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ABSTRACT

Using noisy crowdsourced labels from multiple annotators, a deep learning-based
end-to-end (E2E) system aims to learn the label correction mechanism and the
neural classifier simultaneously. To this end, many E2E systems concatenate
the neural classifier with multiple annotator-specific “label confusion” layers and
co-train the two parts in a parameter-coupled manner. The formulated coupled
cross-entropy minimization (CCEM)-type criteria are intuitive and work well in
practice. Nonetheless, theoretical understanding of the CCEM criterion has been
limited. The contribution of this work is twofold: First, performance guarantees of
the CCEM criterion are presented. Our analysis reveals for the first time that the
CCEM can indeed correctly identify the annotators’ confusion characteristics and
the desired “ground-truth” neural classifier under realistic conditions, e.g., when
only incomplete annotator labeling and finite samples are available. Second, based
on the insights learned from our analysis, two regularized variants of the CCEM are
proposed. The regularization terms provably enhance the identifiability of the target
model parameters in various more challenging cases. A series of synthetic and real
data experiments are presented to showcase the effectiveness of our approach.

1 INTRODUCTION

The success of deep learning has escalated the demand for labeled data to an unprecedented level.
Some learning tasks can easily consume millions of labeled data (Najafabadi et al., 2015; Goodfellow
et al., 2016). However, acquiring data labels is a nontrivial task—it often requires a pool of annotators
with sufficient domain expertise to manually label the data items. For example, the popular Microsoft
COCO dataset contains 2.5 million images and around 20,000 work hours aggregated from multiple
annotators were used for its category labeling (Lin et al., 2014).

Crowdsourcing is considered an important working paradigm for data labeling. In crowdsourcing
platforms, e.g., Amazon Mechanical Turk (Buhrmester et al., 2011), Crowdflower (Wazny, 2017), and
ClickWork (Vakharia & Lease, 2013), data items are dispatched and labeled by many annotators; the
annotations are then integrated to produce reliable labels. A notable challenge is that annotator-output
labels are sometimes considerably noisy. Training machine learning models using noisy labels could
seriously degrade the system performance (Arpit et al., 2017; Zhang et al., 2016a). In addition, the
labels provided by individual annotators are often largely incomplete, as a dataset is often divided
and dispatched to different annotators.

Early crowdsourcing methods often treat annotation integration and downstream operations, e.g.,
classification, as separate tasks; see, (Dawid & Skene, 1979; Karger et al., 2011a; Whitehill et al.,
2009; Snow et al., 2008; Welinder et al., 2010; Liu et al., 2012; Zhang et al., 2016b; Ibrahim et al.,
2019; Ibrahim & Fu, 2021). This pipeline estimates the annotators’ confusion parameters (e.g., the
confusion matrices under the Dawid & Skene (DS) model (Dawid & Skene, 1979)) in the first stage.
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Then, the corrected and integrated labels along with the data are used for training the downstream
tasks’ classifiers. However, simultaneously learning the annotators’ confusions and the classifier in
an end-to-end (E2E) manner has shown substantially improved performance in practice. (Raykar
et al., 2010; Khetan et al., 2018; Tanno et al., 2019; Rodrigues & Pereira, 2018; Chu et al., 2021;
Guan et al., 2018; Cao et al., 2019; Li et al., 2020; Wei et al., 2022; Chen et al., 2020).

To achieve the goal of E2E-based learning under crowdsourced labels, a class of methods concatenate
a “confusion layer” for each annotator to the output of a neural classifier, and jointly learn these parts
via a parameter-coupled manner. This gives rise to a coupled cross entropy minimization (CCEM)
criterion (Rodrigues & Pereira, 2018; Tanno et al., 2019; Chen et al., 2020; Chu et al., 2021; Wei
et al., 2022). In essence, the CCEM criterion models the observed labels as annotators’ confused
outputs from the “ground-truth” predictor (GTP)—i.e., the classifier as if being trained using the
noiseless labels and with perfect generalization—which is natural and intuitive. A notable advantage
of the CCEM criteria is that they often lead to computationally convenient optimization problems,
as the confusion characteristics are modeled as just additional structured layers added to the neural
networks. Nonetheless, the seemingly simple CCEM criterion and its variants have shown promising
performance. For example, the crowdlayer method is a typical CCEM approach, which has served as
a widely used benchmark for E2E crowdsourcing since its proposal (Rodrigues & Pereira, 2018). In
(Tanno et al., 2019), a similar CCEM-type criterion is employed, with a trace regularization added.
More CCEM-like learning criteria are seen in (Chen et al., 2020; Chu et al., 2021; Wei et al., 2022),
with some additional constraints and considerations.

Challenges. Apart from its empirical success, understanding of the CCEM criterion has been
limited. Particularly, it is often unclear if CCEM can correctly identify the annotators’ confusion
characteristics (that are often modeled as “confusion matrices”) and the GTP under reasonable settings
(Rodrigues & Pereira, 2018; Chu et al., 2021; Chen et al., 2020; Wei et al., 2022), but identifiability
stands as the key for ensured performance. The only existing identifiability result on CCEM was
derived under restricted conditions, e.g., the availability of infinite samples and the assumption that
there exists annotators with diagonally-dominant confusion matrices (Tanno et al., 2019). To our best
knowledge, model identifiability of CCEM has not been established under realistic conditions, e.g.,
in the presence of incomplete annotator labeling and non-experts under finite samples.

We should note that a couple of non-CCEM approaches proposed identifiability-guaranteed solu-
tions for E2E crowdsourcing. The work in (Khetan et al., 2018) showed identifiability under their
expectation maximization (EM)-based learning approach, but the result is only applicable to binary
classification. An information-theoretic loss-based learning approach proposed in (Cao et al., 2019)
presents some identifiability results, but under the presence of a group of independent expert annota-
tors and infinite samples. These conditions are hard to meet or verify. In addition, the computation of
these methods are often more complex relative to the CCEM-based methods.

Contributions. Our contributions are as follows:

• Identifiability Characterizations of CCEM-based E2E Crowdsourcing. In this work, we show
that the CCEM criterion can indeed provably identify the annotators’ confusion matrices and the GTP
up to inconsequential ambiguities under mild conditions. Specifically, we show that, if the number of
annotator-labeled items is sufficiently large and some other reasonable assumptions hold, the two
parts can be recovered with bounded errors. Our result is the first finite-sample identifiability result
for CCEM-based crowdsourcing. Moreover, our analysis reveals that the success of CCEM does not
rely on conditional independence among the annotators. This is favorable (as annotator independence
is a stringent requirement) and surprising, since conditional independence is often used to derive the
CCEM criterion; see, e.g., (Tanno et al., 2019; Rodrigues & Pereira, 2018; Chu et al., 2021).

• Regularization Design for CCEM With Provably Enhanced Identfiability. Based on the
key insights revealed in our analysis, we propose two types of regularizations that can provide
enhanced identifiability guarantees under challenging scenarios. To be specific, the first regularization
term ensures that the confusion matrices and the GTP can be identified without having any expert
annotators if one has sufficiently large amount of data. The second regularization term ensures
identifiability when class specialists are present among annotators. These identifiability-enhanced
approaches demonstrate promising label integration performance in our experiments.

Notation. The notations are summarized in the supplementary material.
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2 BACKGROUND

Crowdsourcing is a core working paradigm for labeling data, as individual annotators are often not
reliable enough to produce quality labels. Consider a set of N items {xn}Nn=1. Each item belongs
to one of the K classes. Here, xn ∈ RD denote the feature vector of nth data item. Let {yn}Nn=1
denote the set of ground-truth labels, where yn ∈ [K], ∀n. The ground-truth labels {yn}Nn=1 are
unknown. We ask M annotators to provide their labels for their assigned items. Consequently, each
item xn is labeled by a subset of annotators indexed by Sn ⊆ [M ]. Let {ŷ(m)

n }(m,n)∈S denote the
set of labels provided by all annotators, where S = {(m,n) | m ∈ Sn, n ∈ [N ]} and ŷ

(m)
n ∈ [K].

Note that |S| ≪ NM usually holds and that the annotators may often incorrectly label the items,
leading to an incomplete and noisy {ŷ(m)

n }(m,n)∈S . Here, “incomplete” means that S does not
cover all possible combinations of (m,n)—i.e., not all annotators label all items. The goal of an
E2E crowdsourcing system is to train a reliable machine learning model (often a classifier) using
such noisy and incomplete annotations. This is normally done via blindly estimating the confusion
characteristics of the annotators from the noisy labels.

Classic Approaches. Besides the naive majority voting method, one of the most influential crowd-
sourcing model is by Dawid & Skene (Dawid & Skene, 1979). Dawid & Skene models the confusions
of the annotators using the conditional probabilities Pr(ŷ

(m)
n |yn). Consequently, annotator m’s

confusion is fully characterized by a matrix defined as follows: Am(k, k′) := Pr(ŷ
(m)
n = k|yn =

k′),∀k, k′ ∈ [K]. Dawid & Skene also proposed an EM algorithm that estimateAm’s under a naive
Bayes generative model. Many crowdsourcing methods follow Dawid & Skene’s modeling ideas
(Ghosh et al., 2011; Dalvi et al., 2013; Karger et al., 2013; Zhang et al., 2016b; Traganitis et al., 2018;
Ibrahim et al., 2019; Ibrahim & Fu, 2021). Like (Dawid & Skene, 1979), many of these methods do
not exploit the data features xn while learning the confusion matrices of the annotators. They often
treat confusion estimation and classifier training as two sequential tasks. Such two-stage approaches
may suffer from error propagation.

E2E Crowdsourcing and The Identifiability Challenge. The E2E approaches in (Rodrigues &
Pereira, 2018; Tanno et al., 2019; Khetan et al., 2018) model the probability of mth annotator’s
response to the data item xn as follows:

Pr(ŷ(m)
n = k|xn) =

K∑
k′=1

Pr(ŷ(m)
n = k|yn = k′)Pr(yn = k′|xn), k ∈ [K], (1)

where the assumption that the annotator confusion is data-independent has been used to derive
the right-hand side. In the above, the distribution Pr(ŷ

(m)
n |yn) models the confusions in annotator

responses given the true label yn and Pr(yn|xn) denotes the true label distribution of the data item
xn. The distribution Pr(yn|xn) can be represented using a mapping f : RD → [0, 1]K , [f(xn)]k =

Pr(yn = k|xn). Define a probability vector p(m)
n ∈ [0, 1]K for every m and n, such that [p(m)

n ]k =

Pr(ŷ
(m)
n = k|xn). With these notations, the following model holds:

p(m)
n = Amf(xn),∀m,n. (2)

In practice, one does not observe p(m)
n . Instead, the annotations ŷ(m)

n are categorical realizations of
the distribution p(m)

n ; i.e.,

ŷ(m)
n ∼ Cart(p(m)

n ). (3)

The goal of E2E crowdsourcing is to identifyAm and f in (2) from noisy labels {ŷ(m)
n }(m,n)∈S and

data {xn}Nn=1. Note that even if p(m)
n in (2) is observed,Am and f(·) are in general not identifiable.

The reason is that one can easily find nonsingular matricesQ ∈ RK×K such that p(m)
n = Ãmf̃(xn),

where Ãm = AmQ and f̃(xn) = Q
−1f(xn). If an E2E approach does not ensure the identifiability

of Am and f , but outputs f̃(xn) = Q−1f(xn), then the learned predictor is not likely to work
reasonably. Identifying the ground-truth f not only identifies the true labels for the training data
(data for which the annotations have been collected), but is useful to predict the true labels for unseen
test data items. In addition, correctly identifyingAm’s helps quantify how reliable each annotator is.
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CCEM-based Approaches and Challenges. A number of existing E2E methods are inspired by the
model in (2) to formulate CCEM-based learning losses.

• Crowdlayer (Rodrigues & Pereira, 2018): For each (m,n) ∈ S, the generative model in (2)
naturally leads to a cross-entropy based learning loss, i.e., CE(Amf(xn), ŷ

(m)
n ).

As some annotators co-label items, the components f(xn) associated with the co-labeled items are
shared by these annotators. With such latent component coupling and putting the cross-entropy losses
for all (m,n) ∈ S together, the work in (Rodrigues & Pereira, 2018) formulate the following CCEM
loss:

minimize
f∈F,{Am∈RK×K}

1

|S|
∑

(m,n)∈S

CE(softmax(Amf(xn)), ŷ
(m)
n ), (4)

where F ⊆ {f(x) ∈ RK | f(x) ∈∆K , ∀x} is a function class and the softmax operator is applied
as the output ofAmf(xn) is supposed to be a probability mass function (PMF). The method based
on the formulation in (4) was called crowdlayer (Rodrigues & Pereira, 2018). The name comes from
the fact that the confusion matrices of the “crowd”Am’s can be understood as additional layers if
f is represented by a neural network. The loss function in (4) is relatively easy to optimize, as any
off-the-shelf neural network training algorithms can be directly applied. This seemingly natural and
simple CCEM approach demonstrated substantial performance improvement upon classic methods.
However, there is no performance characterization for (4).

• TraceReg (Tanno et al., 2019): The work in (Tanno et al., 2019) proposed a similar loss function—
with a regularization term in order to establish identifiability of theAm’s and f :

minimize
f∈F,{Am∈A}

1

|S|
∑

(m,n)∈S

CE(Amf(xn), ŷ
(m)
n ) + λ

M∑
m=1

trace(Am), (5)

where A is the constrained set {A ∈ RK×K |A ≥ 0,1⊤A = 1⊤}. It was shown that (i) if p(m)
n

instead of ŷ
(m)
n is observed for every m and n and (ii) if the mean of the Am’s are diagonally

dominant, then solving (5) with CE(Amf(xn), ŷ
(m)
n ) replaced by enforcing p(m)

n = Amf(xn)
ensures identifyingAm for all m, up to column permutations. Even though, the result provides some
justification for using CCEM criterion under trace regularization, the result is clearly unsatisfactory,
as it requires many stringent assumptions to establish identifiability.

• SpeeLFC (Chen et al., 2020), Union-Net (Wei et al., 2022), CoNAL (Chu et al., 2021): A number
of other variants of the CCEM criterion are also proposed for E2E learning with crowdsourced
labels. The work in (Chen et al., 2020) uses a similar criterion as in (4), but with the softmax
operator applied on the columns of Am’s, instead on the output of Amf(xn). The work in (Wei
et al., 2022) concatenatesAm’s vertically and applies the softmax operator on the columns of such
concatenated matrix, while formulating the CCEM criterion. The method in (Chu et al., 2021)
models a common confusion matrix in addition to the annotator-specific confusion matricesAm’s
and employs a CCEM-type criterion to learn both in a coupled fashion. Nonetheless, none of these
approaches have successfully tackled the identifiability aspect. The work (Wei et al., 2022) claims
theoretical support for their approach, but the proof is flawed. In fact, understanding to the success of
CCEM-based methods under practical E2E learning settings is still unclear.

Other Related Works. A couple of non-CCEM approaches have also considered the identifiability
aspects (Khetan et al., 2018; Cao et al., 2019). The work in (Khetan et al., 2018) presents an EM-
inspired alternating optimization strategy. Such procedure involves training the neural classifier
multiple times, making it a computationally intensive approach. In addition, its identifiability
guarantees are under certain strict assumptions, e.g., binary classification, identical confusions and
conditional independence for annotators—which are hard to satisfy in practice. The approach in (Cao
et al., 2019) employs an information-theoretic loss function to jointly train a predictor network and
annotation aggregation network. The identifiability guarantees are again under restrictive assumptions,
e.g., infinite data, no missing annotations and existence of mutually independent expert annotators.

We should also note that there exist works considering data-dependent annotator confusions as well,
e.g., (Zhang et al., 2020) (multiple annotator case) and (Cheng et al., 2021; Xia et al., 2020; Zhu et al.,
2022) (single annotator case)—leveraging more complex models and learning criteria. In our work,
we focus on the criterion designed using a model in (1) as it is shown to be effective in practice.
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3 IDENTIFIABILITY OF CCEM-BASED E2E CROWDSOURCING

In this section, we offer identifiability analysis of the CCEM learning loss under realistic settings.
We consider the following re-expressed objective function of CCEM:

minimize
f ,{Am}

− 1

|S|
∑

(m,n)∈S

K∑
k=1

I[ŷ(m)
n = k] log[Amf(xn)]k (6a)

subject to f ∈ F , Am ∈ A, ∀m, (6b)

where F ⊆ {f(x) ∈ RK | f(x) ∈∆K , ∀x} is a function class and A is the constrained set {A ∈
RK×K |A ≥ 0,1⊤A = 1⊤}, since each column ofAm’s are conditional probability distributions.

The rationale is that the confusion matrices Am’s act as correction terms for annotator’s labeling
noise to output a true label classifier f . Intuitively, the objective in (6a) encourages the output
estimates f̂ , {Âm} to satisfy the relation p(m)

n = Âmf̂(xn), ∀m,n. One can easily note that the
identifiability guarantees forAm and f ( i.e., when does the ground-truthAm and the ground-truth
f can be identified) are not so straightforward since there exists an infinite number of nonsingular
matricesQ ∈ RK×K such that p(m)

n = (ÂmQ)(Q−1f̂(xn)).

To proceed, we make the following assumptions:

Assumption 1 Each data item xn, n ∈ [N ] is drawn from a distribution D independently at random
and has a bounded ℓ2 norm. The observed index pairs (m,n) are included in S uniformly at random.

Assumption 2 The neural network function class F has a complexity measure denoted as RF .

Here, we use the sensitive complexity parameter introduced in (Lin & Zhang, 2019) as the complexity
measure RF . In essence, RF gets larger as the neural network function class F gets deeper and
wider—also see supplementary material Sec. K for more discussion.

Assumption 3 There exists a GTP f ♮ : RD → [0, 1]K , such that [f ♮(xn)]k = Pr(yn = k|xn),
where yn denotes the true label of the data item xn. In addition, there exists f̃ ∈ F such that
∥f̃(xn)− f ♮(xn)∥2 ≤ ν for all xn ∼ D, where 0 ≤ ν < ∞.

Assumption 4 (Near-Class Specialist Assumption) LetA♮
m denote the ground-truth confusion matrix

for annotator m. For each class k, there exists a near-class specialist, indexed by mk, such that
∥A♮

mk
(k, :)− e⊤k ∥2 ≤ ξ1, where 0 ≤ ξ1 < ∞.

Assumption 5 (Near-Anchor Point Assumption) For each class k, there exists a near-anchor point,
xnk

, such that ∥f ♮(xnk
)− ek∥2 ≤ ξ2), where 0 ≤ ξ2 < ∞.

Assumptions 1-3 are standard conditions for analyzing performance of neural models under finite
sample settings. The Near-Class Specialist Assumption (NCSA) implies that there exist annotators
for each class k ∈ [K] who can correctly distinguish items belonging to class k from those belonging
to other classes. It is important to note that NCSA assumption is much milder compared to the
commonly used assumptions such as the existence of all-class expert annotators (Cao et al., 2019) or
diagonally dominantA♮

m’s (Tanno et al., 2019). Instead, the NCSA only requires that for each class,
there exists one annotator who is specialized for it (i.e., class-specialist)—but the annotator needs not
be an all-class expert; see Fig. 1 in the supplementary material for illustration. The Near-Anchor
Point Assumption (NAPA) is the relaxed version of the exact anchor point assumption commonly
used in provable label noise learning methods (Xia et al., 2019; Li et al., 2021). Under Assumptions
1-5, we have the following result:

Theorem 1 Assume that each [A♮
mf

♮(xn)]k and [Amf(xn)]k, ∀Am ∈ A,∀f ∈ F are at least
(1/β). Also assume that σmax(A

♮
m) ≤ σ, ∀m, for a certain σ > 0. Then, for any α > 0, with
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probability greater than 1− K/Nα, any optimal solution Âm and f̂ of the problem (6) satisfies the
following relations:

min
Π

∥Âm −A♮
mΠ∥2F = Kσ2(η + ξ1 + ξ2), ∀m ∈ [M ], (7a)

E
x∼D

[
min
Π

∥f̂(x)−Π⊤f ♮(x)∥22
]
= K(η + ξ1 + ξ2), (7b)

where η2 = O
(
βMNα

/
√
S

(√
M logS + (∥X∥FRF )

1
4

)
+ β

√
KMNαν

)
, Π ∈ {0, 1}K is a

permutation matrix, and X = [xn1
, . . . ,xnS

], (ms, ns) ∈ S, if conditions ξ1, ξ2 ≤ 1/K,

ν ≤ 1/βK2M2Nα, and S = |S| = Ω
(
β2M2N2αK2 max

(
M logS,

√
∥X∥FRF

))
hold.

The proof of Theorem 1 is relegated to the supplementary material in Sec. B. The takeaways are as
follows: First, the CCEM can provably identify the A♮

m’s and the GTP f ♮ under finite samples—and
such finite-sample identifiability of CCEM was not established before. Second, some restrictive
conditions (e.g., the existence of all-class experts (Tanno et al., 2019; Cao et al., 2019)) used in the
literature for establishing CCEM’s identifiability are actually not needed. Third, many works derived
the CCEM criterion under the maximum likelihood principle via assuming that the annotators are
conditionally independent; see (Rodrigues & Pereira, 2018; Chen et al., 2020; Tanno et al., 2019;
Chu et al., 2021). Interestingly, as we revealed in our analysis, the identifiability ofA♮

m and f ♮ under
the CCEM criterion does not rely on the annotators’ independence. These new findings support and
explain the effectiveness of CCEM in a wide range of scenarios observed in the literature.

4 ENHANCING IDENTIFIABILITY VIA REGULARIZATION

Theorem 1 confirms that CCEM is a provably effective criterion for identifyingA♮
m’s and f ♮. The

caveats lie in Assumptions 4 and 5. Essentially, these assumptions require that some rows of the
collection {A♮

m}Mm=1 and some vectors of the collection {f ♮(xn)}Nn=1 are close to the canonical
vectors. These are reasonable assumptions, but satisfying them simultaneously may not always be
possible. A natural question is if these assumptions can be relaxed, at least partially.

In this section, we propose variants of CCEM that admits enhanced identifiability. To this end, we
use a condition that is often adopted in the nonnegative matrix factorization (NMF) literature:

Definition 1 (SSC)(Fu et al., 2019; Gillis, 2020) Consider the second-order cone C = {x ∈
RK |

√
K − 1∥x∥2 ≤ 1⊤x}. A nonnegative matrix Z ∈ RL×K

+ satisfies the sufficiently scattered
condition (SSC) if (i) C ⊆ cone(Z⊤) and (ii) cone{Z⊤} ⊆ cone{Q} does not hold for any orthogonal
Q ∈ RK×K except for the permutation matrices.

Geometrically, the matrix Z satisfying the SSC means that its rows span a large “area” within the
nonnegative orthant, so that the conic hull spanned by the rows contains the second order cone C as a
subset. Note that the SSC condition subsumes the the NCSA (Assumption (4) where ξ1 = 0) and the
NAPA (Assumption (5) where ξ1 = 0) as special cases.

Using SSC, we first show that the CCEM criterion in (6) attains identifiability of A♮
m’s and f ♮

without using the NCSA or the NAPA, when the problem size grows sufficiently large.

Theorem 2 Suppose that the incomplete labeling paradigm in Assumption 1 holds with S = Ω(t)
and N = O(t3), for a certain t > 0. Also, assume that there exists Z = {n1, . . . , nT } such that
F ♮
Z = [f ♮(xn1

), . . . ,f ♮(xnT
)] satisfies the SSC and W ♮ = [A♮⊤

1 , . . . ,A♮⊤
M ] satisfies the SSC as

well. Then, at the limit of t → ∞, if f ♮ ∈ F , the optimal solutions ({Âm}, f̂) of (6) satisfies
Âm = A♮

mΠ for all m and f̂(x) = Π⊤f ♮(x) for all x ∼ D, where Π is a permutation matrix.

The proof is via connecting the CCEM problem to the classic nonnegative matrix factorization (NMF)
problem at the limit of t → ∞; see Sec. D. It is also worth to note that Theorem 2 does not require
complete observation of the annotations to guarantee identifiability. Another remark is that W ♮

and F ♮ satisfying the SSC is more relaxed compared to that they satisfying the NCSA and NAPA,
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respectively. For example, one may need class specialists with much higher expertise to satisfy
NCSA than to satisfy SSC onW ♮—also see geometric illustration in Sec. L. Compared to the result
in Theorem 1, Theorem 2 implies that when N is very large, the CCEM should work under less
stringent conditions relative to the NCSA and NAPA. Nonetheless, the assumption that both the GTP
and the annotators’ confusion matrices should meet certain requirements may not always hold. In the
following, we further show that the SSC on eitherW ♮ or F ♮ can be relaxed:

Theorem 3 Suppose that the incomplete labeling paradigm in Assumption 1 holds with S = Ω(t)
and N = O(t3), for a certain t > 0. Then, at the limit of t → ∞, if f ♮ ∈ F , we haveA∗

m = A♮
mΠ

for all m and f∗(x) = Π⊤f ♮(x) for all x ∼ D, when any of the following conditions hold:

(a) If there exists Z = {n1, . . . , nT } such that (F ♮
Z)

⊤= [f ♮(xn1
), . . . ,f ♮(xnT

)]⊤ satisfies the SSC,
rank(W ♮) = K, and ({A∗

m},f∗) is the optimal solution of (6) with the maximal log det(F ∗F ∗⊤).

(b) IfW ♮ = [A♮⊤
1 , . . . ,A♮⊤

M ]⊤ satisfies the SSC, rank(F ♮) = K, and (A∗
m,f∗) is the optimal solution

of (6) with the maximal log det((W ∗)⊤W ∗).

Theorem 3(a) shows that if the number of annotated data items is large and the GTP-outputs associated
with xn are diverse enough to satisfy the SSC, then f ♮ and A♮

m are identifiable even if there are
no class specialists available. Compared to Theorem 2, the identifiability is clearly enhanced, as
the conditions on the annotators have been relaxed. Theorem 3(b) implies that ifW ♮ satisfies SSC,
identifiability can be established irrespective of the geometry of F ♮. Intuitively, when there are more
annotators available,W ♮ is more likely to satisfy SSC (the relation between the size ofW ♮ and SSC
was shown in (Ibrahim et al., 2019, Theorem 4) under reasonable conditions). Hence, in practice,
Theorem 3(b) may offer ensured performance in cases where more annotators are available.

Similar to the proof in Theorem 2, the proof here connects the CCEM-based E2E crowdsourcing
problem to the simplex-structured matrix factorization (SSMF) problem (see (Fu et al., 2015; 2018))
at the limit of t → ∞. The detailed proof is provided in Sec. E. We should mention that various
connections between matrix factorization models and data labeling problems were also observed in
related prior works, e.g, the classic approaches based on Dawid & Skene model (Dawid & Skene,
1979; Zhang et al., 2016b; Ibrahim et al., 2019; Ibrahim & Fu, 2021) and E2E learning under noisy
labels (Li et al., 2021). Nonetheless, the former does not consider cross-entropy losses or involve any
feature extractor, whereas, the latter does not consider multiple annotators or incomplete labeling.

Implementation via Regularization Theorem 3 naturally leads to regularized versions of CCEM.
Correspondingly, we have the following two cases:

Following Theorem 3(a), when the GTP is believed to be diverse over different xn’s, we propose to
employ the following regularized CCEM:

minimize
Am∈A,∀m, f∈F

− 1

|S|
∑

(m,n)∈S

K∑
k=1

I[ŷ(m)
n = k] log[Amf(xn)]k − λ log detFF⊤, (8)

where F = [f(x1), . . . ,f(xN )]⊤. In similar spirit, following Theorem 3(b), we propose the
following regularized CCEM when M is large (so thatW ♮ likely satisfies SSC):

minimize
Am∈A,∀m, f∈F

− 1

|S|
∑

(m,n)∈S

K∑
k=1

I[ŷ(m)
n = k] log[Amf(xn)]k − λ log detW⊤W , (9)

whereW = [A⊤
1, . . . ,A

⊤
M ]⊤. The implementations for (8) and (9) are called as geometry-regularized

crowdsourcing network, abbreviated as GeoCrowdNet(F) and GeoCrowdNet(W), respectively.

Remark 1 Based on our analyses, our suggested rule of thumb for choosing regularization is as fol-
lows: When M is large but N is relatively small, using GeoCrowdNet(W) is recommended,
as W is more likely to satisfy the SSC compared to F⊤. However, when N is large, using
GeoCrowdNet(F) is expected to have a better performance as F⊤ is likely to satisfy the SSC in
this case. Under big data settings, N is often large and the GTP outputs of xn’s are often reasonably
diverse. Hence, (8) oftentimes works well, as will be seen in our experiments. Nonetheless, for cases
where the geometry of F⊤ violates the SSC, the employment of more annotators can help via using
(9)—which is also an intuitive advantage of crowdsourcing.
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Table 1: Average test accuracy (± std) of the proposed methods and the baselines on MNIST &
Fashion-MNIST dataset under various (N,M)’s; labels are produced by machine annotators; p = 0.1.

Methods
MNIST Fashion-MNIST

Case 1 Case 2 Case 1 Case 2
(1000, 15) (1000, 20) (5000, 5) (10000, 5) (1000, 15) (1000, 30) (5000, 5) (10000, 5)

GeoCrowdNet(F) 79.89 ± 3.08 82.18 ± 3.48 85.92 ± 2.73 87.21 ± 2.47 78.98 ± 2.83 84.47 ± 1.64 80.60 ± 0.46 83.68 ± 2.17
GeoCrowdNet(W) 80.97 ± 1.31 83.69 ± 2.37 77.79 ± 8.97 82.37 ± 9.18 79.80 ± 4.23 85.56 ± 1.91 72.36 ± 3.84 74.03 ± 7.41

GeoCrowdNet(λ = 0) 71.15 ± 6.73 69.17 ± 2.61 71.66 ± 4.48 60.29 ± 7.91 70.92 ± 4.14 81.88 ± 4.41 69.31 ± 4.77 73.04 ± 7.56
TraceReg 70.14 ± 6.93 78.09 ± 3.52 63.71 ± 10.76 64.45 ± 10.14 75.06 ± 3.43 83.79 ± 2.15 69.82 ± 6.46 72.21 ± 8.44
CrowdLayer 65.72 ± 4.81 72.90 ± 2.31 51.25 ± 6.24 53.12 ± 14.02 63.91 ± 2.11 76.50 ± 3.68 64.73 ± 6.89 63.18 ± 3.55

MBEM 37.24 ± 8.54 33.39 ± 5.72 28.14 ± 6.24 26.90 ± 2.01 23.14 ± 2.36 25.43 ± 5.68 37.34 ± 3.73 38.62 ± 5.45
CoNAL 51.33 ± 4.27 55.59 ± 5.32 44.79 ± 7.01 39.41 ± 9.21 59.76 ± 3.34 71.44 ± 6.22 52.15 ± 6.08 54.61 ± 7.54

Max-MIG 81.32 ± 1.31 83.34 ± 3.36 83.71 ± 1.23 81.05 ± 0.65 70.95 ± 5.61 81.27 ± 5.37 73.45 ± 5.21 73.62 ± 3.12
NN-MV 78.98 ± 3.21 82.78 ± 1.45 83.44 ± 1.98 83.10 ± 2.86 62.61 ± 6.38 73.61 ± 3.88 61.95 ± 3.73 71.64 ± 2.25

NN-DSEM 73.95 ± 4.90 77.57 ± 4.06 65.81 ± 2.74 69.09 ± 3.21 55.89 ± 5.97 73.64 ± 4.44 31.40 ± 3.86 35.10 ± 4.89

5 EXPERIMENTS

Baselines. The proposed methods are compared with a number of existing E2E crowdsourcing
methods, namely, TraceReg(Tanno et al., 2019), MBEM (Khetan et al., 2018), CrowdLayer
(Rodrigues & Pereira, 2018), CoNAL (Chu et al., 2021), and Max-MIG (Cao et al., 2019). In addition
to these baselines, we also learn neural network classifiers using the labels aggregated from majority
voting and the classic EM algorithm proposed by Dawid &S kene (Dawid & Skene, 1979), denoted
as NN-MV and NN-DSEM, respectively.

Real-Data Experiments with Machine Annotations. The settings are as follows:

Dataset. We use the MNIST dataset (Deng, 2012) and Fashion-MNIST dataset (Xiao et al., 2017);
see more details in Sec. N.

Noisy Label Generation. We train a number of machine classifiers to produce noisy labels. Five
types of classifiers, including support vector machines (SVM), k-Nearest Neighbour (kNN), logistic
regression, convolutional neural network (CNN), and fully connected neural network are considered
to act as annotators. To create more annotators, we change some of their parameters (e.g., the number
of nearest neighbour parameter k of kNN and the number of epochs for training the CNN). We
consider two different cases: (i) Case 1: NCSA (Assumption 4) holding: Each annotator is chosen to
be an all-class expert with probability 0.1. If an annotator is chosen to be an all-class expert, it is
trained carefully so that its classification accuracy exceeds a certain threshold; see details in Sec. N.
Note that the existence of an expert implies that the NCSA and the SSC are likely satisfied byW ♮,
but the reverse is not necessarily true. We use this strategy to enforce NCSA only for validation
purpose. It does not mean that the CCEM criterion needs the existence of experts to work. (ii) Case
2: NCSA not holding: Each machine annotator is trained by randomly choosing a small subset of
the training data (with 100 to 500 samples) so that the accuracy of these machine annotators are low.
This way, any all-class expert or class-specialist is unlikely to exist.

We use the two cases to validate our theorems. Under our analyses, GeoCrowdNet(W) is expected
to work better under Case 1, as NCSA approximately implies SSC. In addition, GeoCrowdNet(F)
does not rely on the geometry ofW ♮, and thus can work under both cases, if N is reasonably large
(which implies that (F ♮)⊤ is more likely to satisfy the SSC). Once the machine annotators are trained,
we let them label unseen data items of size N . To evaluate the methods under incomplete labeling, an
annotator labels any data item with probability p = 0.1. Under this labeling strategy, every data item
is only labeled by a small subset of the annotators.

Settings. The neural network classifier architecture for MNIST dataset is chosen to be Lenet-5
(Lecun et al., 1998), which consists of two sets of convolutional and max pooling layers, followed
by a flattening convolutional layer, two fully-connected layers and finally a softmax layer. For
Fashion-MNIST dataset, we use the ResNet-18 architecture (He et al., 2016). Adam (Kingma &
Ba, 2015) is used an optimizer with weight decay of 10−4 and batch size of 128. The regularization
parameter λ and the initial learning rate of the Adam optimizer are chosen via grid search method
using the validation set from {0.01, 0.001, 0.0001} and {0.01, 0.001}, respectively. We choose the
same neural network structures for all the baselines. The confusion matrices are initialized with
identity matrices of size K for proposed methods and the baselines TraceReg and CrowdLayer.

Results. Table 1 presents the average label prediction accuracy on the testing data of the MNIST and
the Fashion-MNIST over 5 random trials, for various cases. One can observe that GeoCrowdNet(F)
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Table 2: Average test accuracy of the proposed methods and the baselines on LabelMe (M = 59,K =
8) and Music (M = 44,K = 10) datasets.

Methods LabelMe Music
GeoCrowdNet(F) 85.85 ± 0.33 67.13 ± 1.27
GeoCrowdNet(W) 81.59 ± 0.73 66.46 ± 1.77
GeoCrowdNet (λ=0) 80.35 ± 0.40 65.93 ± 1.81

TraceReg 80.89 ± 0.73 66.40 ± 0.90
Crowdlayer 81.41 ± 0.90 65.53 ± 1.74

MBEM 80.05 ± 3.31 69.00 ± 2.15
CoNAL 81.68 ± 2.72 60.93 ± 0.61

Max-MIG 85.03 ± 0.44 64.33 ± 2.31
NN-MV 79.57 ± 1.24 63.40 ± 2.68

NN-DSEM 78.26 ± 1.18 64.66 ± 2.34

performs the best when there are more number of annotated items, even when there are no class
specialist annotators present (i.e., case 2). On the other hand, GeoCrowdNet(W) starts showing
its advantage over GeoCrowdNet(F) when there are more number of annotators and class spe-
cialists among them. Both are consistent with our theorems. In addition, the baseline MaxMIG
performs competitively when there are all-class experts—which is consistent with their identifiability
analysis. However, when there are no such experts (case 2), its performance drops compared to
the proposed methods, especially GeoCrowdNet(F) whose identifiability does not rely on the
existence of all-class experts or class specialists. Overall, GeoCrowdNet(F) exhibits consistently
good performance.

Real-Data Experiments with Human Annotators. The settings are as follows:

Datasets. We consider two different datasets, namely, LabelMe (M = 59) (Rodrigues et al., 2017;
Russell et al., 2007) and Music (M = 44) (Rodrigues et al., 2014), both having noisy and incomplete
labels provided by human workers from AMT.

Settings. For LabelMe, we employ the pretrained VGG-16 embeddings followed by a fully connected
layer as used in (Rodrigues & Pereira, 2018). For Music, we choose a similar architecture, but with
batch normalization layers. We use a batch size of 128 for LabelMe and a batch size of 100 for Music
dataset. All other settings are the same as the machine annotator case. More details of the datasets
and architecture can be seen in Sec. N.

Results. Table 2 shows the average label prediction accuracies on the test data for 5 random trials.
One can see that GeoCrowdNet (λ=0) works reasonably well relative to the machine annotation
case in the previous experiment. This may be because the number of annotators for both LabelMe
and Music are reasonably large (M = 59 and M = 44, respectively), which makesW ♮ satisfying
Assumption 4 become easier than before. This validates our claims in Theorem 1, but also shows the
limitations of the plain-vanilla CCEM—that is, it may require a fairly large number of annotators
to start showing promising results. Similar to the previous experiment, both GeoCrowdNet(F)
and GeoCrowdNet(W) outperform the unregularized version GeoCrowdNet (λ=0), showing the
advantages of the identifiability-enhancing regularization terms. More experiments and details are
presented in Sec. N, due to page limitations.

6 CONCLUSION

In this work, we revisited the CCEM criterion—one of the most popular E2E learning criteria for
crowdsourced label integration. We provided the first finite-sample identifiability characterization
of the confusion matrices and the neural classifier which are learned using the CCEM criterion.
Compared to many exiting identifiability results, our guarantees are under more relaxed and more
realistic settings. In particular, a take-home point revealed in our analysis is that CCEM can provably
identify the desired model parameters even if the annotators are dependent, which is a surprising
but favorable result. We also proposed two regularized variants of the CCEM, based on the insights
learned from our identifiability analysis for the plain-vanilla CCEM. The regularized CCEM criteria
provably enhance the identifiability of the confusion matrices and the neural classifier under more
challenging scenarios. We evaluated the proposed approaches on various synthetic and real datasets.
The results corroborate our theoretical claims.
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Supplementary Material of “ Deep Learning From Crowdsourced Labels: Coupled
Cross-entropy Minimization, Identifiability, and Regularization”

A NOTATION

x, x, and X represent a scalar, a vector, and a matrix, respectively. [x]i and x(i) both denote the
ith entry of the vector x. X(:, j) denotes the jth column vector of X and X(i, :) denotes the ith
row vector ofX . [X]i,j andX(i, j) both mean the (i, j)th entry ofX . ∥x∥2 and ∥X∥F mean the
Euclidean (Frobenius) norm of the augment. [I] means an integer set {1, 2, . . . , I}. ⊤denote transpose.
∆K = {x ∈ RK :

∑
i x(i) = 1,x ≥ 0} denotes the probability simplex. X ≥ 0 implies that all

the entries of the matrixX are nonnegative. I[A] denotes an indicator function for the event A such
that I[A] = 1 if the event A happens, otherwise I[A] = 0. CE(x, y) = −

∑K
k=1 I[y = k] log(x(k))

denotes the cross entropy function. IK denotes an identity matrix of size K ×K. σmax(X) and
σmin(X) denote the largest and the smallest singular values of the matrixX , respectively. cone(X)
denotes the conic hull formed by the columns of the matrixX . det(X) represents the determinant
of X . vec(X) denotes the vectorization operation that concatenates the columns of X . trace(X)
outputs the trace (the sum of the diagonal elements) ofX .

B PROOF OF THEOREM 1

If the vectors p(m)
n for all m,n are available, then one can represent the model in (2) as a low-rank

nonnegative matrix factorization (NMF) model as follows: p
(1)
1 . . . p

(1)
N

...
. . .

...
p
(M)
1 . . . p

(M)
N


︸ ︷︷ ︸

P∈RMK×N

=

A1

...
AM


︸ ︷︷ ︸

W∈RMK×K

[f(x1) . . . f(xN )]︸ ︷︷ ︸
F∈RK×N

, (10)

where the factorsW and F are both nonnegative per their physical meaning.

Let P ♮ denote the ground-truth and p♮(m)
n ∈ RK the (m,n)th block in P ♮, following the representa-

tion in (10). Note that we do not observe the entire P ♮ but only the ŷ
(m)
n sampled from p

♮(m)
n for

(m,n) ∈ S. We first show that the CCEM criterion in (6) implicitly estimates P ♮ from incomplete
labels indexed by S. To this end, we consider the objective function in (6a):

DS(P ; Ŷ) ≜ − 1

S

∑
(m,n)∈S

K∑
k=1

I[ŷ(m)
n = k] logP ((m− 1)K + k, n), (11)

where Ŷ denotes the set of observed noisy labels, i.e., {ŷ(m)
n }(m,n)∈S . Let {Âm}Mm=1 and f̂ denote

the estimates given by the learning criterion in (6). Then, the criterion (6) helps define the following
term:

P̂ ≜ arg min
P∈P

DS(P ; Ŷ), (12)

where P̂ = Ŵ
[
f̂(x1) . . . f̂(xN )

]
, Ŵ = [Â⊤

1 , . . . , Â
⊤
M ]⊤,

P ≜ {P ∈ RMK×N | P =W [f(x1) . . . f(xN )] ,W ∈ W, f ∈ F},
W ≜ {W = [A⊤

1 , . . . ,A
⊤
M ]⊤ ∈ RMK×K | 1⊤Am = 1⊤,Am ≥ 0, ∀m}, and

F⊂ {f(x) ∈ RK | f(x) ∈∆K , ∀x ∈ RD} is the neural network function class.

Our main goal is to characterize the estimation errors of {Âm}Mm=1 and f̂ . This can be done via first
bounding the estimation errors ∥p♮(m)

n − p̂(m)
n ∥22, where p♮(m)

n is given by:

p♮(m)
n = A♮

mf
♮(xn), ∀m,n,

in whichA♮
m and f ♮ denote the mth ground-truth confusion matrix and the GTP, respectively, and

p̂
(m)
n denote the (m,n)th block in P̂ .

14
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B.1 ESTIMATING ∥p♮(m)
n − p̂(m)

n ∥22

We first show the following proposition:

Proposition 1 Under the assumptions in Theorem 1, the following result hold with probability at
least 1− δ:

1

NM

N∑
n=1

M∑
m=1

∥p♮(m)
n − p̂(m)

n ∥22 ≤ 4
√
2KβRS(P) + 10 log (β)

√
2 log (4/δ)√

S
+ 2β

√
Kν, (13)

where RS(P) = 16√
S

√
MK log

(
4S

√
K
)
+ (2∥X∥FRF )

1
2 and is related to the empirical

Rademacher complexity of the set P under the observed samples S.

The proof is provided in Sec. C. Proposition 1 provides an upper-bound for ∥P ♮ − P̂ ∥2F. To achieve
the main goal, i.e., characterizing the estimation errors of {Âm}Mm=1 and f̂ , we require an upper-
bound for

∑M
m=1 ∥p

♮(m)
n − p̂(m)

n ∥22 as well. The following result gives a tighter upper bound for∑M
m=1 ∥p

♮(m)
n − p̂(m)

n ∥22:

Proposition 2 Under the assumptions in Theorem 1, for any α > 0 and δ ∈ (0, 1), the following
result holds with probability at least 1− 1

Nα :

1

M

M∑
m=1

∥p♮(m)
n − p̂(m)

n ∥22

≤ Nα

(
4
√
2KβRS(P) + 10 log (β)

√
2 log (4/δ)√

S
+ 2β

√
Kν + 4δ

)
, ∀n, (14)

where RS(P) = 16√
S

√
MK log

(
4S

√
K
)
+ (2∥X∥FRF )

1
2 .

The proof is provided in Sec. I. Note that the bound in (14) looks divergent at the first glance, as the
second term in the R.H.S. could go to infinity. However, given a large enough S, one can choose
appropriate α and δ such that the bound in (14) does not explode.

B.2 ESTIMATION ERRORS FOR Âm AND f̂

In this section, we characterize the estimation error of the confusion matrices and the GTP. We start
with using simplified notations to represent the results in Propositions 1-2, i.e.,

∥P ♮ − P̂ ∥2F ≤ ζ2, (15)
M∑

m=1

∥p♮(m)
n − p̂(m)

n ∥22 ≤ φ2,∀n. (16)

with probability greater than 1− δ and 1− 1
Nα , respectively.

Assumptions 4-5 imply that there exists index sets Λ = {m̃1, . . . , m̃K} and Ψ = {ñ1, . . . , ñK} such
that:

W ♮(Λ, :) = IK +NW

F ♮(:, Ψ) = IK +NF ,

where ∥NW ∥F ≤
√
Kξ1, and ∥NF ∥F ≤

√
Kξ2. Note that the conditions do not require any

confusion matrices to be near identity; i.e., we do not need any annotators to be all-class specialists.

15
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Nonetheless, for notation simplicity, we let Λ = {1, . . . ,K} and Ψ = {1, . . . ,K}, which is without
loss of generality for our proof in the sequel. Under this simplification, the following holds:

W ♮ =


A♮

1

A♮
2

...
A♮

M

 , F ♮ =
[
f ♮(x1) . . . f ♮(xN )

]
=
[
F ♮
1 F ♮

2

]
,

where A♮
1 = IK + NW , F ♮

1 = IK + NF , and F ♮
2 ∈ RK×(N−K), ∥NW ∥F ≤

√
Kξ1, and

∥NF ∥F ≤
√
Kξ2.

Let Âm and f̂ denote the estimates ofA♮
m and f ♮, respectively, using the learning criterion (6) and

construct

Ŵ =


Â1

Â2

...
ÂM

 , F̂ =
[
f̂(x1) . . . f̂(xN )

]
=
[
F̂1 F̂2

]
,

where Âm ∈ RK×K , F̂1 ∈ RK×K , and F̂2 ∈ RK×(N−K). Then, we have:

∥P ♮ − P̂ ∥2F = ∥W ♮F ♮ − Ŵ F̂ ∥2F
= ∥IK +NW +NF +NWNF − Â1F̂1∥2F + ∥F ♮

2 +NWF
♮
2 − Â1F̂2∥2F

+

M∑
m=2

∥A♮
m +A♮

mNF − ÂmF̂1∥2F +

M∑
m=2

∥A♮
mF

♮
2 − ÂmF̂2∥2F. (17)

Let us define the error matrices as below:

E
(1)
A ≜ Â1 − (IK +NW )Π︸ ︷︷ ︸

A♮
1Π

, E
(m)
A ≜ Âm −A♮

mΠ, ∀m > 1, (18)

E
(1)
F ≜ F̂1 −Π⊤(IK +NF )︸ ︷︷ ︸

Π⊤F ♮
1

, E
(2)
F ≜ F̂2 −Π⊤F ♮

2 , (19)

where Π ∈ [0, 1]K×K is a column permutation matrix and is the same across all the error blocks. We
hope to characterize the norm of these error matrices.

Upper bound for ∥E(1)
A ∥F and ∥E(1)

F ∥F. We start by considering the first term on the R.H.S.
of (17), i.e., ∥IK +NW +NF +NWNF − Â1F̂1∥2F. From (16), we have the following with
probability greater than 1− K

Nα :

φ2 ≥ ∥IK +NW +NF +NWNF − Â1F̂1∥2F

=

K∑
k=1

|1 + Ñ(k, k)− Â1(k, :)F̂1(:, k)|2 +
K∑
j=1

∑
k ̸=j

|Ñ(j, k)− Â1(j, :)F̂1(:, k)|2, (20)

where Ñ =NW +NF +NWNF . The absolute value of the largest entry in Ñ can be bounded by
ξ1 + ξ2 +

√
Kξ1ξ2. Let us denote κ = φ+ ξ1 + ξ2 +

√
Kξ1ξ2 for conciseness. Then, from (20), we

get the following conditions:

1− κ ≤ |Â1(k, :)F̂1(:, k)| ≤ 1 + κ, ∀k ∈ [K] (21a)

|Â1(k, :)F̂1(:, j)| ≤ κ,∀k ̸= j. (21b)

From the conditions (21a) and (21b), we have the following result:

16
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Lemma 1 Assume that the conditions in (21a) and (21b) hold and that κ ≤ 1
K+1 . Then, we have the

following relations satisfied:

arg maxℓÂ1(k, ℓ) ̸= arg maxℓÂ1(j, ℓ), ∀k ̸= j (22a)

arg maxqF̂1(q, k) ̸= arg maxqF̂1(q, j), ∀k ̸= j (22b)

arg maxℓÂ1(k, ℓ) = arg maxqF̂1(q, k), ∀k. (22c)

The proof of the lemma is given in Sec. F.

From the lower bound condition in (21a), we have the following result:

K∑
k=1

(1− κ) ≤
K∑

k=1

Â1(k, 1)F̂1(1, k) + · · ·+ Â1(k,K)F̂1(K, k)

≤
K∑

k=1

maxℓ∈[K]Â1(k, ℓ)(F̂1(1, k) + · · ·+ F̂1(K, k))

=

K∑
k=1

maxℓ∈[K]Â1(k, ℓ) (23)

where the last equality is obtained due to the probability simplex constraints on the columns of F̂1.

From the lower bound condition in (21a), we have the below result as well:

K∑
k=1

(1− κ) ≤
K∑

k=1

(
Â1(k, 1)F̂1(1, k) + · · ·+ Â1(k,K)F̂1(K, k)

)
≤

K∑
k=1

maxℓF̂1(k, ℓ)(Â1(1, k) + · · ·+ Â1(K, k))

=

K∑
k=1

maxℓF̂1(k, ℓ). (24)

where the last equality is obtained due to the probability simplex constraints on all the columns of
Â1.

Next, we characterize the term ∥E(1)
A ∥2F. To achieve this, by employing the result (22a) in Lemma 1,

we fix the column permutation Π as follows:

Π(j, k) =

{
1, j = arg maxℓÂ1(k, ℓ)

0, otherwise.
(25)

17
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We get the following set of relations:

∥Â1 − IKΠ∥2F =

K∑
k=1

∥Â1(k, :)− e⊤k Π∥22

=

K∑
k=1

∥Â1(k, :)∥22 +K − 2

K∑
k=1

Â1(k, :)Π
⊤ek

= ∥Â1∥2F +K − 2

K∑
k=1

Â1(k, :)Π
⊤ek

≤ 2K − 2

K∑
k=1

Â1(k, :)Π
⊤ek

(a)
= 2K − 2

K∑
k=1

max
ℓ
Â1(k, ℓ)

(b)

≤ 2K − 2

K∑
k=1

(1− κ) = 2Kκ,

where the last inequality (b) is by (23) and the relation (a) is obtained by choosing Π as defined in
(25).

Hence, we have the following with probability greater than 1− K
Nα :

∥E(1)
A ∥F ≤ ∥Â1 − IKΠ∥F + ∥NW ∥F ≤

√
2Kκ+

√
Kξ1. (26)

We proceed to consider the error term ∥E(1)
F ∥2F. To achieve this, consider the following:

∥F̂1 −Π⊤IK∥2F =

K∑
k=1

∥F̂1(k, :)− e⊤k Π⊤∥22

=

K∑
k=1

∥F̂1(k, :)∥22 +K − 2

K∑
k=1

F̂1(k, :)Π
⊤ek

= ∥F̂1∥2F +K − 2

K∑
k=1

F̂1(k, :)Π
⊤ek

≤ 2K − 2

K∑
k=1

F̂1(k, :)Π
⊤ek

(a)
= 2K − 2

K∑
k=1

max
ℓ
F̂1(k, ℓ)

(b)

≤ 2K − 2

K∑
k=1

(1− κ) = 2Kκ,

where the last inequality (b) is by (24) and the relation (a) is by combining the definition of Π in
(25) and (22c) in Lemma 1. Hence, we get the following with probability greater than 1− K

Nα :

∥E(1)
F ∥F ≤ ∥F̂1 − IKΠ∥F + ∥NF ∥F ≤

√
2Kκ+

√
Kξ2. (27)

18
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Upper bound for ∥E(2)
F ∥F. Next, we consider the second term in (17), i.e., ∥F ♮

2+NWF
♮
2−Â1F̂2∥F.

From (15), we have the following with probability greater than 1− δ:

ζ ≥ ∥F ♮
2 +NWF

♮
2 − Â1F̂2∥F = ∥F ♮

2 +NWF
♮
2 − (IKΠ+NWΠ+E

(1)
A )(E

(2)
F +Π⊤F ♮

2 )∥F
= ∥(IKΠ+NWΠ+E

(1)
A )E

(2)
F +E

(1)
A Π⊤F ♮

2∥F
= ∥Â1E

(2)
F +E

(1)
A Π⊤F ♮

2∥F
(a)

≥
∣∣∣∥Â1E

(2)
F ∥F − ∥E(1)

A Π⊤F ♮
2∥F

∣∣∣
(b)

≥
∣∣∣σmin(Â1)∥E(2)

F ∥F − ∥E(1)
A ∥F∥F ♮

2∥F
∣∣∣

(c)

≥
∣∣∣σmin(Â1)∥E(2)

F ∥F − (
√
2Kκ+

√
Kξ1)∥F ♮

2∥F
∣∣∣ (28)

where the inequality (a) is by using the triangle inequality, (b) is obtained by applying the following
two relations for any two matricesA ∈ RK×K ,B ∈ RK×L, L ≥ K :

∥AB∥F ≥ σmin(A)∥B∥F (29)
∥AB∥F ≤ ∥A∥F∥B∥F. (30)

The inequality (c) is obtained by applying (26).

Hence, (28) combined with the fact that ∥F2∥F ≤ ∥F ♮∥F gives the following relation with probability
greater than 1− δ − K

Nα :

∥E(2)
F ∥F ≤ ζ + (

√
2Kκ+

√
Kξ1)∥F ♮∥F

σmin(Â1)
. (31)

Next, we use the following lemma to characterize σmin(Â1):

Lemma 2 Suppose that the matrixX ∈ RK×K takes the formX = IK +E1 +E2. Assume that
∥E1∥F ≤ υ1 and ∥E2∥F ≤ υ2, for a certain υ1, υ2 > 0. Then, we have

σmin(X) ≥ |1− υ1 − υ2|.

The proof is relegated to Sec. G. Applying Lemma 2, we get the following with probability greater
than 1− δ − K

Nα :

∥E(2)
F ∥F ≤ ζ + (

√
2Kκ+

√
Kξ1)∥F ♮∥F

|1−
√
2Kκ− 2

√
Kξ1|

≤ c1(ζ +
√
Kκ∥F ♮∥F)

|1−
√
Kκ|

(32)

for certain constant c1 > 0. where we used the fact that ξ1 ≤
√
κ since κ = φ+ ξ1 + ξ2 +

√
Kξ1ξ2

and and κ ≤ 1.

Upper bound for ∥E(m)
A ∥F, m > 1. We consider the third term on the R.H.S. of (17). From (16),

for each m, we have the following with probability greater than 1− K
Nα :

√
Kφ ≥ ∥A♮

m +A♮
mNF − ÂmF̂1∥F = ∥A♮

m +A♮
mNF − (A♮

mΠ+E
(m)
A )(Π⊤IK +Π⊤NF +E

(1)
F )∥F

= ∥E(m)
A (Π⊤IK +Π⊤NF +E

(1)
F ) +A♮

mΠE
(1)
F ∥F

= ∥E(m)
A F̂1 +A

♮
mΠE

(1)
F ∥F

(a)

≥
∣∣∣∥E(m)

A F̂1∥F − ∥A♮
mΠE

(1)
F ∥F

∣∣∣
(b)

≥
∣∣∣σmin(F̂1)∥E(m)

A ∥F − σmax(A
♮
m)∥E(1)

F ∥F
∣∣∣

(c)

≥
∣∣∣σmin(F̂1)∥E(m)

A ∥F − (
√
2Kκ+

√
Kξ2)σmax(A

♮
m)
∣∣∣ ,

where the relation (a) by the triangle inequality, (b) is by applying (29) and (30), and (c) is via (27).
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Hence, ∀m > 1, we get the following with probability greater than 1− 2K
Nα :

∥E(m)
A ∥F ≤

√
Kφ+ (

√
2Kκ+

√
Kξ2)σmax(A

♮
m)

|1−
√
2Kκ− 2

√
Kξ2|

≤ c2
√
Kκσmax(A

♮
m)

|1−
√
Kκ|

(33)

for certain constant c2 > 0, where we used the fact that φ ≤
√
κ and ξ2 ≤

√
κ since κ = φ+ ξ1 +

ξ2 +
√
Kξ1ξ2 and κ ≤ 1. In the above, we have also applied σmin(F̂1) ≥ |1−

√
2Kκ− 2

√
Kξ2|

following Lemma 2 and (27).

Putting Together. From (33), we have the following with probability greater than 1− 2K
Nα :

∥E(m)
A ∥2F = ∥Âm −A♮

mΠ∥2F ≤ c22K
2κ

|1−
√
Kκ|2

, ∀m. (34)

where we have used the fact that σmax(A
♮
m) ≤ ∥A♮

m∥F ≤
√
K.

Similarly, by combining (27) and (32), we have the following with probability greater than 1−δ− 2K
Nα

∥F̂ −Π⊤F ♮∥2F = ∥E(1)
F ∥2F + ∥E(2)

F ∥2F

≤ (
√
2Kκ+

√
Kξ2)

2 +
c21(ζ +

√
Kκ∥F ♮∥F)2

|1−
√
Kκ|2

≤ c3(ζ +
√
NKκ)2

|1−
√
Kκ|2

(35)

for certain constant c3 > 0, where we have used the fact that ∥F ♮∥F ≤
√
N.

We hope to characterize the generalization performance of the predicted function f̂ from (35).
Towards this, we have the following result:

Lemma 3 Under Assumptions 1 and 2, the following holds with probability greater than 1− δ:

Ex∼D

[
∥f̂(x)−Π⊤f ♮(x)∥22

]
≤ 1

N
∥F̂ −Π⊤F ♮∥2F + 64N−5/8 (2∥X∥FRF )

1
4

+ 16

√
2 log(4/δ)

N
. (36)

The proof is given in Sec. H. Hence, combining Lemma 3 with (35), we have the following with
probability greater than 1− 2δ − 2K

Nα

Ex∼D

[
∥f̂(x)−Π⊤f ♮(x)∥22

]
≤ c3(ζ +

√
NKκ)2

N |1−
√
Kκ|2

+ 64N−5/8 (2∥X∥FRF )
1
4 + 16

√
2 log(4/δ)

N
,

(37)

where

κ ≤ φ+ 2
√
K(ξ1 + ξ2),

ζ2 ≤ 4
√
2NMKβRS(P) + 10NM log (β)

√
2 log (4/δ)√

S
+ 2NMβ

√
Kν

φ2 ≤ 4
√
2NαMKβRS(P) + 10NαM log (β)

√
2 log (4/δ)√

S
+ 2NαMβ

√
Kν + 4NαMδ,

RS(P) =
16√
S

√
MK log

(
4S

√
K
)
+ (2∥X∥FRF )

1
2 .

Also note that the final bounds in (34) and (37) are satisfied only if κ ≤ 1
K+1 as given by Lemma 1.

This gives the final conditions on ξ1, ξ2, ν, and S. By letting δ = 1
S , we obtain the final results in

Theorem 1.
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C PROOF OF PROPOSITION 1

Let us consider the following notation:

P (ω) = p(m)
n , (38)

where ω = (m,n) ∈ [M ]× [N ]; i.e., P (ω) “reads out” the (m,n)th block in (10). We also define
Ŷ(ω) = ŷ

(m)
n . With this notation, we have

DS(P ; Ŷ) =
1

S

S∑
s=1

CE(P (ωs), Ŷ(ωs)),

where CE(x, y) = −
∑K

k=1 I[y = k] log(x(k)), S = |S|, and ωs = (ms, ns) ∈ S. Under Assump-
tion 1, we can define:

DΠ(P , Ŷ) ≜ ES∼Π[CE(P (ω), Ŷ(ω))] =

M∑
m=1

N∑
n=1

π(m)
n CE(p(m)

n , ŷ(m)
n ),

where Π denotes the uniform distribution and π
(m)
n = 1

NM denotes the probability of observing the
annotation for the index pair (m,n).

Eq. (12) implies

DS(P̂ ; Ŷ) ≤ DS(P̃ ; Ŷ), (39)

where P̃ is defined using the following construction:

P̃ =W ♮
[
f̃(x1) . . . f̃(xN )

]
,

and f̃ is a learning function constructed under Assumption 3. To be specific, f̃ satisfies

∥f̃(x)− f ♮(x)∥2 ≤ ν, ∀x ∼ D.

Hence, by taking expectation w.r.t. Ŷ we have

E[DΠ(P̂ ; Ŷ)−DΠ(P
♮; Ŷ)] = E[DΠ(P̂ ; Ŷ)]−DS(P̂ ; Ŷ) +DS(P

♮; Ŷ)− E[DΠ(P
♮; Ŷ)]

+DS(P̂ ; Ŷ)−DS(P̃ ; Ŷ) +DS(P̃ ; Ŷ)−DS(P
♮; Ŷ)

≤ E[DΠ(P̂ ; Ŷ)]−DS(P̂ ; Ŷ) +DS(P
♮; Ŷ)− E[DΠ(P

♮; Ŷ)]

+DS(P̃ ; Ŷ)−DS(P
♮; Ŷ)

≤ sup
P∈P

∣∣∣DS(P ; Ŷ)− E[DΠ(P ; Ŷ)]
∣∣∣+ ∣∣∣DS(P

♮; Ŷ)− E[DΠ(P
♮; Ŷ)]

∣∣∣
+
∣∣∣DS(P̃ ; Ŷ)−DS(P

♮; Ŷ)
∣∣∣ , (40)

where the first inequality is obtained from (39).

Let us consider the L.H.S. of (40):

E
[
DΠ(P̂ ; Ŷ)−DΠ(P

♮; Ŷ)
]

=

N∑
n=1

M∑
m=1

(
π(m)
n

K∑
k=1

−P ♮((m− 1)K + k, n) log P̂ ((m− 1)K + k, n)

+P ♮((m− 1)K + k, n) logP ♮((m− 1)K + k, n)
)

=

N∑
n=1

M∑
m=1

π(m)
n

K∑
k=1

P ♮((m− 1)K + k, n) log
P ♮((m− 1)K + k, n)

P̂ ((m− 1)K + k, n)

= DKL

(
P ♮, P̂

)
, (41)
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where expectation is taken w.r.t. Ŷ (while taking expectation, we used the uniform probability
π
(m)
n = 1

NM ,∀, n,m for observing each annotation ŷ
(m)
n and used the ground-truth probability

P ♮((m− 1)K + k, n) for each event I[ŷ(m)
n = k]) and DKL(P

♮, P̂ ) is the average Kullback–Leibler
(KL) divergence between the entries of the matrices P ♮ and P̂ ∈ RMK×N , which is given by

DKL

(
P ♮, P̂

)
=

1

NM

N∑
n=1

M∑
m=1

DKL

(
p♮(m)
n , p̂(m)

n

)
.

Upper-bounding the first term on the R.H.S of (40). Next, we characterize the first term on the
R.H.S. of (40). To achieve this, we invoke the following theorem (Theorem 26.5 in (Shalev-Shwartz
& Ben-David, 2014)) :

Theorem 4 (Shalev-Shwartz & Ben-David, 2014, Theorem 26.5) Assume that for all y and for all x,
we have |CE(x; y)| ≤ zmax. Then for any P ∈ P , the following holds with probability greater than
1− δ: ∣∣∣DS(P ; Ŷ)− E[DΠ(P ; Ŷ)]

∣∣∣ ≤ 2RS(ℓ ◦ P ◦ S) + 4zmax

√
2 log(4/δ)

S
, (42)

where ℓ ◦ P ◦ S denotes the set

ℓ ◦ P ◦ S ≜
{(

CE(P (ω1); Ŷ(ω1)), . . . ,CE(P (ωS); Ŷ(ωS))
)

| P ∈ P
}

and RS(X ) denotes the empirical Rademacher complexity of the set X .

To apply Theorem 4, we will characterize RS(ℓ ◦P ◦S) which is defined as follows (Shalev-Shwartz
& Ben-David, 2014):

RS(ℓ ◦ P ◦ S) ≜ 1

S
E

[
sup
P∈P

S∑
s=1

σsCE(P (ωs); Ŷ(ωs))

]
, (43)

where expectation is w.r.t. the independent Rademacher random variables σs ∈ {−1, 1}. Note that
P (ω) is a vector-valued [see Eq. (38)]. Hence, we invoke the following contraction result to upper
bound RS(ℓ ◦ P ◦ S):

Lemma 4 (Maurer, 2016) Let P be a class of mappings {P : X → RK}, where X be any set and
(ω1, . . . , ωS) ∈ XS . Also assume that ℓ : RK → R has the Lipschitz constant L. Then

E

[
sup
P∈P

S∑
s=1

σsℓ(P (ωs))

]
≤

√
2LE

 sup
P∈P

∑
s,k

σskPk(ws)


where Pk(w) denotes the kth component of P (ω), σsk is an independent (doubly indexed)
Rademacher random variable and the expectations are taken w.r.t. the Rademacher random variables.

Let us define a vector z ≜ (P1(ω1),P2(ω1), . . . ,PK−1(ωs),PK(ωs)) ∈ RSK and the set Z ≜
{z = (P1(ω1), . . . ,PK(ωs)) | P ∈ P}. With these definitions, we apply Lemma 4 in (43) and
obtain

RS(ℓ ◦ P ◦ S) ≤
√
2β

S
E

 sup
P∈P

∑
s,k

σs,kPk(ws)


=

√
2β

S
E

[
sup
z∈Z

∑
i

σiz(i)

]

=
√
2βK

1

SK
E

[
sup
z∈Z

∑
i

σiz(i)

]
=

√
2βKRS(Z), (44)

where β is an upper bound of the Lipschitz constant of the cross entropy loss function CE(x; y) =

−
∑K

k=1 I[y = k] logx(k) when x ∈∆K with x(k) > (1/β). ∀k.

Next, we will characterize RS(Z) using the covering number of the set Z .
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Definition 2 (Vershynin, 2012) The ϵ-net covering of the set Z (denoted as Z) is a finite subset of Z
(i.e.,Z ⊆ Z) such that for any z ∈ Z , there exists an z ∈ Z satisfying ∥z − z∥22 ≤ ϵ. The smallest
cardinality of the ϵ-nets of Z is known as the covering number of Z , which is denoted as N(ϵ,Z).

Let us consider a pair of vectors z, z ∈ Z as below:

z = (P1(ω1), . . . ,PK(ωs)) ∈ RSK , P (ωs) = Ams
F (:, ns),

z =
(
P 1(ω1), . . . ,PK(ωs)

)
∈ RSK , P (ωs) = AmsF (:, ns),

where ωs = (ms, ns) and allAm,Am,F , and F satisfy the nonnegativity constraints and have unit
ℓ1-norm on the columns. Then, we have

∥z − z∥2 =

S∑
s=1

∥AmsF (:, ns)−AmsF (:, ns)∥22

≤
S∑

s=1

∥Ams
F (:, ns)−Ams

F (:, ns)∥2

=

S∑
s=1

∥Ams
F (:, ns)−AmsF (:, ns) +AmsF (:, ns)−AmsF (:, ns)∥2

≤
S∑

s=1

∥Ams
−Ams

∥F∥F (:, ns)∥2 + ∥Ams
∥F∥F (:, ns)− F (:, ns)∥2

≤
S∑

s=1

∥Ams
−Ams

∥F +
√
K

S∑
s=1

∥F (:, ns)− F (:, ns)∥2

where the first inequality is by ∥x∥22 ≤ ∥x∥2 if the entries of x are smaller than 1. The second
inequality is by triangle inequality. The last inequality uses the fact the Frobenius norm ofAm’s are
bounded by

√
K and the ℓ2 norm of any column of F is bounded by 1. Hence, to obtain an ε-net

covering for the set Z (i.e., ∥z− z∥ ≤ ε), we only need to show that there exists a ε2

2
√
K

-net covering

for F ◦ S and a ε2

2S -net covering for eachAm’s since
S∑

s=1

ε2

2S
+
√
K

ε2

2
√
K

= ε2.

Here F ◦ S denotes
F ◦ S = {[f(xn1

), . . . ,f(xnS
)] ∈ RK×S | f ∈ F},

where (ms, ns) = ωs ∈ S. Note that the full rank matrix Am ∈ RK×K can be represented as a
K2-dimensional vector whose Euclidean norm is bounded by

√
K. Hence, the cardinality of the

ε2

2S -net covering for Am ∈ RK×K is at most
(

4SK
√
K

ε2

)K2

(Shalev-Shwartz & Ben-David, 2014).
Next, we consider the covering number corresponding to the function class F ◦ S . Using Lemma 14
of (Lin & Zhang, 2019), we get the cardinality of the ε2

2
√
K

-net covering for F ◦ S as below:

N

(
ε2

2
√
K

,F ◦ S
)

≤ exp

√2
√
K∥X∥FRF

ε2

 ,

whereX = [xn1
, . . . ,xnS

] ∈ Rd×S and the parameter RF is from Assumption 2.

Using the covering number results, the cardinality of the ε-net covering of set Z is bounded by the
following:

N(ε,Z) ≤

(
4SK

√
K

ε2

)MK2

× exp

√2
√
K∥X∥FRF

ε2

 . (45)

Now that we have characterized N(ϵ,Z), we invoke the below lemma to obtain the Rademacher
complexity RS(Z):
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Lemma 5 (Bartlett et al., 2017, Lemma A.5) The empirical Rademacher complexity of the set Z
with respect to the observed set S having size SK is upper bounded as follows:

RS(Z) ≤ inf
a>0

(
4a√
SK

+
12

SK

∫ √
SK

a

√
logN(µ,Z)dµ

)
. (46)

We apply (45) in Lemma 5 and obtain

RS(Z)
(a)

≤ inf
a>0

(
4a√
SK

+
12

SK

√
SK

√
logN(a,Z)

)
(b)

≤ inf
a>0

 4a√
SK

+
12√
SK

√√√√
MK2 log

(
4SK

√
K

a2

)
+

(
2
√
K∥X∥FRF

a2

) 1
2


(c)

≤ 4√
S

+
12√
SK

√
MK2 log

(
4S

√
K
)
+ (2∥X∥FRF )

1
2

≤ 16√
S

√
MK log

(
4S

√
K
)
+ (2∥X∥FRF )

1
2 . (47)

In the above, the first inequality (a) is obtained by using the relation∫ √
SK

a

√
logN(µ,Z)dµ ≤

√
SK

√
logN(a,Z),

which holds because
√

logN(µ,Z) decreases monotonically as µ increases. The inequality (b) is

obtained by applying (45), and (c) is obtained by fixing a =
√
K which is smaller than

√
SK.

Combining the upperbound of RS(Z) given by (47) with the upper bound of RS(ℓ ◦ P ◦ S) as given
by (44) and with the result in (42), we get that with probability greater than 1− δ,∣∣∣DS(P ; Ŷ)− E[DΠ(P ; Ŷ)]

∣∣∣ ≤ 2
√
2βKRS(Z) + 4zmax

√
2 log(4/δ)

S
, (48)

where RS(Z) is upper bounded by (47) and zmax is the upperbound of the value of the function
CE(x, y) which can be characterized as below:

zmax = max
x(k)> 1

β

y∈[K]

CE(x, y) ≤ max
x(k)> 1

β

y∈[K]

−
K∑

k=1

I[y = k] logx(k) ≤ max
u> 1

β

− log u = log(β). (49)

Upper-bounding the second term on the R.H.S of (40). Next, we proceed to upper bound the
second term on the R.H.S of (40). Let us consider the Hoeffding’s inequality

Lemma 6 Let Z1, . . . , ZS be independent bounded random variables with Zs ∈ [zmin, zmax] for all
s where −∞ < zmin ≤ zmax < ∞. Then for all t ≥ 0,

Pr

(
1

S

S∑
s=1

(Zs − E[Zs]) ≥ t

)
≤ exp

(
− 2St2

(zmax − zmin)2

)
.

To use Lemma 6, let us define the random variable Z
(m)
n as follows:

Z(m)
n ≜ CE(p♮(m)

n , ŷ(m)
n ),

where p♮(m)
n = A♮

mf
♮(xn). The maximum and minimum values of Z(m)

n are zmax = log(β) (see
(49)) and zmin = 0, respectively. Then, invoking Lemma 6, one can obtain

Pr
(
DS(P

♮; Ŷ)]− E[DΠ(P
♮; Ŷ)] ≥ t

)
≤ exp

(
− 2St2

(log(β))2

)
. (50)
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Hence, by substituting t = log (β)

√
log( 1

δ )
2S , where δ ∈ (0, 1) in (50), we get that with probability

greater than 1− δ

DS(P
♮; Ŷ)]− E[DΠ(P

♮; Ŷ)] ≤ log (β)

√
log
(
1
δ

)
2S

. (51)

Upper-bounding the third term on the R.H.S of (40).∣∣∣DS(P̃ ; Ŷ)−DS(P
♮; Ŷ)

∣∣∣ =
∣∣∣∣∣∣− 1

S

∑
(m,n)∈S

K∑
k=1

I[ŷ(m)
n = k] log P̃ ((m− 1)K + k, n)

+
1

S

∑
(m,n)∈S

K∑
k=1

I[ŷ(m)
n = k] logP ♮((m− 1)K + k, n)

∣∣∣∣∣∣
≤ 1

S

∑
(m,n)∈S

K∑
k=1

I[ŷ(m)
n = k]

∣∣∣log[A♮
mf

♮(xn)]k − log[A♮
mf̃(xn)]k

∣∣∣
≤ 1

S

∑
(m,n)∈S

K∑
k=1

I[ŷ(m)
n = k]β

∣∣∣[A♮
mf

♮(xn)]k − [A♮
mf̃(xn)]k

∣∣∣
≤ 1

S

∑
(m,n)∈S

K∑
k=1

I[ŷ(m)
n = k]β∥A♮

m(k, :)∥2∥f ♮(xn)− f̃(xn)∥2

≤ β
√
Kν, (52)

where the first inequality uses the triangle inequality, the second inequality uses the Lipschitz
continuity of log function, the third inequality is via Cauchy Schwartz inequality, and the last
inequality employs Assumption 3.

Putting Together. Hence, by combining the result in (48) with (41), (40), (51), and (52), we get
that with probability greater than 1− 2δ,

DKL

(
P ♮, P̂

)
≤ 2

√
2βKRS(Z) + 4 log(β)

√
2 log(4/δ)

S
+ log (β)

√
log
(
1
δ

)
2S

+ β
√
Kν. (53)

Using Pinsker’s inequality (S, 1960; Fedotov et al., 2003), we get

DKL

(
P ♮, P̂

)
=

1

NM

N∑
n=1

M∑
m=1

DKL

(
p♮(m)
n , p̂(m)

n

)
≥ 1

2NM

N∑
n=1

M∑
m=1

∥p♮(m)
n − p̂(m)

n ∥21

≥ 1

2NM

N∑
n=1

M∑
m=1

∥p♮(m)
n − p̂(m)

n ∥22

where the last inequality uses the fact that ∥x∥1 ≥ ∥x∥2. The above relation combined with (53),
implies that with probability greater than 1− 2δ:

1

NM

N∑
n=1

M∑
m=1

∥p♮(m)
n − p̂(m)

n ∥22 ≤ 4
√
2KβRS(Z) + 10 log (β)

√
2 log (4/δ)√

S
+ 2β

√
Kν, (54)

where RS(Z) is upper-bounded in (47)

D PROOF OF THEOREM 2

The proof of Theorem 2 utilizes some key results from the proof of Theorem 1. We start by employing
the result from Proposition 1. Let us fix δ = 1

S and α = 1
8 in the result of Proposition 1. Then, it
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implies that when f ♮ ∈ F , i.e., ν = 0, S ≥ C1t, N ≤ C2t
3, for certain constants C1, C2 > 0 and at

the limit of t → ∞, we get the following:

∥P ♮ − P̂ ∥2F = 0,

with probability 1, i.e.,

P̂ =W ♮F ♮. (55)

On the other hand, the matrix P̂ can be constructed using the estimates of the CCEM criterion (6) via

P̂ = Ŵ F̂ . (56)

Hence, in order to identifyW ♮ and F ♮ from the NMF model in (55), we invoke the following result:

Lemma 7 (Huang et al., 2014) Consider the matrix factorization model Z = XY , where X ∈
RI×K , Y ∈ RK×J and rank(X) = rank(Y ) = K. If X,Y ≥ 0 and both X and Y satisfy SSC,
then any X̂ and Ŷ that satisfy Z = X̂Ŷ must have the following form:

X̂ =XΠΣ, Ŷ = Σ−1Π⊤Y ,

where Π is a column permutation matrix and Σ is a diagonal nonnegative and scaling matrix.

Next, we show that Lemma 7 can be applied given the conditions in Theorem 2. The matrix
F ♮
Z = [f ♮(xn1

), . . . ,f ♮(xnT
)] includes a subset of columns of F ♮, i.e., cone(F ♮

Z) ⊆ cone(F ♮).
Hence, we have

C ⊆ cone(F ♮
Z) =⇒ C ⊆ cone(F ♮), (57)

where C = {x ∈ RK |
√
K − 1∥x∥2 ≤ 1⊤x} is the second-order cone.

Also for any orthogonal matrixQ ∈ RK×K except for the permutation matrices, the below holds:

cone(F ♮
Z) ̸⊂ cone{Q} =⇒ cone(F ♮) ̸⊂ cone{Q}. (58)

Eqs (57) and (58) imply that F ♮ satisfies SSC, given the assumption that F ♮
Z satisfies SSC. In addition,

the column scaling does not affect the conic hull, i.e,

cone(F ♮) = cone(Σ−1F ♮),

cone(W ♮⊤) = cone(ΣW ♮⊤).

Since both W ♮ and F ♮ satisfy SSC, rank(F ♮) = rank(W ♮) = K hold (see (Huang et al., 2016)).
Hence, the conditions in Lemma 7 holds for (55). Comparing (55) and (56) and invoking Lemma 7,
we get

Ŵ =W ♮Π, (59a)

F̂ = Π⊤F ♮, (59b)
where the scaling Σ is automatically removed due to the sum-to-one constraints on the columns of
Âm’s and F̂ .

The first result (59a) implies that

Âm = A♮
mΠ,∀m.

Applying the second result (59b) in Lemma 3 along with the assumption that N → ∞, we get

Ex∼D

[
∥f̂(x)−Π⊤f ♮(x)∥22

]
= 0. (60)

Fact 1 Let X be a nonnegative random variable with E[X] = 0. Then, X is zero almost surely, i.e.,
Pr(X = 0) = 1.

Employing Fact 1 in (60), we get that

∥f̂(x)−Π⊤f ♮(x)∥22 = 0,∀x ∼ D, =⇒ f̂(x) = Π⊤f ♮(x),∀x ∼ D,

due to the nonnegativity of f ♮ and f̂ .
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E PROOF OF THEOREM 3

To prove Theorem 3, let us first consider the CCEM criterion in (6). Let Ŵ and F̂ be any optimal
solution of (6) and

P̂ = Ŵ F̂ . (61)

From Proposition 1, by fixing δ = 1
S and α = 1

8 and using the conditions in the statement of Theorem
3, i.e., f ♮ ∈ F implying ν = 0, S ≥ C1t, N ≤ C2t

3, for certain constants C1, C2 > 0, we get the
following at the limit of t → ∞:

∥P ♮ − P̂ ∥2F = 0,

with probability 1, i.e.,

P̂ =W ♮F ♮. (62)

Proof of Theorem 3(a): We consider the following result which is distilled and summarized from
the proof of Theorem 1 in (Fu et al., 2015):

Lemma 8 Suppose a matrix Y ∈ RK×J satisfies Y ≥ 0, 1⊤Y = 1⊤ , rank(Y ) = K, and SSC.
Then, for any Ŷ = QY satisfying Ŷ ≥ 0, 1⊤Ŷ = 1⊤, the following holds:

|det(Q)| ≤ 1,

The equality holds only ifQ is a permutation matrix.

Let us start by considering the following criterion:

maximize
W ,F

det(FF⊤) (63a)

s.t. P̂ =WF (63b)

F ≥ 0,1⊤F = 1⊤ (63c)

where P̂ is the optimal solution from the CCEM criterion (6) and hence, as shown before, P̂ satisfies
(62).

LetW ∗ and F ∗ be optimal solutions of (63), then the following holds:

det(FF ∗⊤) ≥ det(F ♮F ♮⊤). (64)

From (62), we observe that W ∗ and F ∗ satisfies W ∗ = W ♮Q−1, F ∗ = QF ♮, for a certain
invertible matrixQ. Let us assume thatQ is not a permutation matrix, Then, we have

det(F ∗F ∗⊤) = det(Q⊤F ♮F ♮⊤Q)

= |det(Q)|2 det(F ♮F ♮⊤)

< det(F ♮F ♮⊤)

where the last inequality is from Lemma 8 using the SSC condition on F ♮. Note that the result is
a contradiction from (64). Hence, Q must be a permutation matrix. This implies that the optimal
solutionW ∗ and F ∗ of Problem 63 satisfies the following:

W ∗ =W ♮Π, (65a)

F ∗ = Π⊤F ♮, (65b)

Following the last part of Theorem 2, by using Lemma 3 and Fact 1, we have

A∗
m = A♮

mΠ,∀m.

f∗(x) = Π⊤f ♮(x),∀x ∼ D.
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Note that since log is a monotonically increasing function, by using log det(FF⊤) in (63) in place of
det(FF )⊤ does not change the optimal solution, yet it keeps the objective function in differentiable
domain (this is because, det(X) becomes zero ifX is singular). Hence, we can conclude that the
following criterion

maximize
W ,F

log det(FF⊤) (66a)

s.t. P̂ =WF (66b)
F ≥ 0, (66c)

also results in the same optimal solutionsW ∗ and F ∗ satisfying (65).

Proof of Theorem 3(b): We consider the following result which is a modified version of Lemma
A.1 from (Huang et al., 2015):

Lemma 9 Suppose a matrix X ∈ RI×K satisfies X ≥ 0, 1⊤X = ρ1⊤, ρ > 0, rank(X) = K,
and SSC. Then, for any X̂ =XQ satisfying X̂ ≥ 0, 1⊤X̂ = ρ1⊤, the following holds:

|det(Q)| ≤ 1,

The equality holds only ifQ is a permutation matrix.

Note that, in Lemma 9, we are given that 1⊤X = ρ1⊤. Then, by multiplyingQ on both sides, we
obtain

1⊤XQ = ρ1⊤Q. (67)

Since 1⊤XQ = ρ1⊤ also holds by the assumption in Lemma 9, combining with (67), we get

ρ1⊤Q = ρ1⊤ =⇒ 1⊤Q = 1⊤. (68)
The result in (68) is used in order to conclude Lemma 9 from Lemma A.1 of (Huang et al., 2015).

We consider the following criterion:

maximize
W ,F

det(W⊤W ) (69a)

s.t. P̂ =WF (69b)

W ≥ 0,1⊤W = M1⊤, (69c)

where we used the constraint 1⊤W = M1⊤ since 1⊤Am = 1⊤ for all m.

LetW ∗ and F ∗ be optimal solutions of (69), then we have:

det(W ∗⊤W ∗) ≥ det(W ♮⊤W ♮). (70)

Applying (62),W ∗ and F ∗ satisfiesW ∗ =W ♮Q, F ∗ = Q−1F ♮, for a certain invertible matrixQ.
Let us assume thatQ is not a permutation matrix, Then, we have

det(W ∗⊤W ∗) = det(Q⊤W ♮⊤W ♮Q)

= |det(Q)|2 det(W ♮⊤W ♮)

< det(W ♮⊤W ♮)

where the last inequality is from Lemma 9 using the SSC condition onW ♮ which is a contradiction
from (70). Hence,Q must be a permutation matrix. This implies that the optimal solutionW ∗ and
F ∗ of Problem 69 satisfies the following:

W ∗ =W ♮Π, (71a)

F ∗ = Π⊤F ♮, (71b)

Similar to the last part of Theorem 2, by using Lemma 3 and Fact 1, we have

A∗
m = A♮

mΠ,∀m.

f∗(x) = Π⊤f ♮(x),∀x ∼ D.

In this case as well, the optimal solutions do not change if we employ log det(W⊤W ) in (69) in
place of det(W⊤W ).
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Remark 2 Geometrically, Theorem 3 seeks maximum volume solutions w.r.t. the conic hulls of F
andW⊤, respectively. One can also note that in both cases of Theorem 3, the corresponding optimal
solutions do not change if we minimize log det(W⊤W ) in (63) and minimize log det(FF⊤) in
(69). However, relying on the SSC of F ♮ (W ♮) and minimizing the volume of conic hull of W⊤

(F ) may be inefficient since P ♮ =W ♮F ♮ does not hold exactly in practice.

F PROOF OF LEMMA 1

Let us define some notations:

ℓ∗k = arg maxℓ∈[K]Â1(k, ℓ)

q∗k = arg maxq∈[K]F̂1(q, k).

Consider the following conditions given in Lemma 1

1− κ ≤ |Â1(k, :)F̂1(:, k)| ≤ 1 + κ, ∀k ∈ [K] (72a)

|Â1(k, :)F̂1(:, j)| ≤ κ,∀k ̸= j. (72b)

F.1 PROVING ℓ∗k ̸= q∗j , ∀k ̸= j

We begin by noticing the below relation from (72a):

(1− κ) ≤ Â1(k, 1)F̂1(1, k) + · · ·+ Â1(k,K)F̂1(K, k)

≤ maxℓ∈[K]Â1(k, ℓ)(F̂1(1, k) + · · ·+ F̂1(K, k))

= maxℓ∈[K]Â1(k, ℓ)

= Â1(k, ℓ
∗
k), ∀k, (73)

where the first equality employs the probability simplex constraints on the columns of F̂ .

We further proceed to prove by using contradiction. First, assume the below for certain k ̸= j,

ℓ∗k = arg maxℓÂ1(k, ℓ) = arg maxqF̂1(q, j) = q∗j . (74)

Under the assumption (74), consider (72b). For (72b) to hold, we need to satisfy the below for a
certain k ̸= j:

Â1(k, ℓ
∗
k)F̂1(q

∗
j , j) < κ

=⇒ F̂1(q
∗
j , j) <

κ

1− κ

where the last relation is obtained from (73). This also implies that

1 =

K∑
q=1

F̂1(q, k) <
Kκ

1− κ

=⇒ κ >
1

K + 1
.

However, Lemma 1 assumes that κ ≤ 1
K+1 , Hence, the assumption (74) does not hold and we get

arg maxℓÂ1(k, ℓ) ̸= arg maxqF̂1(q, j), k ̸= j. (75)

F.2 PROVING ℓ∗k = q∗k, ∀k

From the result in (75), we consider (72b) for a certain k ̸= j.

Â1(k, ℓ
∗
k)F̂1(q, j) ≤ κ

=⇒ F̂1(q, j) ≤
κ

1− κ
, q ̸= q∗j . (76)
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where the last relation is obtained from (73).

Since
∑

q F̂1(q, j) = 1, we get

F̂1(q
∗
j , j) ≥

1−Kκ

1− κ
,∀j. (77)

From the result in (75) and the condition in (72b), we also have the following for a certain k ̸= j

Â1(k, ℓ)F̂1(q
∗
j , j) ≤ κ

=⇒ Â1(k, ℓ) ≤
κ(1− κ)

1−Kκ
, ℓ ̸= ℓ∗k, (78)

where the last relation by (77).

Next, we proceed to prove by contradiction. First, assume the below for certain k

ℓ∗k ̸= q∗k. (79)
Hence, for each k, we have

|Â1(k, :)F̂1(:, k)| = Â1(k, 1)F̂1(1, k) + · · ·+ Â1(k,K)F̂1(K, k)

≤
∑
q ̸=q∗k

F̂1(q, k) + Â1(k, ℓ), ℓ ̸= ℓ∗k

≤ (K − 1)κ

1− κ
+

κ(1− κ)

1−Kκ
(80)

where we have used the fact that all the entries of Â1 and F̂1 are smaller than 1, in the first inequality
and have applied (76) and (78) in the last inequality.

The lower-bound condition in (72a) gives that for each k,

|Â1(k, :)F̂1(:, k)| ≥ 1− κ. (81)
Then, comparing both (80) and (81), we hope to have

(K − 1)κ

1− κ
≥ 1− κ

⇒ κ ≥
K + 1−

√
(K + 1)2 − 4

2

However, K+1−
√

(K+1)2−4

2 ≥ 1
K+1 , which leads to a contradiction to our assumption that κ ≤ 1

K+1 .
Hence, the assumption (79) does not hold and we get

arg maxℓÂ1(k, ℓ) = arg maxqF̂1(q, k), ∀k. (82)
Combining both (82) and (82), we get

arg maxℓÂ1(k, ℓ) ̸= arg maxℓÂ1(j, ℓ), ∀k ̸= j

arg maxqF̂1(q, k) ̸= arg maxqF̂1(q, j), ∀k ̸= j.

G PROOF OF LEMMA 2

We have
σmin(X) = σmin(IK +E1 +E2) = min

∥x∥2=1
∥(IK +E1 +E2)x∥2

= min
∥x∥2=1

∥IKx+ (E1 +E2)x∥2
(a)

≥ min
∥x∥2=1

|∥IKx∥2 − ∥(E1 +E2)x∥2|

≥
∣∣∣∣ min
∥x∥2=1

∥IKx∥2 − max
∥x∥2=1

∥(E1 +E2)x∥2
∣∣∣∣ = ∣∣∣∣1− max

∥x∥2=1
∥(E1 +E2)x∥2

∣∣∣∣
= |1− ∥E1 +E2∥2|

(b)

≥ |1− ∥E1∥F − ∥E2∥F|
(c)

≥ |1− υ1 − υ2| (83)
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where the inequality (a) employs the triangle inequality, (b) is obtained via the matrix norm equiva-
lence relation ∥E1 +E2∥2 ≤ ∥E1 +E2∥F ≤ ∥E1∥F + ∥E2∥F, (c) is obtained by the assumption
that ∥E1∥F ≤ υ1 and ∥E2∥F ≤ υ2.

H PROOF OF LEMMA 3

First, let us define the following w.r.t the loss function g(f ,y) = ∥f − y∥22, ∀f ∈ F ,y ∈ RK and
the input data X = (x1, . . . ,xN ) where each xn is sampled i.i.d. from the distribution D under
Assumption 1:

LX(f̂) ≜
1

N

N∑
n=1

g(f̂(xn),f
♮(xn)) =

1

N

N∑
n=1

∥f̂(xn)−Π⊤f ♮(xn)∥22 =
1

N
∥F̂ −Π⊤F ♮∥2F,

(84a)

LD(f̂) ≜ Ex∼D

[
g(f̂(x),f ♮(x))

]
= Ex∼D

[
∥f̂(x)−Π⊤f ♮(x)∥22

]
. (84b)

We invoke Theorem 26.5 in (Shalev-Shwartz & Ben-David, 2014) and get that with probability
greater than 1− δ:

LD(f̂) ≤ LX(f̂) + 2RN (g ◦ F) + 4c̄

√
2 log(4/δ)

N

=⇒ Ex∼D

[
∥f̂(x)−Π⊤f ♮(x)∥22

]
≤ 1

N
∥F̂ −Π⊤F ♮∥2F + 4RN (F) + 16

√
2 log(4/δ)

N
(85)

where the last inequality utilizes the definitions in (84), the contraction lemma (Lemma 26.9 from
(Shalev-Shwartz & Ben-David, 2014)) and also applied c̄ = 4 since |g(f ,y)| ≤ 4 in our case. The
term RN (F) denotes the empirical Rademacher complexity of the neural network function class F
which is upperbounded via the sensitive complexity parameter RF as follows (Lin & Zhang, 2019):

RN (F) ≤ 16N−5/8 (2∥X∥FRF )
1
4 .

I PROOF OF PROPOSITION 2

Our goal is to bound 1
M

∑M
m=1 ∥p

♮(m)
n − p̂(m)

n ∥22 for each n. To achieve this, let us define the random
variable U := 1

NM

∑N
n=1

∑M
m=1 ∥p

♮(m)
n − p̂(m)

n ∥22. From Proposition 1, the following result hold:

Pr(U ≤ ϑ(δ)) ≥ 1− δ,

where randomness is due to all xn’s, ŷ(m)
n ’s, and S and ϑ(δ) is given by the R.H.S. of (54).

Then we have

E[U ] =

∫ umax

0

h(u)udu =

∫ ϑ(δ)

0

h(u)udu+

∫ umax

ϑ(δ)

h(u)udu

≤ ϑ(δ)

∫ ϑ(δ)

0

h(u)du+ umax

∫ umax

ϑ(δ)

h(u)du

≤ ϑ(δ) + umaxδ

≤ ϑ(δ) + 4δ (86)
where umax denotes the maximum value of the random variable U and is given by umax ≤ 4 and
h(u) denotes the probability density function of the random variable U .

Also, we have

E[U ] =
1

N

N∑
n=1

E [Un] (87)

where Un ≜ 1
M

∑M
m=1 ∥p

♮(m)
n − p̂(m)

n ∥22.

To proceed, we have the following lemma:
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Lemma 10 Let Un ≜ 1
M

∑M
m=1 ∥p

♮(m)
n − p̂(m)

n ∥22. Then

E[Un] = E[Un′ ], ∀, n, n′,

where expectation is taken w.r.t. all xn’s, ŷ(m)
n ’s, and S.

The proof is provided in Sec. J.

Combining Lemma 10 with (86) and (87), we get

E[Un] ≤ ϑ(δ) + 4δ.

Applying Markov inequality, we get the following for any τ > 0

Pr(Un ≤ τE[Un]) ≥ 1− 1

τ

=⇒ Pr(Un ≤ τϑ(δ) + 4τδ) ≥ 1− 1

τ

Letting τ = Nα, where 0 < α < 1, we get that with probability greater than 1− 1
Nα

1

M

M∑
m=1

∥p♮(m)
n − p̂(m)

n ∥22 ≤ Nαϑ(δ) + 4Nαδ.

J PROOF OF LEMMA 10

Let us define the following:

u(xn, θ̂v1,...,vn,...,vn′ ,...,vN ) ≜
1

M

M∑
m=1

∥p♮(m)
n − p̂(m)

n ∥22

=
1

M

M∑
m=1

∥A♮
mf

♮(xn)− Âmf̂(xn)∥22

where vn = {xn, {ŷ(m)
n }m∈Sn ,Sn} and θ̂ denotes estimates {Âm} and f̂ which are obtained using

the data {v1, . . . ,vn, . . . ,vn′ , . . . ,vN} = {x1, . . . ,xN , Ŷ,S}.

One can observe that for any n′ ̸= n,

θ̂v1,...,vn,...,vn′ ,...,vN = θ̂v1,...,vn′ ,...,vn,...,vN (88)

since the order of vn does not affect the value of the estimates. Then we have

E
xn,xn′ ,
xj , j ̸=n,n′

[u(xn, θ̂v1,...,vn,...,vn′ ,...,vN )] = E
xn,xn′ ,
xj , j ̸=n,n′

[u(xn, θ̂v1,...,vn′ ,...,vn,...,vN )]

= E
xn,xn′ ,
xj , j ̸=n,n′

[u(xn′ , θ̂v1,...,vn′ ,...,vn,...,vN )] (89)

where the first equality is by (88) and the last equality is obtained since xn and xn′ are identically
distributed.

From (89), we can obtain that

E
x1,...,xN

[u(xn, θ̂v1,...,vn,...,vn′ ,...,vN )] = E
x1,...,xN

[u(xn′ , θ̂v1,...,vn′ ,...,vn,...,vN )]

=⇒ EŶ

[
E

x1,...,xN

[u(xn, θ̂v1,...,vn,...,vn′ ,...,vN )]

]
= EŶ

[
E

x1,...,xN

[u(xn′ , θ̂v1,...,vn′ ,...,vn,...,vN )]

]
=⇒ ES

[
EŶ

[
E

x1,...,xN

[u(xn, θ̂v1,...,vn,...,vn′ ,...,vN )]

]]
= ES

[
EŶ

[
E

x1,...,xN

[u(xn′ , θ̂v1,...,vn′ ,...,vn,...,vN )]

]]
=⇒ E

v1,...,vN
[u(xn, θ̂v1,...,vn,...,vn′ ,...,vN )] = E

v1,...,vN
[u(xn′ , θ̂v1,...,vn′ ,...,vn,...,vN )].
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Figure 1: (left) W ♮ = [A♮⊤
1 , . . . ,A♮⊤

M ]⊤ satisfying NCSA with K = 3, meaning that there exists
specialists for each class k ∈ [K] and (right) all-class expert annotator m∗ among M annotators,
meaningA♮

m∗
≈ IK .

Figure 2: The dots denote the rows ofW ♮ and the circle denote the second-order cone C.

K MORE DETAILS ON THE COMPLEXITY MEASURE RF

The work in (Lin & Zhang, 2019) introduces a complexity measure for measuring the expressiveness
of different family of neural network classes. For example, consider a general convolution neural
network (CNN) architecture with L layers such that

f(x) = σL(γL(HL)σL−1(γL−1(HL−1) . . .σ1(γ1(H1)x) . . .)), ∀f ∈ F ,

where σi(·) = [σi(·), . . . , σi(·)] ∈ Rdi represents an element-wise activation function at ith layer
satisfying σi(0) = 0 and σi being ρ-Lipschitz continuous for all i. Let GF denote the set of layer
indices with fully connected layers and GC denote the layer indices with convolutional layers. If
i ∈ GF, we have γi(Hi) =Hi ∈ Rdi×di−1 . Suppose i ∈ GC, then we have γi(Hi)zi−1 =Hi⊛zi−1,
where the matrixHi ∈ Rci×ri contains ci convolutional filters each of which having dimension ri,
zi−1 denotes the output of the (i− 1)th layer, and ⊛ denotes the convolution operation. Here d0 = d
is the dimension of the of the input data items xn’s. Then, its sensitive complexity RF is defined as
follows:

RF = 2ρLL2

(∑
i∈GF

d2i d
2
i−1 +

∑
i∈GC

c2i r
2
i

√
di/ci

)
.

Note that such as a general CNN architecture covers many popular neural networks, e.g., fully
connected neural networks, CNNs such as Lenet-5 (Lecun et al., 1998), VGG-16 (Liu & Deng, 2015),
and so on.

L NEAR-CLASS SPECIALIST ASSUMPTION AND SSC

NCSA is a relaxed condition compared to having all-class expert annotators or having diagonally
dominant annotators–see Fig. 1. It can be understood that NCSA assumption does not require any
single annotator to be specialists with respect to all classes. Nonetheless, having an all-class expert
annotator m∗ satisfies NCSA, but not vice versa.
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The SSC (Definition 1) is a relaxed condition compared to the NCSA (Assumption 4). To illustrate
this, we consider the geometry of the matrixW ♮ satisfying the NCSA and the SSC as shown in Fig.
2.

M ALGORITHM DESCRIPTION

In this section, we detail the implementation of the regularized criteria in (8) and (9). The neural
network predictor function f ∈ F is parameterized using θ and can be denoted as fθ : Rd →∆. Let
ψ = [vec(A1)

⊤, . . . , vec(AM )⊤, vec(θ)⊤]⊤.

Let us also define the following for certain batch B ⊂ [N ]:

LF (ψ,B) = − 1

|B|
∑
n∈B

∑
m∈Sn

K∑
k=1

I[ŷ(m)
n = k] log[Amfθ(xn)]k − λ log det F̃ F̃⊤,

LW (ψ,B) = − 1

|B|
∑
n∈B

∑
m∈Sn

K∑
k=1

I[ŷ(m)
n = k] log[Amfθ(xn)]k − λ log detW⊤W ,

where F̃ = [f(xn1), . . . ,f(xn|B|)], n1, . . . , n|B| ∈ B andW = [A⊤
1 , . . . ,A

⊤
M ]⊤.

Let ∇ψLF (ψ,B) denote the stochastic gradient of LF (ψ,B) w.r.t. ψ and ∇ψLW (ψ,B) denote
the stochastic gradient of LW (ψ,B) w.r.t. ψ. Under these notations, the proposed methods
GeoCrowdNet(F) and GeoCrowdNet(W) are described in Algorithm 1 and 2, respectively.
The Python implementation of the algorithms is available in GitHub1.

Algorithm 1: GeoCrowdNet(F)
input :Data {xn, ŷ

(m)
n ,m ∈ Sn}Nn=1

1 InitializeAm’s to identity matrices IK ;
2 Initialize the parameters θ of the neural network function class F ;
3 ψ = [vec(A1)

⊤, . . . , vec(AM )⊤, vec(θ)⊤]⊤;
4 while stopping criterion is not reached do
5 while stopping criterion is not reached do
6 Draw a random batch B;
7 Compute∇ψLF (ψ,B);
8 ψ ← AdamOptimizer(ψ,∇ψLF (ψ,B));
9 for m = 1 to M do

10 Am ← softmax(Am) ▷ softmax operation on the columns ofAm

11 end
12 end
13 end

output :Estimates Âm, ∀m, θ̂

1https://github.com/shahanaibrahimosu/end-to-end-crowdsourcing
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Algorithm 2: GeoCrowdNet(W)
input :Data {xn, ŷ

(m)
n ,m ∈ Sn}Nn=1

1 InitializeAm’s to identity matrices IK ;
2 Initialize the parameters θ of the neural network function class F ;
3 ψ = [vec(A1)

⊤, . . . , vec(AM )⊤, vec(θ)⊤]⊤;
4 while stopping criterion is not reached do
5 while stopping criterion is not reached do
6 Draw a random batch B;
7 Compute∇ψLW (ψ,B);
8 ψ ← AdamOptimizer(ψ,∇ψLW (ψ,B));
9 for m = 1 to M do

10 Am ← softmax(Am) ▷ softmax operation on the columns ofAm

11 end
12 end

output :Estimates Âm, ∀m, θ̂
13 end

N ADDITIONAL EXPERIMENTS AND IMPLEMENTATION DETAILS

N.1 SYNTHETIC ANNOTATORS

Dataset. We consider the CIFAR-10 (Krizhevsky, 2009) dataset for synthetic noisy label experiments.
CIFAR-10 consists of 60, 000 labeled color images of animals, vehicles and so on, each having a
size of 32× 32 and belonging K = 10 different classes. We use 45, 000 images for training, 5, 000
images for validation, and 10, 000 images for testing.

Noisy Label Generation. In order to produce noisy annotations for the images of the training data,
we simulate M = 5 synthetic annotators. We randomly choose an annotator m∗ among M annotators
and its confusion matrix is generated by A♮

m∗ = IK + γrand(K,K), followed by normalization
w.r.t. the ℓ1 norm of the corresponding columns. Here, IK denotes the identity matrix of size K and
rand(K,K) denotes the K×K matrix with its entries randomly chosen from a uniform distribution
between 0 and 1. The parameter γ controls how well the annotator m∗ correctly identifies the
ground-truth labels. The confusion matrices of the remaining M − 1 annotators are generated such
that they provide labels uniformly at random—i.e., the M − 1 annotators are all unreliable. This type
of modeling for the confusion matrices resembles the hammer-spammer model as employed in the
works (Rodrigues & Pereira, 2018; Tanno et al., 2019). Using the ground-truth label yn’s provided by
the dataset and the generated confusion matrices, the noisy annotations ŷ(m)

n ’s are produced. Each
annotation ŷ

(m)
n is observed independently at random such that only 20% of the total annotations are

available for training. Note that, the true labels are not accessible by any of the methods.

Neural Network Architecture and Settings. For the CIFAR-10 dataset, we choose the ResNet-9
architecture (He et al., 2016). Adam (Kingma & Ba, 2015) is used as the optimizer with weight decay
of 10−4 and a batch size of 128. The regularization parameter λ and the initial learning rate of the
Adam optimizer are chosen via grid search method over the validation set from {0.01, 0.001, 0.0001}
and {0.01, 0.001}, respectively. We choose the same neural network structures for all the baselines.
The confusion matrices are initialized with identity matrices for the proposed method and the baselines
TraceReg and CrowdLayer.

Results. Table 3 presents the results under various values of γ—when γ is smaller, the chance of
annotator m∗ correctly labeling the data items is better. One can see that the proposed approach,
namely, GeoCrowdNet(F), outperforms the baselines in all the scenarios under test. When
annotator m∗’s labeling accuracy drops drastically (i.e., when γ becomes larger), GeoCrowdNet(F)
performs the best. This implies that even if there are no class specialists, GeoCrowdNet(F) works
well under the large N cases.

Figs. 3, 4 and 5 show the ground-truth confusion matrices and the corresponding estimates when
γ = 0.01 for the GeoCrowdNet methods. One can see all methods estimate the confusion matrices
reasonably well, corroborating our identifiability claims.
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Table 3: Average test accuracy of the proposed methods and the baselines on the CIFAR-10 dataset
(K = 10), labeled by M = 5 synthetic annotators.

Methods γ = 0.01 γ = 0.2 γ = 0.3

GeoCrowdNet(F) 84.82± 0.43 71.66± 1.08 67.97± 1.44
GeoCrowdNet(W) 82.76± 0.46 69.20± 0.59 63.86± 1.64
GeoCrowdNet (λ=0) 82.50± 0.38 69.14± 1.29 63.73± 2.64

TraceReg 82.54± 0.34 70.01± 1.16 65.01± 2.30
Crowdlayer 83.01± 0.23 69.91± 1.48 65.70± 2.32

MBEM 81.01± 0.32 69.45± 1.56 64.15± 2.21
CoNAL 81.41± 0.43 68.56± 1.78 63.21± 1.98
Max-MIG 82.01± 0.78 69.96± 1.23 62.01± 2.46
NN-MV 50.96± 0.83 37.90± 1.19 33.24± 1.17
NN-DSEM 52.02± 0.80 37.95± 1.41 33.64± 0.69
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Figure 3: The illustration of the ground-truth confusion matrices and the estimated confusion
matrices by the proposed approach GeoCrowdNet(F) for CIFAR-10 dataset, with M = 5 machine
annotators and γ = 0.01. The average mean squared error (MSE) of the confusion matrices is 0.088.

N.2 REAL DATA EXPERIMENTS - MACHINE ANNOTATIONS

Here, we provide additional details of the real data experiments. For experiments with machine
annotations, we consider the MNIST and the Fashion-MNIST datasets. Each image in these datasets
is of size 28× 28 in the grey-scale format. We consider 57, 000 images as training data, 3000 images
for validation, and 10, 000 images for testing.
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Figure 4: The illustration of the ground-truth confusion matrices and the estimated confusion
matrices by the proposed approach GeoCrowdNet(W) for CIFAR-10 dataset, with M = 5 machine
annotators and γ = 0.01. The average mean squared error (MSE) of the confusion matrices is 0.102.

For machine annotation, we train a number of machine classifiers to act as annotators. In Table 1,
under Case 2, we choose M = 5 annotators. Specifically, Linear SVM, logistic regression, k-NN
with k = 5, CNN with two convolution layers followed by a max pooling layer, a fully connected
layer and a softmax layer, and a fully connected neural network (FCNN) with 1 hidden layer and 128
hidden units are trained. The CNN is trained for 5 epochs and the FCNN is trained for 10 epochs.
The classifiers are intentionally not well trained, so that they can mimic error-proning annotators.
For example, for the MNIST dataset, the individual label prediction accuracy of these annotators
on unseen data items of size N ranges from 15.88% to 82.23% (averaged over 5 random trials) and
2 annotators have less than 50% accuracy on average. Also note that our algorithm does not know
which annotator is more accurate.

For Case 2, we train more annotators by changing some parameters of the above mentioned machine
classifiers. Specifically, we use linear SVM, polynomial kernel-based SVM, and Gaussian SVM as
different variants of SVM. For k-NN, we choose k from {3, 5, 7, 10}. FCNN, CNN, and logistic
regression are trained with different number of epochs {10, 15, 20, 25} and with random initializations
for each case. Under case 1, if an annotator is chosen to be a specialist, it is trained with more number
of samples (10, 000 samples) with more number of epochs such that its label prediction accuracy is
higher than 90%. Under this strategy, in Table 1 for the case M = 15, the individual label prediction
accuracy of the annotators on unseen data items of size N ranges from 3.15% to 95.27% (2 annotators
with more than 90% accuracy) . For the case with M = 20, the individual label prediction accuracy
of the annotators on unseen data items of size N ranges from 3.24% to 95.73% (3 annotators with
more than 90% accuracy).
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Figure 5: The illustration of the ground-truth confusion matrices and the estimated confusion matrices
by GeoCrowdNet(λ = 0) for CIFAR-10 dataset, with M = 5 machine annotators and γ = 0.01.
The average mean squared error (MSE) of the confusion matrices is 0.097.

Table 4: Average test accuracy (± std) of the proposed methods and the baselines on Fashion-MNIST
under various (N,M)’s on Case 1; labels are produced by machine annotators; p = 0.1.

Methods (1000, 25) (750, 30)

GeoCrowdNet(F) 82.81 ± 2.05 82.40 ± 1.51
GeoCrowdNet(W) 83.33 ± 3.39 83.65 ± 4.11

GeoCrowdNet(λ = 0) 79.43 ± 4.07 79.07 ± 2.91
TraceReg 80.79 ± 3.87 81.12 ± 4.03

CrowdLayer 73.54 ± 6.58 75.56 ± 8.19
MBEM 26.19 ± 3.45 26.67 ± 3.45
CoNAL 63.13 ± 8.53 66.02 ± 5.65
Max-MIG 77.05 ± 3.06 72.59 ± 8.38
NN-MV 68.48 ± 3.15 71.74 ± 2.21
NN-DSEM 68.84 ± 2.46 73.08 ± 4.09

Additional experiment results using the MNIST and Fashion-MNIST datasets can be found in Tables
4-6. As expected, GeoCrowdNet(W) and GeoCrowdNet(F) offer the best performance in Case
1 and Case 2, respectively. .
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Table 5: Average test accuracy (± std) of the proposed methods and the baselines on MNIST under
various (N,M)’s on Case 2; labels are produced by machine annotators; p = 0.1.

Methods (5000, 25) (10000, 25)

GeoCrowdNet(F) 87.26 ± 0.70 87.66 ± 1.23
GeoCrowdNet(W) 84.64 ± 4.04 86.53 ± 3.24

GeoCrowdNet(λ = 0) 80.08 ± 3.14 85.51± 2.35
TraceReg 78.06 ± 6.72 86.85 ± 5.45

CrowdLayer 57.39 ± 6.93 56.66 ± 6.34
MBEM 35.56 ± 7.92 21.82 ± 6.54
CoNAL 46.35 ± 6.75 46.86 ± 5.43
Max-MIG 83.34 ± 1.54 86.84 ± 2.13
NN-MV 83.46 ± 0.67 83.32 ± 1.34
NN-DSEM 84.37 ± 0.70 83.78 ± 1.11

Table 6: Average test accuracy (± std) of the proposed methods and the baselines on Fashion-MNIST
under various (N,M)’s on Case 2; labels are produced by machine annotators; p = 0.1.

Methods (5000, 25) (10000, 25)

GeoCrowdNet(F) 87.47 ± 0.86 88.39 ± 1.92
GeoCrowdNet(W) 85.80 ± 1.26 87.09 ± 2.71

GeoCrowdNet(λ = 0) 85.58 ± 2.23 85.37 ± 2.59
TraceReg 85.20 ± 2.36 84.02 ± 2.74
CrowdLayer 70.07 ± 7.19 74.92 ± 6.19

MBEM 42.15 ± 3.65 44.34 ± 3.48
CoNAL 65.13 ± 4.94 62.65 ± 7.02

Max-MIG 85. 33 ± 2.09 85.94 ± 1.93
NN-MV 79.85 ± 2.88 83.53 ± 1.53

NN-DSEM 81.34 ± 1.65 84.67 ± 1.15

N.3 REAL DATA EXPERIMENTS - HUMAN ANNOTATORS

For experiments with annotations collected from AMT, we use the LabelMe dataset (Rodrigues et al.,
2017; Russell et al., 2007) and the Music dataset (Rodrigues et al., 2014).

The LabelMe dataset (Rodrigues et al., 2017; Russell et al., 2007) is an image classification dataset
consisting of 2688 images from K = 8 different classes, namely, highway, inside city, tall building,
street, forest, coast, mountain, and open country. From the available images, 1000 images are
annotated by M = 59 AMT workers. In total, about 2547 image annotations are obtained by the
AMT workers whose labeling accuracy ranges from 0% to 100% with a mean accuracy of 69.2%. In
order to enrich the training dataset, standard augmentation techniques such as rescaling, cropping,
horizontal flips, etc., are employed and accordingly, the training dataset consists of 10, 000 images
annotated by 59 workers; see more details in (Rodrigues & Pereira, 2018; Chu et al., 2021). The
validation set consists of 500 images and the remaining 1188 images are used for testing.

The Music dataset (Rodrigues et al., 2014) consists of audio samples of 10 different genres of music
such as classical, country, disco, hiphop, jazz, rock, blues, reggae, pop, and metal. The dataset
has about 1000 samples of songs each having a duration of 30 seconds. About 700 samples are
annotated by 44 AMT workers (overall, about 2946 annotations are observed) and the remaining 300
are allocated for testing. Out of the annotated 700 samples, we consider 595 samples for training,
and the remaining 105 samples are used for validation.

For the LabelMe dataset, we employ the settings used in (Rodrigues & Pereira, 2018). The pretrained
VGG-16 embeddings for the images are given as inputs to a fully connected (FC) neural network
with one hidden layer having 128 hidden units and ReLU activation functions. A dropout layer with
rate 50% is also used, followed by a softmax layer. For the Music dataset, we choose the same FC
layer and the softmax layer as employed in the LabelMe settings, but with batch normalization layers
before each of these layers.
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