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Abstract

Domain scientists interested in the causal mechanisms are usually limited by
the frequency at which they can collect the measurements of social, physical,
or biological systems. It is a reasonable assumption that higher frequency is
more informative of the causal structure. This assumption is a strong driver for
designing new, faster instruments. This task is expensive and often impossible
at the current state of technology. In this work, we show that counter to the
intuition it is possible for causal systems to improve the estimation of causal
graphs from undersampled time-series by augmenting the measurements with
those collected at a rate slower than currently available. We present an algorithm
able to take advantage of measurement time-scale graphs estimated from data at
various sampling rates and lower the underdeterminacy of the system by reducing
the equivalence size. We investigate the probability of cases in which deliberate
undersampling yields a gain and the size of this gain.

1 Introduction

Domain scientists often study systems of interest through the lens of complex multivariate time series
collected at fixed intervals as measurements of the interacting parts of the system. The search for
causal structures, namely the search for causal relationships between several random variables, has
been widely studied at least since Pearl et al. [2000] and is used in the social sciences [Blalock,
2017], climatology [Runge et al., 2019] and neuroscience [Zhang et al., 2020]. Often, the goal is
identification of a form of causal relationship among the parts of the system. The subject of our work
is dynamic causal structures that arise as a result of these studies. It has been noted in a number of
works that the initial causal structures derived from the data may differ depending on the frequency
with which measurements are made [Danks and Plis, 2013, Rhea et al., 2015, Gong et al., 2017].

In multivariate dynamical systems there is a minimal characteristic time scale at which variables
of interest exchange information. We call it the causal timescale as opposed to the measurement
timescale at which the data is collected. Typically, the measurement timescale is significantly slower
than the causal time scale leading to undersampling – unmeasured intermediate states. For example,
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the resolution of an fMRI scanner is 2000 ms [Constable, 2006], while the causal interactions of
groups of neurons are at least 10-20 orders of magnitude faster [Perri et al., 2014, Freiwald et al.,
1999]. In many cases, we do not know the extent of undersampling, nor do all measurement methods
undersample to the same degree. Thus, there can be significant changes in the apparent causal
connections [Breitung and Swanson, 2002, Danks and Plis, 2013, Gong et al., 2015]. Similarly, to a
specific viewing angle that may lead to an optical illusion, undersampling may often lead to causal
illusions.

There are algorithms for searching for a causal structure during undersampling (when the measurement
is performed k times less than the time of the causal interaction) with known k [Silvestrini and Veredas,
2008, Gong et al., 2017] and unknown k [Hyttinen et al., 2017, Plis et al., 2015, Abavisani et al.,
2022]. In each of these cases, there remains an error in the estimation of the causal structure, which
decreases with increasing frequency of measurement.

A natural response to the challenge of undersampling is to conclude that we simply should measure
faster. If we could somehow measure at the causal time scale, then we could avoid the challenges
of undersampling. More generally, a natural intuition is that faster data collection always provides
more information about causal interactions in a system, and so we should invest in developing better
instrumentation [Fan et al., 2022, Kalhan et al., 2022]. But while faster measurements almost always
reduce equivalence class size (or at least, do not increase it), faster measurements are typically
more costly, either in time, resources, or personnel. In some cases, it may not even by possible to
measure sufficiently quickly. For example, increasing the frequency of blood sample collections
could have a significant negative impact on patients’ quality of life. Moreover, measuring too fast
can introduce additional noise into our system measurements (or perhaps impact the system itself),
thereby increasing the data collection requirements. Finally, a single-minded focus on increasing
measurement speed can lead researchers to disregard previously-collected, though slower, data when
a faster instrument is available.

The central idea in this paper is that this focus on faster measurement is, in some cases, unwarranted.
In particular, one can often achieve equal improvements in learning by using slower measurements,
not only faster ones. The basic intuition is that the slower measurements can provide a second
“perspective” on the causal system that potentially reveals insights that were hidden from the first
perspective. The present paper provides the first algorithm for reducing the causal structure error
using additional measurements at a lower (i.e., slower) measurement frequency.

In general, if we only have measurements at a single timescale, then using a slower measurement
frequency will typically increase the size of the equivalence class of causal structures that could have
produced the observed data. In this sense, the “natural intuition” is correct: if we can only have one
dataset, then we should usually aim to have a faster timescale (up to the actual causal timescale). Of
course, we are rarely limited in this way; in particular, we can often obtain a second dataset without
substantial effort using the same equipment, at least if we are willing to use a slower timescale. The
results in this paper show that we can gain significant information by taking this easier path, though
the slower timescale must be “coprime” with respect to the original timescale.2

This result is arguably surprising—we can learn more by measuring more slowly—but analogical
phenomena exist in other domains. Most notably, consider the case of image super-resolution. In
this phenomenon, one often obtains substantial increases in image resolution not by using a higher-
resolution imaging device, but rather by using a same-resolution device that is offset by a distance
that is not an integer multiple of the pixel size. Alternately, one can simply use a lower-resolution
imaging device; if the higher resolution is not an integer multiple of the lower resolution, then there
will necessarily be many “offset” pixels, and so some super-resolution will be possible.

Measurement at a slower timescale does not necessarily enable super-resolution of the data itself, not
least because the two data streams need not be collected simultaneously. However, the same intuition
holds with regards to causal structure: by capturing an undersampled time series with a different
“offset,” we can learn a more detailed picture of the underlying causal structure. For example, if we
use a slower measurement speed in fMRI, then although we do not improve the temporal resolution
of the voxel-level data stream, we do improve the temporal resolution of the causal structures in the
brain that generate those data streams. That is, we get a “resolution gain” in the causal system, rather
than the independent variables.

2The exact conditions are explained below.
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Figure 1: Example of causal graph (first) and effects of undersampling rates 2,3 and 4. Black directional lines
indicate causality, red bidirectional edges indicate correlations.

The present paper thus (i) shows the existence of the counter-intuitive phenomenon that using slower
measurements can help as much as faster ones; which thereby (ii) enables scientists to learn more
about causal structure from undersampled data using existing measurement instruments, rather than
waiting for the development of novel measurement methodologies.

2 Notation and definitions

2.1 Theoretical model

The generally accepted model of the dynamical causal system is the graph model [Shafer, 1995,
Pearl, 1988, Lakshmikantham et al., 2010], we will refer to these as dynamic Bayesian networks or
DBNs. DBN includes random variables V at the current time step t, as well as nodes for V at each
previous times step in which there is a direct cause of the current values of V. From a theoretical
perspective, we assume that the underlying causal structure can be represented by a Markov order one
graphical model in which no causal interactions happen instantaneously. This assumption is relatively
innocuous since we are not assuming that we measure at this speed. For convenience, we present the
DBN in the form of a compressed graph G in which time information is encoded implicitly in the
edges (i.e., X → Y in G means Xt−1 → Y t in the underlying DBN).

Let t0, t1, t2, . . . , tk, . . . denote the time steps of the underlying causal structure and call the graph G
or G1 corresponding to this structure a causal graph. In the graph G, self-loops are possible, that
is, edges leading from the vertex X to itself (i.e., Xt−1 → Xt). The data is undersampled with rate
u if the measured time steps are t0, tu, t2u, . . . , tku, . . ., then we call the graph Gu, corresponding to
this structure measured or undersampled with rate u. For example, in Figure 1, the first graph is the
causal graph, the second one is measured with u = 2, the third one is measured with u = 3, and for
the fourth u = 4. It is worth noting that during undersampling, in addition to causal relationships
(directed edges, which are indicated in black), correlations (bidirectional red edges) are added, which
corresponds to the presence of common unobservable causes of variables in the current time step.

Let ⟦H⟧ denote the equivalence class of measured graph H: the set of all graphs G for which ∃u
such that Gu = H. And ⟦H1,H2, . . . ,Hk⟧ is the set of all G1 for which ∃u1, u2, . . . , uk such that
Gu1 = H1,Gu2 = H2, . . . ,Guk = Hk.

We say that a graph G1 exhibits non-monotonic undersampling if and only if ∃u < v such that
⟦Gu,Gv⟧ , ⟦Gu⟧. That is, our uncertainty about the possible G1 does not necessarily monotonically
increase as the undersampling increases. More practically, this property implies that measuring Gv

enables us to further reduce the space of possible G1, even though Gv is even more undersampled than
Gu (see Figure 3). Graphs that exhibit monotonic undersampling are those where ∀u < v : ⟦Gu⟧ ⊆
⟦Gv⟧.

2.2 Computational model

For our task is to show the existence of the phenomenon or reducing “causal illusions” and the utility
of deliberate undersampling for that, it suffices to demonstrate it in computational experiments on
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Figure 2: Example of non-monotonic graph. Bottom left - the equivalence class of the graph G4: ⟦G4⟧.
Bottom left - the equivalence class of the graphs G4 and G5: ⟦G4,G5⟧. The gain for this case is calculated as
gain = log10⟦G4⟧/⟦G4,G5⟧ = log10 11/3 ≈ 0.56

specific class of graphs. We specifically focus on graphs that are strongly connected components
(SCCs) with gcd() = 1 (gcd - the greatest common divisor of the length of all elementary cycles of an
SCC) according to Abavisani et al. [2022].

The whole set of graphs with directed and bidirected edges can be divided into those that are reachable
versus unreachable by undersampling. That is, a graph H is reachable by undersampling if ∃u > 1,G1

such that Gu = H and unreachable otherwise. The proportion of reachable graphs among random
graphs is small,3 it makes sense to generate Gu from a certain class of graphs G to investigate
statistical characteristics. In particular, if G1 consists of a single strongly connected component (i.e.,
∀X,Y∃π : X → . . .→ Y , where X,Y - graph vertices) plus a small constraint, then all Gu are also a
single strongly connected component Danks and Plis [2013]. The easiest way to get such a system is
to connect all the nodes in a simple cycle, and then add k random edges (possibly self-loops).

3 dRASL

In this section, following Abavisani et al. [2022] we present and explain the clingo answer set
programming (ASP) solver implementation of a solution for the rate agnostic causal learning (RASL)
problem [Plis et al., 2015]. The RASL algorithm finds all graphs from the equivalence class of a single
graph H. We follow the conventions of Abavisani et al. [2022] and call the algorithm dRASL, were d
stands for “deliberate undersampling”. Our modification RASL algorithm is a generalization. dRASL
finds a general equivalence class for any number of graphs ⟦H1,H2, . . . ,Hk⟧. Listing 1 presents
the essential parts of the clingo code for the problem. Lines 1 − 2 are generated automatically by
Python given two input graphs estimated at “co-prime” measurement rates (or generated ensuring this
property). These are the graph-specific predicates. The first line lists the directed and bidirected edges
of both graphs Hu and Hu+1. For example, existence of edge from node 1 to node 5 in Hu is translated
to hdirected(1, 5, 1). Line 2 focuses on the same but for Hu+1. Line 4 sets the number of nodes
in H and sets the maximum undersampling rate to consider. The undersampling rate needs to have

3Since H can have bidirected edges, the space of H is bigger than the space of G1 by a factor of 2(n choose 2).
Any particular G1 can lead to multiple graphs in H-space (as u varies), but H-space only sparsely covered by
various Gu.
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(a) A graph in the monotonic undersampling step (b) A non-monotonic undersampling step

Figure 3: Venn diagrams for equivalence classes of different measured graphs. In these examples, the graphs for
which the equivalence classes for the blue and white ovals are presented are graphs with different undersampling
rates values but the same causal graph. ⟦G⟧ denotes the equivalence class of the graph G. (a) Left graph is G3

and right is G5. The equivalence class ⟦G5⟧ totally includes the equivalence class of ⟦G3⟧ (b) Left graph is H3

and right is H5. In this example, the intersection of ⟦H5⟧ and ⟦H3⟧ is not equal to ⟦H3⟧.

1 %( * input graph 1 edge specifications here * e.g.: hdirected(1,5,1) ... )
2 %( * input graph 2 edge specifications here * e.g.: hdirected(1,5,2) ... )
3 #const n = 10, maxu = 20
4 node(1..n).
5 1 {u(1..maxu, 1)} 1.
6 1 {u(1..maxu, 2)} 1.
7 {edge1(X,Y)} :- node(X), node(Y).
8 directed(X, Y, 1) :- edge1(X, Y).
9 directed(X, Y, L) :- directed(X, Z, L-1), edge1(Z, Y), L <= U, u(U, _).

10 bidirected(X, Y, U) :- directed(Z, X, L), directed(Z, Y, L), node(X;Y;Z), X < Y, L
< U, u(U, _).

11 :- directed(X, Y, L), not hdirected(X, Y, K), node(X;Y), u(L, K).
12 :- bidirected(X, Y, L), not hbidirected(X, Y, K), node(X;Y), u(L, K), X < Y.
13 :- not directed(X, Y, L), hdirected(X, Y, K), node(X;Y), u(L, K).
14 :- not bidirected(X, Y, L), hbidirected(X, Y, K), node(X;Y), u(L, K),
15 X < Y.
16 :- M = N, {u(M, 1..2); u(N, 1..2)} == 2, u(M, _), u(N, _).

Listing 1: Clingo code for sRASL

a fixed upper bound. However, it is often possible to guess this upper bound from domain-specific
considerations. For example, in functional MRI, the maximum undersampling rate can arguably
be set to 20 as the difference between hundred milliseconds of the neural causal timescale and 2
second measurement time scale hardly can be more than 20. Lines 5, 6 set two different predicates
for under sampling rates, one for each H. These undersamplings can be anywhere from 1 to maxu.
Line 7 is a choice rule that considers that each edge in the G1 can exist. Lines 8, 9, 10 generate
predicates for directed and bidirected paths of lengths L, practically encoding the forward algorithm
of undersampling. Lines 11 − 14 ensure that the candidate G1 agrees with both Hu and Hu+1 in terms
of having the same directed and bidirected paths of different lengths, as well as absence of the same
directed and bidirected paths of different lengths. Finally, line 15 makes sure that Hu and Hu+1 are
indeed distinct graphs.

The main results of the correctness of this algorithm are based on the correctness of the problem
formulation in Listing 1, which follows by construction, and validity and completeness of clingo’s
ASP solver algorithms. The latter is proven elsewhere, including [Hyttinen et al., 2017, Abavisani
et al., 2022]

4 Results

In this section, we present the results of our computational experiments on the potential learning
benefits of deliberate undersampling. In particular, we empirically demonstrate that non-monotonic
undersampling is quite common in the class of SCCs with gcd(G1) = 1, which forms the largest and,
arguably, the most practically relevant class of SCCs.
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Figure 4: Kernel density estimation (KDE) of graphs with gcd() = 1. X-axis: The density of the causal graph G1.
Y-axis: The undersampling rate after which the graph G1 converges to a super-clique or cyclically repeats. (a)
Normalized KDE for all SCCs. (b) Normalized KDE for SCCs with non-monotonic undersampling mode. (c)
Difference between KDE of all SCCs and SCCs with non-monotonic undersampling modes.

4.1 Estimating prevalence of non-monotonic undersampling graphs

The purpose of this computational experiment is to find a lower bound on the proportion of non-
monotonic undersampling causal graphs G. To estimate this bound, we generated 100 SCCs with n
vertices connected in a large ring and a random arrangement of k additional edges for each value of
n ∈ {5, 6, 7, 8, 9} and k ∈ [1, 30]. Only graphs with gcd() = 1 were considered as the most frequent
and the most practically relevant. Presence of even a single auto-correlation in an SCC leads to
gcd() = 1 and auto-correlations are common in most studied systems.

Given a randomly generated SCC G1, we produced a list of Gu graphs for all u values available for this
graph before convergence. After that incrementing u by 1 we sequentially ran sRASL of Abavisani
et al. [2022] to produce ⟦Gu⟧ and our dRASL modification on (Gu,Gu+1) to obtain ⟦Gu,Gu+1⟧ The
SCC was considered as non-monotonic in the evaluation if there is such u for which ⟦Gu,Gu+1⟧ <
⟦Gu⟧ or, in other words, there is a non-zero gain in using dRASL (see Figure ??).

Notably, the density of graph with gain (Figure 4b) is a lower bound on the true density of such
graphs, since it follows from the definition of non-monotonic undersampling graphs that v can be
anything greater than u as long as they are co-prime, while we restrict ourselves to the case v = u + 1.
Moreover, due to computational limitations, we used the dRASL algorithm to test u for the random
SCCs only up to a limit of a certain maximum u, which is lower than the maximum value of u for
graphs with k edges added to the initial ring, when k < 4. Therefore, the estimate for graphs with
k < 4 could be much higher than that presented in the graph.

As we can see from Figure 4, deliberate undersampling is most helpful for the sparse G1 graphs.
In Figure 4 the X-axis represents the density of the original SCC we generated (as described in
the Section 2.2), or the graph on the causal time scale. Such graphs (Figure 4a) are not uniformly
distributed from 0 to 1 in density, but are distributed from the minimum to the maximum values of the
function (n + k)/n2. The Y-axis shows how many different graphs can be obtained from the original
graph G by the undersampling operation Gu. Figure 4b shows the kernel density estimate for those
graphs that, according to our lower bound estimate, turned out to be non-monotonic undersampling.

From the difference in the normalized KDE distributions (Figure 4c) of all graphs and graphs for
which deliberate undersampling leads to a gain, we see that SCCs with gain are most likely to be
found among graphs with a lower density and higher maximum u.

4.2 Density of measured non-monotonic undersampling graphs

Above, we considered density of SCCs that have non-monotonic undersampling mode relative to
total number of graphs. From a practical point of view, the properties of the measured Gu, for which
deliberate undersampling gives a gain, seem more interesting. On the histogram in Figure 5, the
abscissa shows the density of the causal timescale graph G1, and the ordinate shows the density of
the measurement timescale graph for all non-monotonic undersampling graphs in the experiment.
Density is computed as N/n2, where N - is the number of all edges of the current graph and n - the

6



number of nodes. As can be seen from the figure, the largest number of measured graphs is in the
density range from 0.5 to 0.8, while the density of causal graphs does not exceed 0.6.
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Figure 5: The histogram of non-monotonic undersampling graphs G. X-axis: The density of the graph in causal
timescale G1. Y-axis: The density of the graph in measured timescale Gu. Color map: number of graphs. All
graphs are n-cyclic graphs with k additional random edges (k = 1, 2, ..30; 100 samples for each k). n = 5, 6, 7, 8, 9
(total 15000).

.

4.3 Statistics of the gain of non-monotonic undersampling graphs

The purpose of this experiment is to estimate the gain given by the deliberate undersampling. The
gain is calculated as gain = log10 r1/r12. Where r1 = ⟦Gu⟧ and r12 = ⟦Gu,Gu+1⟧. This means, that,
if gain = 2, the deliberate undersampling reduces the number of solutions 100-fold. For clarity,
a specific example of a non-monotone graph is shown in 2. The gain for this case is calculated
as gain = log10⟦G4⟧/⟦G4,G5⟧ = log10 11/3 ≈ 0.56. It is worth noting that the gain in this section
determines how the number of solutions (the size of the equivalence class) changes when an additional,
slower dimension is added. For clarity, we will give an example with fMRI. Assume that the causal
time scale is 100 ms and the time resolution is 2000 ms. Then the undersampling rate will be 20.
In this case, adding a measurement for u + 1 corresponds to a measurement with a time resolution
of 2100 ms. In this case, we measured the graph Gu and got r1 possible graphs, from which we
can get the graph Gu by undersampling. When we measured the system with the new temporal
resolution, we got an additional constraint that the graphs in the causal temporal resolution must
comply with, and the size of the equivalence class became r12. Two histograms (Figure 5) show the
same non-monotonic undersampling graphs in two different time scales - in the causal (or original G1

graphs) and in the measured (or Gu graphs). Although there are individual cases for which the gain is
3-4 orders of magnitude, but most of them are concentrated in the area of gain from units to hundreds
(0-2 orders of magnitude).

5 Conclusion

This work highlights the problem of distortion of the measured causal structure when measuring
with a time resolution lower than the characteristic causal time. We have positively answered the
question whether it is possible to use deliberate undersampling to reduce indeterminacy of the
problem compared to the algorithms using data at a single sampling rate. Surprisingly, in many cases
deliberate undersampling gives a desired effect of reducing the “causal illusion”. Having considered
a specific class of graphs for which the causal system does not degenerate under slow measurement,
we have shown the statistical features of the density of such graphs and the gain that can be obtained

7
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Figure 6: The histogram of the gain of non-monotonic undersampling graphs G. X-axis: The density of the
graph. Y-axis: Decimal logarithm of r1/r12 where r1 = [Gu] and r12 = [Gu,Gu+1]. Z(colour): number of
graphs. All graphs are n-cyclic graphs with k additional random edges (k = 1, 2, ..30; 100 samples for each k).
n = 5, 6, 7, 8, 9 (total 15000). (left): The histogram in causal timescale. (right): The histogram in measured
timescale.

using deliberate undersampling. Our work serves as a demonstration that there is much to gain when
faster measurements are not an option for any of the possible reasons. One of the potentially larger
impacts of this result is the potential of reuse of historical data collected at slower timescales, when
datasets with somewhat faster sampling rates are already available. Limitations of our work include
the missing theoretical investigation on the conditions when deliberate undersampling is helpful to
get some information gain. Ideally, we would want a test on the measured graph to tell whether
deliberate undersampling would help. However, even characterization of the properties conducive
to the gain of G1 graphs in the causal timescale could be insightful. This, however, is still work in
progress.
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