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ABSTRACT

Log anomaly detection is a key component in the field of artificial intelligence
for IT operations (AIOps). Considering log data of variant domains, retraining
the whole network for unknown domains is inefficient in real industrial scenarios
especially for low-resource domains. However, previous deep models merely fo-
cused on extracting the semantics of log sequences in the same domain, leading
to poor generalization on multi-domain logs. To alleviate this issue, we propose a
unified Transformer-based framework for Log anomaly detection (TRANSLOG)
to improve the generalization ability across different domains from a new per-
spective, where we establish a two-stage process including the pre-training and
adapter-based tuning stage. Specifically, our model is first pre-trained on the
source domain to obtain shared semantic knowledge of log data. Then, we trans-
fer such knowledge to the target domain via shared parameters. Besides, The
adapter, designed for log data, is utilized to improve migration efficiency while
reducing cost. The proposed method is evaluated on three public datasets and one
real-world dataset. Experimental results demonstrate that our simple yet efficient
approach, with fewer trainable parameters and lower training costs in the target
domain, achieves state-of-the-art performance on all benchmarks.1.

1 INTRODUCTION

With the rapid development of large-scale IT systems, numerous companies have an increasing de-
mand for high-quality cloud services. Anomaly detection Breier & Branišová (2015) is a critical
substage to monitoring data peculiarities for logs, which describe detailed system events at runtime
and the intention of users in the large-scale services Zhang et al. (2015). It is error-prone to detect
anomalous logs from a local perspective. In this case, some automatic detection methods based on
machine learning are proposed Xu et al. (2010). Due to the development of IT services, the volume
of log data has grown to the point where traditional approaches are infeasible. Therefore, many deep
learning methods have been proposed on log anomaly detection task Zhang et al. (2016); Du et al.
(2017); Zhang et al. (2019); Meng et al. (2019). Meanwhile, as log messages are half-structured
and have their semantics, which is similar to natural language corpus, language models like Trans-
former Vaswani et al. (2017) and BERT Devlin et al. (2018) are leveraged to obtain semantics in
logs.

Despite being different in morphology and syntax, logs of multiple domains share the semantic
space. For example, in Fig. 1, three sources (BGL, Thunderbird, Red Storm) have the anomaly called
Unusual End of Program, thus we naturally think if the model can identify the same anomalies
in multiple domains. However, existing approaches mostly focus on a single domain, when new
components from a different/similar domain are introduced to the system, they lack the ability to
accommodate such unseen log messages. In addition, we need to consider the continuous iteration
of log data when system upgrades, as it is costly to retrain different copies of the model. Therefore,
a method based on transfer learning is required to perform well on logs from multiple domains.

In this paper, we address the problems above via a two-stage solution called TRANSLOG.
TRANSLOG is capable of preserving the shared semantic knowledge between different domains.
More specifically, we first create a neural network model based on the self-attention mechanism,

1We will release the pre-trained models and code
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BGL:

data storage interrupt

rts: kernel terminated for reason 1004rts: bad message header: [...]

Thunderbird: 

kernel: mptscsih: ioc0: attempting task abort! (sc=00000101bddee480)

Red Storm: 

DMT 310 Command Aborted: SCSI cmd:2A LUN 2 DMT 310 T:299 a: [...]

Unusual End of Program

BGL: 

rts panic! - stopping execution

Thunderbird: 

pbs mom: Bad file descriptor (9) in tm request, job [job] not running

Spirit: 

kernel: GM: LANai is not running. Allowing port=0 open for debugging

Liberty: 

kernel: GM: LANai is not running. Allowing port=0 open for debugging

Program Not Running

Figure 1: The same anomaly from multiple domains. The top part denotes the “Unusual End
of Program” anomaly from three domains including BGL, Thunderbird, and Red Storm while the
bottom part is the “Program Not Running” from four domains including BGL, Thunderbird, Spirit,
and Liberty.

which is pre-trained on the source domain to obtain common semantics of log sequences. Second,
TRANSLOG utilizes a flexible plugin-in component called adapter to transfer knowledge from the
source domain to the target domain.

Generally, the main contributions of this work are listed as follows: (i) We propose TRANSLOG,
an end-to-end framework using Transformer encoder to automatically detect log anomalies, which
provides a new perspective via simple and effective pretraining and adapter-based tuning strategies
for log anomaly detection. (ii) With only a few additional trainable parameters on the target domain,
the training costs are reduced a lot based on the effective parameter-sharing strategy in TRANSLOG.
(iii) Meanwhile, we design log-adapter with the parallel structure, which outperforms the original
serial adapters on benchmark datasets. (iv) TRANSLOG is evaluated on three public and one real-
world datasets: HDFS, BGL, Thunderbird, and GAIA and achieves state-of-the-art performance.

2 BACKGROUND

Log Parsing The purpose of log parsing is to convert unstructured log data into the structured
event template by removing parameters and keeping keywords Jiang et al. (2008); Makanju et al.
(2009); He et al. (2017). In Fig. 2, we utilize Drain to extract all the templates, and then each log
message and the corresponding template is matched. Next, the whole log template sequence is fed
into anomaly detection models.

𝐿1: TIMES 8 crond(pam_unix)[2915]: session closed for user root

𝐿2: TIMES dn228/dn228 crond(pam_unix)[2915]: session opened for user root by (uid=0)

𝐿3: TIMES (root) CMD (run-parts /etc/cron.hourly)

𝐿4: TIMES session closed for user root

𝐿5: TIMES session opened for user root by (uid=0)

𝐿1: session closed for user <*> 

𝐿2: session opened for user <*> by <*>

𝐿3:(root) CMD (<*> <*>)

𝐿4: session closed for user <*> 

𝐿5: session opened for user <*> by <*>

Unstructured Logs

𝑇1: session closed for user <*> 

𝑇2: session opened for user <*> by <*>

𝑇3: (root) CMD (<*> <*>)

𝐿1
𝐿2
𝐿3
𝐿4
𝐿5

Log templates

Mapping Drain parsing

Structured Inputs

Formatting

Figure 2: Logs and Templates. The top part is unstructured logs, we adopt Drain algorithm to extract
log templates,then we match each log with its template, which is the middle part. The bottom part
is structured inputs.
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instruction cache parity error corrected
<*> double-hummer alignment exceptions
<*> double-hummer alignment exceptions

Log Event Sequence

Source Domain

session closed for user root
session opened for user root by (uid=<*>)
(root) CMD <*> <*>

Class Label 
(Normal/Abnomal)

Classifier

Transformer 
Encoder 

with Adapter 

Log Event Sequence

......

......

Target Domain

Feature 
Extractor

Transformer 
Encoder

Classifier

Class Label 
(Normal/Abnomal)

Feature 
Extractor

Pretrained   LM

Pretraining

Adapter-based Tuning

Parameter Initialization

Figure 3: Overview of our proposed architecture. All log event sequence is first fed into the pre-
trained language model to extract the representations. The Transformer encoder is trained on the
high-resource source-domain dataset to acquire shared semantic information. Then, we initialize
the Transformer encoder and only tune the parameters of the adapter on the target-domain dataset to
transfer the knowledge from the source domain to the target domain.

Log Anomaly Detection There are two main methods for log anomaly detection, including super-
vised and unsupervised methods. Supervised methods are often classification-based methods Breier
& Branišová (2015); Huang et al. (2020); Lu et al. (2018); Wittkopp et al. (2021b). LogRobust
Zhang et al. (2019) utilizes both normal and abnormal log data for training based on the Bi-LSTM
architecture. However, obtaining system-specific labeled samples is costly and impractical. Some
unsupervised methods Xu et al. (2010); Yang et al. (2021b); Wittkopp et al. (2021a) have been pro-
posed to alleviate such burden. DeepLog Du et al. (2017) utilizes the LSTM network to forecast
the next log sequence with the ranked probabilities. Besides, LogAnomaly Meng et al. (2019) uti-
lizes the embeddings of logs to capture the semantic information. PLElog Yang et al. (2021a) is a
semi-supervised method to cluster the features of normal data then detect the anomalies by GRU
module.

Although these methods attain the improvement of performance on the single log source, they ignore
the shared semantics between multiple sources. In contrast, TRANSLOG leverages the semantic
knowledge efficiently via the Transformer-adapter architecture.

3 TRANSLOG

In this section, we describe the general framework for log anomaly detection, named TRANSLOG.
The architecture of the TRANSLOG is shown in Fig. 3, which contains two stages: pre-training and
adapter-based tuning. In the following, we start with the definition of the problem, and then the
components of the backbone model are presented. Finally, we introduce the processes of the two
stages.

3.1 PROBLEM DEFINITION

Log anomaly detection problem is defined as a dichotomy problem. The model is supposed to de-
termine whether the input log is abnormal or normal. For the source domain, assuming that through
preprocessing, we achieve the vector representations of Ksrc log sequences, which is denoted as
Ssrc = {Sk}Ksrc

k=1 . Then, Ssrc
i = {V src

t }T
src
i

t=1 denotes the i-th log sequence, where T src
i is the

length of the i-th log sequence. For the target domain, Stgt = {Stgt
k }Ktgt

k=1 denotes the representa-

tions of Ktgt log sequences. Stgt
j = {V tgt

t }T
tgt
j

t=1 denotes the j-th log sequence, where T tgt
j is the

length of the j-th log sequence. Therefore, the training procedure is defined as follows. We first
pre-train the model on the source-domain dataset:

fp(yi|Ssrc
i ; Θ)), (1)
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where fp represents the pre-training stage,Θ is the parameter of the model in pre-training stage.
Then, the model is transferred to the target-domain:

fa(yj |Ssrc
j ; Θf , θa). (2)

where fa represents the adapter-based tuning stage. Θf is the parameter of the transformer encoder
transferred from the pre-training stage, which is frozen in adapter-based tuning stage. θa is the
parameter of the adapter. y is the groundtruth. Through Equation 1 and 2, TRANSLOG learns the
semantic representation of template sequences between domains.

3.2 BACKBONE MODEL

Feature Extractor The feature extractor converts session sequences (template sequence) to vec-
tors with the same dimension d. Here we use the pre-trained sentence-bertReimers & Gurevych
(2019) model to get the template sequence representation. Recently some methods extract semantic
representation from raw log messages, they believe it could prevent the loss of information due to log
parsing errors. However, embedding every log message is not realistic considering a large amount
of log data. Studies also show that almost all anomalies could be detected by template sequence,
even if there are parsing errors. Thus, we only embed all existing log templates. Each session has l
fixed length, so through the layer, we can obtain the XϵRl×d for each session.

3.3 ENCODER WITH LOG-ADAPTER

    Adapter

 Multi-headed
Attention

FFN

  +

 Layer Norm

Transformer layer

×N

  Down-projection

  Up-projection

+Adapter    Adapter

 Layer Norm

  +

Figure 4: Encoder with Log-Adapter. Where N is the number of transformer layers. The left part
describes the transformer encoder inserted by parallel adapters, the right part is the structure of an
adapter, which is composed of the down- and up-projection layers.

In Fig. 4, To better encode the corresponding feature of inputs, we use the transformer encoder as the
backbone model. By doing so, our encoder with self-attention mechanism overcomes the limitations
of RNN-based models. The core self-attention mechanism is formally written as:

Attention(Q,K, V ) = softmax(
QKT√
d/h

)V. (3)

where h is the number of the heads, d denotes the dimension of the input, and Q,K, V represent
queries, keys, and values, respectively.

The order of a log sequence conveys information about the program execution sequence. Wrong
execution order is also considered abnormal. Thus, constant positional embedding is also used. The
component after the self-attention layer and feedforward layer is the original serial adapter. We
design our log adapter with a parallel structure, which is inserted parallel to the self-attention layer
and feedforward layer. This design allows adapter to utilize input information better with original
complete Transformer encoders. During adapter-based tuning, only a few parameters of the adapters
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are updated on the target domain. More specifically, we use down- and up-scale neural networks as
the adapter. Two projection layers first map the hidden vector from dimension d to dimension m
and then map it back to d. The adapter also has a skip-connection operation internally. The output
vector h′ of the adapter is calculated:

h′ = Wuptanh(Wdownh) + h. (4)

where h ∈ Rd represents a given hidden vector. Wdown ∈ Rm×d and Wup ∈ Rd×m is the down-
projection and the up-projection matrix respectively, by setting m << d, we limit the number
of parameters added per adapter, which is the core to reduce trainable parameters while retaining
semantic information to the maximum extent.

3.4 PRE-TRAINING

In this stage, the pre-trained model learns the commonalities among different anomalies from the
semantic level, which contributes significantly to the anomaly detection for new log sources. More
specifically, the objective of this stage is the same as anomaly detection, which is a supervised
classification task without adapters in the model. We acquire the common reason for log anomaly
with the stacked transformer encoder. Then, the parameters of the transformer encoder, which is
trained during this stage, are shared to the next stage.

3.5 ADAPTER-BASED TUNING

When tuning a pre-trained model from the source domain to a target domain, the way of adapter-
based tuning leverages the knowledge obtained from the pre-training stage with lightweight adapters,
which are neural networks like Houlsby et al. (2019). In this paper, our log adapter is composed of
one down-projection layer, one activation layer, and one up-projection layer in Fig. 4. Through the
pre-training stage, we achieve the pre-trained model, thus in this second stage, we plug adapters into
the transformer layers of the pre-trained model, afterward, only the parameters of the adapters are
updated during target domain adaption. Parameters of the multi-headed attention and the feedfor-
ward layers in the pre-trained model are frozen. Unlike fine-tuning, TRANSLOG provides a plug-in
mechanism to reuse the pre-trained model with only a few additional trainable parameters.

3.6 TRAINING STRATEGY

In this two-classification task, the classifier is simply implemented by one liner layer. We both take
BCE loss for two stages. Thus, we define the objective loss of the pre-training stage as follows:

Lp = −Ex,y∈Dsrc
x,y

[logP (y|x; Θ)], (5)

where Lp represents the loss in the pre-training stage. Θ is the parameter of the whole model in the
pre-training stage. x and y are the input data and label respectively, Dsrc

x,y represents the data coming
from the source domain. Then, we define the objective loss in the adapter-based tuning stage:

La = −Ex,y∈Dtgt
x,y

[logP (y|x; Θf , θa)]. (6)

where La is the loss function in the adapter-based tuning stage. Θf is the parameter of the encoder
module trained in the pre-training stage, which is frozen in the adapter-based tuning stage. θa is the
parameter of the adapter. Dtgt

x,y represents the data coming from the target domain.

4 EXPERIMENTS

In this section, the comprehensive settings of the experiment are illustrated. Compared with baseline
methods, our TRANSLOG reaches the state-of-the-art performance on all datasets.

Datasets Experiments are conducted on three public datasets from LogHub He et al. (2020) 2.
10M/11M/5M continuous log messages from Thunderbird/HDFS/BGL are separately leveraged,
which is consistent with the prior work Yao et al. (2020); Le & Zhang (2021). HDFS Xu et al.

2https://github.com/logpai/loghub
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(2010) is generated and collected from the Amazon EC2 platform through running Hadoop-based
map-reduce jobs. Thunderbird and BGL Oliner & Stearley (2007) contain logs collected from a
two-supercomputer system at Sandia National Labs (SNL) in Albuquerque. The log contains alert
and non-alert messages identified by alert category tags. Thorough details of datasets are provided
in Appendix A

Preprocessing and Implementation Different datasets require preprocessing correspondingly.
We extract log sequences by block IDs for HDFS, since logs in HDFS with the same block ID
are correlated. BGL and Thunderbird do not have such IDs, so we utilize a sliding window(size
of 20) without overlap to generate a log sequence. We adopt Drain He et al. (2017) with specifi-
cally designed regex to do log parsing. Number of anomaly is counted based on window. Windows
containing anomalous message are considered as anomalies. For each dataset, considering that logs
evolve over time, we select the first 80% (according to the timestamps of logs) log sequences for
training and the rest 20% for testing, which is consistent with the prior work Yang et al. (2021a); Du
et al. (2017). We provide full details about the implementation in Appendix C

Baselines and Evaluation We compare TRANSLOG with the five public baseline methods and
two variants of our method in Table 1. Five public methods are Support Vector Machine(SVM),
Deeplog Du et al. (2017), LogAnomaly Meng et al. (2019), LogRobust Zhang et al. (2019), and
PLELog Yang et al. (2021a) 3. Two variants are TRANSLOGS and TRANSLOGP , TRANSLOGS

represents that the model is trained from scratch without pre-training and adapter-based tuning stage.
TRANSLOGP represents the model is trained with the pre-training stage but without the adapter-
based tuning stage, which means we directly tune the parameters transferred from the pre-trained
model. For a fair comparison, these baselines are reproduced on the union of source and target
domain data, as TRANSLOG utilize the knowledge of source domain (BGL) and the target domain
(HDFS/Thunderbird). In our experiments, we use precision ( TP

TP+FP ), recall ( TP
TP+FN ) and F1

score ( 2∗Precision∗Recall
Precision+Recall ) to compare our method and previous baselines.

Main Results In Table 1, as TRANSLOG utilizes the knowledge of source and target domain, we
train the baseline methods on BGL+HDFS, BGL+Thunderbird, and BGL datasets for fair compari-
son. TRANSLOG achieves the highest F1 score on all three settings. SpecificallyTo obtain our main
results, BGL is chosen as the source domain for the pre-training, then knowledge is transferred to
the target domains (HDFS/Thunderbird) via adapter-based tuning. Results show that most baselines
perform badly when BGL data is added to training. It is reasonable for the diverse types of error and
complex structure of logs in BGL. This is also the reason why we choose the BGL dataset for pre-
training. Although LogRobust achieves a comparable F1 score with TRANSLOG, our method has
less time consumption and fewer trainable parameters. We compare TRANSLOGS , TRANSLOGP

and complete TRANSLOG, the improvement on BGL demonstrates that the effect of pre-training
stage and the adapter tuning stage, even the source and target domain are both BGL. We provide a
thorough analysis of our model in Section 5.

To test the generalization of TRANSLOG, we conduct the experiment on a real-world distributed
online system. TRANSLOG still achieves the best results. Details are provided in Appendix E.

As for the time consumption, TRANSLOG is efficient with short testing time and satisfactory of-
fline training time. Since the training process is offline, the time consumption of TRANSLOG is
acceptable. Despite the efficiency of all these methods, our method achieves the least testing time.
Detailed results of comparison is provided in Appendix D

5 ABLATION STUDY

Effectiveness of pre-training To demonstrate the feasibility of transferring semantics between
domains through pre-training, we compare the performance of two training ways (training from
scratch and fine-tuning). Here, the way of fine-tuning is to update the parameter of the whole pre-
trained model without adapters.

3https://github.com/YangLin-George/PLELog
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Table 1: Experimental results compared with baselines on Thunderbird, BGL and HDFS. The best
results are highlighted. TRANSLOGS represents the model trained from scratch, TRANSLOGP rep-
resents the model trained with the pre-training but tuning without adapters. TRANSLOG represents
the model with pre-training and adapter-based tuning stages.

Dataset Method Precision Recall F1 Score

SVM 0.31 0.65 0.41
DeepLog 0.36 0.87 0.51

LogAnomaly 0.42 0.96 0.58
HDFS PLELog 0.90 0.92 0.91

LogRobust 0.95 0.97 0.96
TRANSLOGS 0.97 0.98 0.97
TRANSLOGP 0.98 0.99 0.98
TRANSLOG 0.99 0.99 0.99

SVM 0.22 0.56 0.32
DeepLog 0.14 0.81 0.24

LogAnomaly 0.19 0.78 0.31
BGL PLELog 0.96 0.98 0.97

LogRobust 0.96 0.96 0.96
TRANSLOGS 0.96 0.97 0.96
TRANSLOGP 0.97 0.98 0.98
TRANSLOG 0.99 0.99 0.99

SVM 0.34 0.91 0.46
DeepLog 0.48 0.89 0.62

LogAnomaly 0.51 0.97 0.67
Thunderbird PLELog 0.91 0.95 0.93

LogRobust 0.94 0.94 0.94
TRANSLOGS 0.97 0.97 0.97
TRANSLOGP 0.97 0.99 0.98
TRANSLOG 0.99 0.99 0.99

We compare two strategies in terms of their rate of convergence and final results. Fig 5 displays
the loss curves and F1 score curves w.r.t training steps. The results show that fine-tuning converges
faster than training from scratch, which demonstrates that semantic knowledge from the pre-trained
model is valuable. Besides, fine-tuning achieves higher performance than training from scratch at
first steps, which shows the power of transfer learning. We further discover that fine-tuning is more
stable with a smoother curve on Thunderbird, illustrating that similar domains share semantics more
efficiently.

As TRANSLOG achieves good performance even trained from scratch, the final F1 scores of two
methods are close. From the F1 score, we observe that fine-tuning requires fewer training steps to
gain the best result, which is noteworthy for reducing costs in industrial scenes. To sum up, the
pre-training stage is valuable and will allow the model to converge quickly with better results.

Effectiveness of Adapter-based Tuning Although we have verified that pre-training can accel-
erate convergence without reducing performance, fine-tuning each component is expensive and in-
convenient. Thus, we adopt the adapter-based tuning with modified log-adapter. By utilizing the
adapter, we acquire a compact model for the industry application by adding a few additional train-
able parameters.

To confirm the efficiency of the adapter-based tuning, we compare the performance of directly fine-
tuning and adapter tuning. Specifically, we conduct an analysis by adjusting the number of encoder
layers in {1, 2, 4}. Table 2 shows that 1) TRANSLOG with log-adapter achieves higher F1 score (1%
on average) than directly fine-tuning on two datasets. 2) Adapter-based tuning adopts 3.5%− 5.5%
of the trainable parameters compared to directly fine-tuning. 3) More encoder layers for fine-tuning
do not generate better results. Simultaneously, adapter-based tuning performs more robustly when
we stack more encoder layers.
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Figure 5: Loss and F1 score on the test set w.r.t training steps. The left/right part represents Loss/F1

score of the HDFS/Thunderbird. We compare two ways of training including training from scratch
and fine-tuning from model pre-trained on BGL. All results are using 1-layer Transformer encoder
and the same learning rate.

To prove the effectiveness of Log-Adapter module, we compare our Log-Adapter with the traditional
serial adapter. Full results are provided in Appendix B

Table 2: Results between fine-tuning and adapter-based tuning. Layers is the number of encoder
layers. Parameters is the number of trainable parameters in the model.

Method Layers Parameters HDFS Thunderbird

1 7.2M 0.978 0.982
Tuning 2 14.3M 0.982 0.981

4 28.5M 0.981 0.982

1 0.4M 0.991 0.990
Adapter tuning 2 0.6M 0.994 0.996

4 1M 0.998 0.998

Source Domain Chosen TRANSLOG aims at transferring knowledge between domains to help
detect log anomalies. Thus it is vital to choose the correct source domain for the pre-training stage.
A suitable domain needs to meet two conditions: 1) Variety in templates and types of error. 2)
For different and similar domains, it has the great power to migrate semantic knowledge. HDFS
has fewer templates and types of error compared with BGL and Thunderbird. Thus we do not
utilize HDFS as the source domain. Specifically, we compare the results by choosing BGL and
Thunderbird as the source domain respectively. In terms of the F1 score, both of them gain 0.99 on
target domains. Thus we turn our attention to loss curves, Fig. 6 shows the loss curves on the target
domains. Comparing two pre-trained models, on the HDFS dataset, the model pre-trained on BGL
brings faster convergence. Besides, the model pre-trained on BGL brings faster convergence for
Thunderbird than Thunderbird brings to BGL. In a word, BGL is the most suitable source domain
for transferring semantics to similar and dissimilar domains.

Low-resource Setting To verify the power of TRANSLOG under the low-resource setting, we
consider the task with fewer than 20k training examples as the low-resource setting. The ablation
study is conducted on the Thunderbird and models are sufficiently trained for 30 epochs. In Fig. 7,
we compare the F1 scores with different numbers of training samples ranging from 5k-20k. We
find that 1) Adapter-based tuning consistently outperforms training and fine-tuning, especially when
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Figure 6: Loss on the test set w.r.t training steps. The upper/bottom results are based on parameters
pre-trained on BGL/Thunderbird, thus BGL/Thunderbird are not shown. All results are using 1-
layer Transformer encoder and the same learning rate.

Figure 7: Test performance on Thunderbird w.r.t.the number of training examples. 5k, 10k, 15k, 20k
corresponding to the first 1.25%, 2.5%, 3.75%, 5% training data respectively. We show F1 scores
for all methods.

the training size is small. For example, we gain 34% improvements compared with training from
scratch with only 5k data. 2) With the number of training samples increasing, the gap between the
F1 scores of all methods will become smaller. 3) TRANSLOG is robust, with a similar standard
deviation across different training sizes. To summarize, TRANSLOG provides acceptable results in
the low-resource setting, which is highly parameter-efficient for log analysis.

6 CONCLUSION

In this paper, we propose TRANSLOG, a unified transformer-based framework for log anomaly de-
tection, which contains the pre-training stage and the adapter-based tuning stage. Extensive exper-
iments demonstrate that our TRANSLOG, with fewer trainable parameters and lower training costs,
outperforms all previous baselines. We foresee the semantic migration between log sources for a
unified multiple sources detection.
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A DATASET DETAILS

In Table 3, we provide full details of datasets including the category of system, the number of
messages, the number of anomaly log, the number of generated templates and the number of error
types.

Table 3: A summary of the datasets used in this work. Messages are the raw log strings. Log
sequences are extracted by ID or sliding window method.

Dataset Category #Messages #Anomaly #Templates #Error Types

HDFS Distributed 11M 17K 49 53
BGL Supercomputer 5M 40K 1423 143
Thunderbird Supercomputer 10M 123K 1092 95

B COMPARISON BETWEEN ADAPTERS

Layer Norm

Adapter

Multi-headed

Attention

+

FFN

Adapter

+

Layer Norm

Transformer layer

×N

Down-projection

Up-projection

+Adapter

Figure 8: Original Serial Adapter. Where N is the number of transformer layers. The left part
describes the transformer encoder inserted by adapters, the right part is the structure of an adapter.

In Fig. 8, the original adapter is inserted in Transformer in serial order, which is different from our
log-adapter with parallel structure. Log-adapter has two strengths: 1) Log data is semi-structured
data that retains partial semantic information, thus log adapter is designed to connect directly with
the input, which aims to avoid losing the original semantics during the training. 2) The parallel struc-
ture is decoupled from the backbone model, preventing problems like gradient explosion, leading to
a robust training procedure. We compare the F1 scores of two types of adapters in Table 4. Results
show that our log-adapter gains 1% improvement on three datasets on average, demonstrating the
effectiveness of our log-adapter.

Table 4: F1 scores between serial adapter and ours. Experiments are based on 4 layers of transformer
encoder.

Adapter HDFS BGL Thunderbird

Serial 0.988 0.984 0.983

Ours 0.998 0.998 0.998
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C IMPLEMENTATION DETAILS

In the experiment, we try a different number of transformer encoder layers in {1, 2, 4}. The number
of attention heads is 8, and the size of the feedforward network that takes the output of the multi-
head self-attention mechanism is 3072. We use Adam as the optimization algorithm whose learning
rate is scheduled by OneCycleLR, with β1 = 0.9, β2 = 0.99, and ε = 10−8. All runs are trained
on 4 NVIDIA v100 with a batch size of 64. For each dataset, we tune the maximum learning of
OneCycleLR scheduler in {1e− 5, 5e− 5, 1e− 6}.

D TIME CONSUMPTION

Table 5 presents the training and testing time of TRANSLOG on HDFS, BGL, and Thunder-
bird, respectively. TRANSLOG gains the lowest time consumption compared with these baselines.
TRANSLOG performs better than the state-of-the-art semi-supervised approaches (i.e., PLElog) and
the state-of-the-art supervised approach (i.e., LogRobust). Since the training process is offline, the
time consumption of TRANSLOG is acceptable. Despite the efficiency of all these methods, our
method achieves the least testing time. In conclusion, TRANSLOG is efficient with short testing
time and satisfactory offline training time.

Table 5: Time consumption of studied deep approaches. The lowest results are highlighted.

Method HDFS BGL Thunderbird
Training Testing Trainging Testing Training Testing

DeepLog 50m 10m 23m 6m 59m 12m
LogAnomaly 2h 50m 34m 2h 22m 25m 2h 43m 30m

PLElog 37m 35s 20m 14s 33m 31s
LogRobust 1h 20m 20m 40m 4m 58m 12m
TRANSLOG 20m 20s 17m 11s 19m 16s

E PRACTICAL EVALUATION

TRANSLOG has been successfully applied to a multinational cloud services company (the name is
not shown due to the company policy). To test the generalization of TRANSLOG, we conduct the ex-
periment on a real-world distributed online system called GAIA, which is considered to be released
in the future. As this online system serves hundreds of corporations, it is difficult to detect anomalies
on such multi-domain and continuously evolved data. Here, we take 8,200,000 log messages for the
experiment (80% for training, 20% for testing), among them, there are 31,279 anomalous messages.
In Table 6, TRANSLOG still performs best among baselines. Besides, TRANSLOG is stably running
over 3000 hours on this system, which further demonstrates the stability of TRANSLOG.

Table 6: Experimental results compared with baselines on GAIA. The best results are highlighted.

Dataset Method Precision Recall F1 Score

SVM 0.21 0.54 0.30
DeepLog 0.18 0.82 0.31

LogAnomaly 0.23 0.80 0.36
GAIA PLELog 0.81 0.86 0.84

LogRobust 0.83 0.94 0.88
TRANSLOG 0.89 0.98 0.93
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