S8, without BeBold, the method still fails on more challenging tasks KCS5R3
and MRN12S10. A symmetric experiment of removing ERIR from BeBold is also conducted.

Clipping in Beyond the Boundary Exploration. We also study the role of clipping max(·, 0) in our
method. Fig. 6 shows the effect of removing clipping from BeBold. We conclude it is suboptimal to
design an IR that incurs negative reward when transitioning from an unfamiliar to a familiar state.

5.4 THE NETHACK LEARNING ENVIRONMENT

To evaluate BeBold on a more challenging and realistic environment, we choose the NetHack Learn-
ing Environment (Küttler et al., 2020). In the game, the player is assigned a role of hero at the
beginning of the game. The player needs to descend over 50 procedurally-generated levels to the
bottom and find “Amulet of Yendor” in the dungeon. The procedure can be described as first retrieve

7

Under review as a conference paper at ICLR 2021

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e9

0

25

50

75

100

Av
er

ag
e

Re
tu

rn

staircase

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e9

0

20

40

60

80

Av
er

ag
e

Re
tu

rn

pet

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e9

1

0

1

Av
er

ag
e

Re
tu

rn

gold

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e9

0

200

400

600

800
Av

er
ag

e
Re

tu
rn

score

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e9

0

500

1000

1500

2000

Av
er

ag
e

Re
tu

rn

scout

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e9

1.5

1.0

0.5

0.0

Av
er

ag
e

Re
tu

rn

oracle

IMPALA RND BeBold

Figure 7: Results for tasks on NetHack. BeBold achieves the SoTA results comparing to RND and IMPALA.

the amulet, then escape the dungeon and finally unlock five challenging levels (the four Elemental
Planes and the Astral Plane). We test BeBold on a set of tasks with tractable subgoals in the game:
Staircase: navigating to a staircase to the next level, Pet: reaching a staircase and keeping the pet
alive, Gold: collecting gold, Score: maximizing the score in the game, Scout: scouting to explore
unseen areas in the environment, and Oracle: finding the oracle (an in-game character at level 5-9).

Results in Fig. 7 show that BeBold surpasses RND and IMPALA on all tasks1. Especially on Pet,
BeBold outperforms the other two with a huge margin. This again illustrates the strong performance
of BeBold in an environment with huge action spaces and long-horizon reward (several magnitudes
longer than StarCraft and Dota2). Oracle is the hardest task and no approaches are able to find the
oracle and obtain a reward of 1000. BeBold still manages to find a policy with less negative rewards
(i.e., penalty of taking actions that do not lead to game advancement, like moving towards a wall).
For RIDE, we contacted the authors, who confirmed their method is not functional on NetHack. We
further attempted to tune RIDE but to no avail. So we do not report RIDE performance on NetHack.

6 RELATED WORK

In addition to the two criteria (count-based and state-diff based) mentioned above, another stream
of defining IRs is curiosity-based. The main idea is to encourage agents to explore areas where
the prediction of the next state from the current learned dynamical model is wrong. Dynamic-
AE (Stadie et al., 2015) computes the distance between the predicted and the real state on the output
of an autoencoder, ICM (Pathak et al., 2017) learns the state representation through a forward and
inverse model and EMI (Kim et al., 2018) computes the representation through maximizng mutual
information I([s, a]; s′) and I([s, s′]; a).
Another line of research is using information gain to reward the agent. VIME (Houthooft et al.,
2016) uses a Bayesian network to measure the uncertainty of the learned model. Later, to reduce
computation, a deterministic approach has been adopted (Achiam and Sastry, 2017). Other works
also propose to use ensemble of networks for measuring uncertainty (Pathak et al., 2019; Shyam
et al., 2019). We can also reward the agent by Empowerment (Klyubin et al., 2005; Gregor et al.,
2016; Salge et al., 2014; Mohamed and Rezende, 2015), prioritizing the states that agent can take
control through its actions. It is different from state-diff: if st+1 differs from st but not due to agent’s
choice of actions, then the empowerment at st is zero. Other criteria exist, e.g., diversity (Eysenbach
et al., 2018), feature control (Jaderberg et al., 2016; Dilokthanakul et al., 2019) or the KL divergence
between current distribution over states and a target distribution of states (Lee et al., 2019).

Outside of intrinsic reward, researchers have proposed to use randomized value functions to encour-
age exploration (Osband et al., 2016; Hessel et al., 2017; Osband et al., 2019). Adding noise to the
network is also shown to be effective (Fortunato et al., 2017; Plappert et al., 2017). There has also
been effort putting to either explicitly or implicitly separate exploration and exploitation (Colas et al.,
2018; Forestier et al., 2017; Levine et al., 2016). The recently proposed Go-Explore series (Ecoffet
et al., 2019; 2020) also fall in this category. We might also set up different goals for exploration (Guo
and Brunskill, 2019; Oh et al., 2018; Andrychowicz et al., 2017).

Curriculum learning (Bengio et al., 2009) has also been used to solve hard exploration environments.
The curriculum can be explicitly generated by: searching the space (Schmidhuber, 2013), teacher-

1For Gold task, there is a small fix introduced to the environment recently. We benchmark all methods
before the fix and will update the results.

8

Under review as a conference paper at ICLR 2021

RND
RND

Figure 8: Results for CNN-based and RNN-based model on MonteZuma’s Revenge. BeBold achieves good
performance.

student setting (Matiisen et al., 2019), increasing distance between the starting point and goal (Jabri
et al., 2019) or using a density model to generate a task distribution for the meta learner (Florensa
et al., 2017). Our work can also be viewed as an implicit curriculum learning as gradually encourages
the agent to expand the area of exploration. However, it never explicitly generates curriculum.

7 MONTEZUMA’S REVENGE

We also provide initial result of BeBold on MonteZuma’s Revenge. We same paradigm as RND and
the same set of hyperparameters except we use 128 parallel environments. In Fig. 8, we can see that
using CNN-based model, BeBold achieves approximately 10000 external reward after two Billion
frames while the performance reported in RND (Burda et al., 2018b) is around 6700. When using a
RNN-baed model, BeBold reached around 13000 external reward in 100K updates while RND only
achieves 4400. Please note that these are only initial result and we’ll provide the comparison with
RND and average return across multiple seeds in the future.

8 LIMITATIONS AND FUTURE WORK

Noisy TV Problem. One of the limitations on BeBold is the well-known Noisy TV problem. The
problem was raised by (Pathak et al., 2017): the agent trained using a count-based IR will get
attracted to local sources of entropy in the environment. Thus, it will get high IR due to the random-
ness in the environment even without making any movements. BeBold suffers from this problem
as well since the difference between consecutive states can be caused by the stochasity in the envi-
ronment. That could be the reason that BeBold doesn’t get a good performance on stochastic tasks
(e.g., Dynamic-Obstacles-5x5). We will leave this problem to future research.

Hash Table for ERIR. The ERIR in BeBold adopts a hash table for episodic visitation count. This
could potentially have a hard time when applying BeBold in a continuous-space environment (e.g.,
some robotics tasks). One simple solution is to discretilize the space and still use a hash table for
counting. We also leave the more general and elegant fix to this problem to future work.

9 CONCLUSION

In this work, we propose a new criterion for intrinsic reward (IR) that encourages exploration be-
yond the boundary of explored regions using regulated difference of inverse visitation count along
a trajectory. Based on this criterion, the proposed algorithm BeBold successfully solves 12 of the
most challenging tasks in a procedurally-generated MiniGrid environment. This is a significant im-
provement over the previous SoTA, overcoming short-sightedness issues that plague count-based
exploration. We also evaluate BeBold on NetHack, a much more challenging environment. BeBold
outperforms all the baselines by a significant margin. In summary, this simple criterion and the en-
suing algorithm demonstrates effectiveness in solving the sparse reward problem in reinforcement
learning (RL), opening up new opportunities to many real-world applications.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark. arXiv
preprint arXiv:2003.13350, 2020a.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144, 2018.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Matej Moravčı́k, Martin Schmid, Neil Burch, Viliam Lisỳ, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level artificial
intelligence in heads-up no-limit poker. Science, 356(6337):508–513, 2017.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in neural information
processing systems, pages 1471–1479, 2016.

Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE
Transactions on Autonomous Mental Development, 2(3):230–247, 2010.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 16–17, 2017.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. arXiv preprint arXiv:1808.04355, 2018a.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018b.

Georg Ostrovski, Marc G Bellemare, Aaron van den Oord, and Rémi Munos. Count-based explo-
ration with neural density models. arXiv preprint arXiv:1703.01310, 2017.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martı́n Arjovsky, Alexander Pritzel, Andew Bolt, et al. Never
give up: Learning directed exploration strategies. arXiv preprint arXiv:2002.06038, 2020b.

Jingwei Zhang, Niklas Wetzel, Nicolai Dorka, Joschka Boedecker, and Wolfram Burgard. Sched-
uled intrinsic drive: A hierarchical take on intrinsically motivated exploration. arXiv preprint
arXiv:1903.07400, 2019.

Kenneth Marino, Abhinav Gupta, Rob Fergus, and Arthur Szlam. Hierarchical RL using an ensem-
ble of proprioceptive periodic policies. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=SJz1x20cFQ.

10

Under review as a conference paper at ICLR 2021

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a
new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

Heinrich Küttler, Nantas Nardelli, Alexander H Miller, Roberta Raileanu, Marco Selvatici, Ed-
ward Grefenstette, and Tim Rocktäschel. The nethack learning environment. arXiv preprint
arXiv:2006.13760, 2020.

Roberta Raileanu and Tim Rocktäschel. Ride: Rewarding impact-driven exploration for
procedurally-generated environments. arXiv preprint arXiv:2002.12292, 2020.

Andres Campero, Roberta Raileanu, Heinrich Küttler, Joshua B Tenenbaum, Tim Rocktäschel,
and Edward Grefenstette. Learning with amigo: Adversarially motivated intrinsic goals. arXiv
preprint arXiv:2006.12122, 2020.

Anirudh Goyal, Riashat Islam, Daniel Strouse, Zafarali Ahmed, Matthew Botvinick, Hugo
Larochelle, Yoshua Bengio, and Sergey Levine. Infobot: Transfer and exploration via the in-
formation bottleneck. arXiv preprint arXiv:1901.10902, 2019.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return then
explore. arXiv preprint arXiv:2004.12919, 2020.

Brian Yamauchi. A frontier-based approach for autonomous exploration. In Proceedings 1997
IEEE International Symposium on Computational Intelligence in Robotics and Automation
CIRA’97.’Towards New Computational Principles for Robotics and Automation’, pages 146–151.
IEEE, 1997.

Brian Yamauchi. Frontier-based exploration using multiple robots. In Proceedings of the second
international conference on Autonomous agents, pages 47–53, 1998.

Anirudh Topiwala, Pranav Inani, and Abhishek Kathpal. Frontier based exploration for autonomous
robot. arXiv preprint arXiv:1806.03581, 2018.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

Hyoungseok Kim, Jaekyeom Kim, Yeonwoo Jeong, Sergey Levine, and Hyun Oh Song. Emi: Ex-
ploration with mutual information. arXiv preprint arXiv:1810.01176, 2018.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration. In Advances in Neural Information Processing
Systems, pages 1109–1117, 2016.

Joshua Achiam and Shankar Sastry. Surprise-based intrinsic motivation for deep reinforcement
learning. arXiv preprint arXiv:1703.01732, 2017.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
arXiv preprint arXiv:1906.04161, 2019.

Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. Model-based active exploration. In
International Conference on Machine Learning, pages 5779–5788, 2019.

Alexander S Klyubin, Daniel Polani, and Chrystopher L Nehaniv. All else being equal be empow-
ered. In European Conference on Artificial Life, pages 744–753. Springer, 2005.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. arXiv
preprint arXiv:1611.07507, 2016.

Christoph Salge, Cornelius Glackin, and Daniel Polani. Empowerment–an introduction. In Guided
Self-Organization: Inception, pages 67–114. Springer, 2014.

Shakir Mohamed and Danilo Jimenez Rezende. Variational information maximisation for intrinsi-
cally motivated reinforcement learning. In Advances in neural information processing systems,
pages 2125–2133, 2015.

11

Under review as a conference paper at ICLR 2021

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397, 2016.

Nat Dilokthanakul, Christos Kaplanis, Nick Pawlowski, and Murray Shanahan. Feature control as
intrinsic motivation for hierarchical reinforcement learning. IEEE transactions on neural net-
works and learning systems, 30(11):3409–3418, 2019.

Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and Ruslan Salakhutdi-
nov. Efficient exploration via state marginal matching. arXiv preprint arXiv:1906.05274, 2019.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. In Advances in neural information processing systems, pages 4026–4034,
2016.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. arXiv preprint arXiv:1710.02298, 2017.

Ian Osband, Benjamin Van Roy, Daniel J Russo, and Zheng Wen. Deep exploration via randomized
value functions. Journal of Machine Learning Research, 20(124):1–62, 2019.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves,
Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy networks for exploration.
arXiv preprint arXiv:1706.10295, 2017.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
arXiv preprint arXiv:1706.01905, 2017.

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. Gep-pg: Decoupling exploration and ex-
ploitation in deep reinforcement learning algorithms. arXiv preprint arXiv:1802.05054, 2018.

Sébastien Forestier, Yoan Mollard, and Pierre-Yves Oudeyer. Intrinsically motivated goal explo-
ration processes with automatic curriculum learning. arXiv preprint arXiv:1708.02190, 2017.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
motor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Zhaohan Daniel Guo and Emma Brunskill. Directed exploration for reinforcement learning. arXiv
preprint arXiv:1906.07805, 2019.

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. arXiv preprint
arXiv:1806.05635, 2018.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. In Advances in neural information processing systems, pages 5048–5058, 2017.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pages 41–48, 2009.

Jürgen Schmidhuber. Powerplay: Training an increasingly general problem solver by continually
searching for the simplest still unsolvable problem. Frontiers in psychology, 4:313, 2013.

Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher-student curriculum learn-
ing. IEEE transactions on neural networks and learning systems, 2019.

Allan Jabri, Kyle Hsu, Abhishek Gupta, Ben Eysenbach, Sergey Levine, and Chelsea Finn. Un-
supervised curricula for visual meta-reinforcement learning. In Advances in Neural Information
Processing Systems, pages 10519–10531, 2019.

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse cur-
riculum generation for reinforcement learning. arXiv preprint arXiv:1707.05300, 2017.

12

Under review as a conference paper at ICLR 2021

A SOME ANALYSIS BETWEEN COUNT-BASED APPROACHES AND OUR
APPROACH

Consider two corridors, left and right. The left corridor has length Tl while the right corridor has
length Tr. Both starts with an initial state s0. When the game starts, the agent was always placed at
s0.

For simplicity, we just assume there is only a binary action (left or right) to be chosen at the starting
point s0, after that the agent just moves all the way to the end of the corridor and the game restarts.
And we set the discount factor γ = 1.

Using count-based approach, the accumulated intrinsic reward received by the agent if moving to
the left corridor for the i-th time is Rl := Tl/i. This is because for each state, the first time the agent
visit it, it gets a reward of 1 and the second time it gets a reward of 1/2, etc. And this is true for
every state in this corridor. Similarly, for i-th time moving right, it is Rr := Tr/i.

Now let’s think how the policy of the agent is trained. In general, the probability to take action left
or right is proportional to the accumulated reward. InQ learning it is an exponential moving average
of the past reward due to the update rule Q(s, a)← (1−α)Q(s, a)+αR for α typically small (e.g.,
0.01). If we think about Q learning starting with Q(s0, left) = Q(s0, right) = 0, and consider the
situation when the agent has already done nl left and nr right actions, then we have:

Q(s0, left) = Tlα

nl∑
i=1

(1− α)nl−i

i
(4)

Similarly, we have

Q(s0, right) = Trα

nr∑
i=1

(1− α)nr−i

i
(5)

We could define φ(n) := α
∑n
i=1

(1−α)n−i

i and thus Q(s0, left) = Tlφ(nr) and Q(s0, right) =
Trφ(nr).

If we treat φ(·) as a function in the real domain, and assign visiting probability π(a|s0) ∝ Q(s0, a),
then the visitation counts, now is denoted as xl and xr since they are continuous, for left and right
satisfies the following differential equations:

ẋl =
Tlφ(xl)

Tlφ(xl) + Trφ(xr)
, ẋr =

Trφ(xr)

Tlφ(xl) + Trφ(xr)
(6)

In the following, we will show that if Tl 6= Tr, long corridor will dominate the exploration since
it has a lot of rewards until very late. Suppose xl(0) = xr(0) = 1 and Tl > Tr, that is, left side
has longer corridor than right side. Then from the equations, very quickly xl > xr. For α close
to 0, we could check that φ(x) is a monotonously increasing function when x is a small positive
number, since the more an agent visits a corridor, the more reward it obtains. So this creates a
positive feedback and the growth of xl dominates, which means that the policy will almost always
visit left. This happens until after xl is large enough and φ(xl) starts to decay because of diminishing
new rewards and the training discount α. The decay is on the order of like 1

xl
, then the agent will

finally start to visit the right side. Indeed, π(right|s0) > 50% if Trα > Tl/xl, or xl > Tl

Tr

1
α . In

comparison, if we pick sides in a uniform random manner, when xl is this big, xr should also be
comparable (while here xr can be as small as 1 or 2).

If an agent have K corridors to pick with T1 > T2 > . . . > TK , things will be similar.

When Tl = Tr, the dynamics is perfectly symmetric and the agent visits both left and right with
1/2 probability. Since this symmetry is quite rare, count-based exploration is often biased towards
one or two corridors (See Tbl. 2), BeBold uses difference of inverse visitation counts as intrinsic
rewards, and thus balance the exploration.

B HYPERPARAMETERS FOR MINIGRID

Following (Campero et al., 2020), we use the same hyperparameters for all the baselines. For
ICM, RND, IMPALA, RIDE and BeBold, we use the learning rate 10−4, batch size 32, unroll

13

Under review as a conference paper at ICLR 2021

1.5M Steps 3.1M Steps

RND

BeBold

6.4M Steps5.3M Steps 7.1M Steps 9.2M Steps

1.0M Steps 1.9M Steps 3.9M Steps3.4M Steps 4.8M Steps 5.8M Steps

Figure 9: On policy state density heatmaps ρπ(st). BeBold continuously pushes the frontier of
exploration from Room1 to Room7.

length 100, RMSProp optimizer with ε = 0.01 and momentum 0. We also sweep the hyperpa-
rameters for BeBold: entropy coefficient ∈ {0.0001, 0.0005, 0.001} and intrinsic reward coefficient
∈ {0.01, 0.05, 0.1}. We list the best hyperparameters for each method below.

BeBold. For all the Obstructed Maze series environments, we use the entropy coefficient of 0.0005
and the intrinsic reward coefficient of 0.05. For all the other environments, we use the entropy
coefficient of 0.0005 and the intrinsic reward coefficient of 0.1. For the hash table used in ERIR, we
take the raw inputs and directly use that as the key for visitation counts.

AMIGo. As mentioned in (Campero et al., 2020), we use batch size of 8 for student agent and
batch size of 150 for teacher agent. For learning rate, we use learning rate of 0.001 for student agent
and learning rate of 0.001 for teacher agent. We use an unroll length of 100, entropy cost of 0.0005
for student agent and entropy cost of 0.01 for teacher agent. Lastly we use α = 0.7 and β = 0.3 for
defining IRs in AMIGo.

RIDE. Following (Raileanu and Rocktäschel, 2020), we use entropy coefficient of 0.0005 and
intrinsic reward coefficient of 0.1 for key corridor series of environments. For all other environments,
we use entropy coefficient of 0.001 and intrinsic reward coefficient of 0.5.

RND. Following (Campero et al., 2020), we use entropy coefficient of 0.0005 and intrinsic reward
coefficient of 0.1 for all the environments.

ICM. Following (Campero et al., 2020), we use entropy coefficient of 0.0005 and intrinsic reward
coefficient of 0.1 for all the environments.

IMPALA. We use the hyperparameters introduced in first paragraph of this section for the baseline.

C ANALYSIS FOR MINIGRID

In addition to the analysis provided before, we also conduct some other analysis of BeBold in Min-
iGrid.

On Policy State Density in MiniGrid We also plot the on policy state density ρπ(s) for different
checkpoint of BeBold. We ran the policy for 2K steps and plot the BeBold IR based on the con-
secutive states in the trajectory. In Fig. 9, we can clearly see that the boundary of explored region
is moving forward from Room1 to Room7. It is also worth noting that although the policy focuses
on exploring one room (one major direction to the boundary.) at a time, it also put a reasonable
amount of effort visiting the previous room (other directions of to the boundary). Thus, BeBold
greatly alleviate the short-sighted problem aforementioned.

D RESULTS FOR ALL STATIC ENVIRONMENTS IN MINIGRID

In addition to the results shown above, we also test BeBold on all the static producedurally-generated
environments in MiniGrid. There are other categories of static environment. Results for BeBold and
all other baselines are shown in Fig. 10 and Fig. 11.

14

Under review as a conference paper at ICLR 2021

Empty (E) These are the simple ones in MiniGrid. The agent needs to search in the room and find
the goal position. The initial position of the agent and goal can be random.

Four Rooms (FR) In the environment, the agent need to navigate in a maze composed of four rooms.
The position of the agent and goal is randomized.

Door Key (DK) The agent needs to pick up the key, open the door and get to the goal. The reward is
sparse in such environment.

Red and Blue Doors (RBD) In this environment, the agent is randomly placed in a room. There are
one red and one blue door facing opposite directions and the agent has to open the red door then the
blue door in order. The agent cannot see the door behind him so it needs to remember whether or
not he has previously opened the other door in order to reliably succeed at completing the task.

Lava Gap (LG) The agent has to reach the goal (green square) at the corner of the room. It must
pass through a narrow gap in a vertical strip of deadly lava. Touching the lava terminate the episode
with a zero reward.

Lava Crossing (LC) The agent has to reach the goal (green square) at the corner of the room. It
must pass through some narrow gap in a vertical/horizontal strip of deadly lava. Touching the lava
terminate the episode with a zero reward.

Simple CrOssing (SC) The agent has to reach the goal (green square) on the other corner of the
room, there are several walls placed in the environment.

E HYPERPARAMETER FOR NETHACK

For general hyperparameters, we use optimizer RMSProp with a learning rate of 0.0002. No mo-
mentum is used and we use ε = 0.000001. The entropy cost is set to 0.0001. For RND and BeBold,
we scale the the forward distillation loss by a factor of 0.01 to slow down training. We adopt the
intrinsic reward coefficient of 100. For the hash table used in ERIR, we take several related infor-
mation (e.g., the position of the agent and the level the agent is in) provided by (Küttler et al., 2020)
and use that as the key for visitation counts.

15

Under review as a conference paper at ICLR 2021

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-Empty-5x5-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-Empty-Random-5x5-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-Empty-6x6-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-Empty-Random-6x6-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-Empty-8x8-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-Empty-16x16-v0

0 1 2 3
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-FourRooms-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-DoorKey-5x5-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-DoorKey-6x6-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-DoorKey-8x8-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-DoorKey-16x16-v0

0 1 2 3 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-MultiRoom-N2-S4-v0

0 1 2 3 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-MultiRoom-N4-S5-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-RedBlueDoors-6x6-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-RedBlueDoors-8x8-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-KeyCorridorS3R1-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-KeyCorridorS3R2-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-Unlock-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-UnlockPickup-v0

0 1 2 3
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-BlockedUnlockPickup-v0

IMPALA ICM RND RIDE AMIGO BeBold

Figure 10: Results for BeBold Part 1 and all baselines on all static tasks.

16

Under review as a conference paper at ICLR 2021

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-ObstructedMaze-1Dl-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-ObstructedMaze-1Dlh-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-ObstructedMaze-1Dlhb-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-ObstructedMaze-2Dl-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-DistShift1-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-DistShift2-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-LavaGapS5-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-LavaGapS6-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-LavaGapS7-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-LavaCrossingS9N1-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-LavaCrossingS9N2-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-LavaCrossingS9N3-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-LavaCrossingS11N5-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-SimpleCrossingS9N1-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-SimpleCrossingS9N2-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-SimpleCrossingS9N3-v0

0 2 4
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

MiniGrid-SimpleCrossingS11N5-v0

IMPALA ICM RND RIDE AMIGO BeBold

Figure 11: Results for BeBold Part 2 and all baselines on all static tasks.

17

