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Abstract

Slang is a predominant form of informal lan-001
guage making flexible and extended use of002
words that is notoriously hard for natural lan-003
guage processing systems to interpret. Exist-004
ing approaches to slang interpretation tend to005
rely on context but ignore semantic extensions006
common in slang word usage. We propose a se-007
mantically informed slang interpretation (SSI)008
framework that considers jointly the contextual009
and semantic appropriateness of a candidate010
interpretation for a query slang. We perform011
rigorous evaluation on two large-scale online012
slang dictionaries and show that our approach013
not only achieves state-of-the-art accuracy for014
slang interpretation in English, but also does so015
in zero-shot and few-shot scenarios where train-016
ing data is sparse. Furthermore, we show how017
the same framework can be applied to enhanc-018
ing machine translation of slang from English019
to other languages. Our work creates oppor-020
tunities for the automated interpretation and021
translation of informal language.022

1 Introduction023

Slang is one of the most common forms of infor-024

mal language, but interpreting slang can be difficult025

for both humans and machines. Empirical studies026

have shown that, although it is done instinctively,027

interpretation and translation of unfamiliar or novel028

slang expressions can be quite hard for humans029

(Braun and Kitzinger, 2001; Mattiello, 2009). Sim-030

ilarly, slang interpretation is also notoriously diffi-031

cult for state-of-the-art natural language processing032

(NLP) systems, which presents a critical challenge033

to downstream applications such as natural lan-034

guage understanding and machine translation.035

Consider the sentence “I got really steamed036

when my car broke down”. As illustrated in Fig-037

ure 1, directly applying a translation system such038

as Google Translate on this raw English sentence039

would result in a nonsensical translation of the040

slang term steamed in French. This error is due041

Figure 1: Illustrations of slang interpretation in English
(top panel) and slang translation (bottom panel) from
English to French on the original sentence (nonsensical),
or on the interpreted version of the sentence (sensical).

partly to the underlying language model that fails 042

to recognize the flexible extended use of the slang 043

term from its conventional meaning (e.g., “vapor”) 044

to the slang meaning of “angry”. However, if 045

knowledge about such semantic extensions can be 046

incorporated into interpreting the slang prior to 047

translation, as Figure 1 shows the system would be 048

quite effective in translating the intended meaning. 049

Here we consider the problem of slang inter- 050

pretation illustrated in the top panel of Figure 1. 051

Given a target slang term like steamed in a novel 052

query sentence, we want to automatically infer its 053

intended meaning in the form of a definition (e.g., 054

“angry”). Tackling this problem has implications in 055

both machine interpretation and understanding of 056

informal language within individual languages and 057

translation between languages. 058

One natural solution to this problem is to use 059

contextual information to infer the meaning of a 060

slang term. Figure 2 illustrates this idea by show- 061

ing the top infilled words predicted under a GPT-2 062

(Radford et al., 2019) based language infill model 063

(Donahue et al., 2020). Each of these words can 064
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Figure 2: Workflow of the proposed framework.

be considered a candidate paraphrase for the tar-065

get slang steamed conditioned on its surrounding066

words. Although the groundtruth meaning “angry”067

is among the list of top candidates, this model infers068

“sick” as the most probable interpretation. A simi-069

lar context-based approach has been explored in a070

previous study led by Ni and Wang (2017) showing071

that a sequence-to-sequence model trained directly072

on a large number of pairs of slang-contained sen-073

tences along with their corresponding definitions074

from Urban Dictionary can be a useful starting075

point toward the automated interpretation of slang.076

We present an alternative approach to slang in-077

terpretation that builds on but goes beyond the078

context-based models. Inspired by recent work on079

generative models of slang (Sun et al., 2019, 2021),080

we consider slang interpretation to be the inverse081

process of slang generation and propose a semanti-082

cally informed framework that takes into account083

both contextual information and knowledge about084

slang meaning extensions (e.g., “vapor”→“angry”)085

in inferring candidate interpretations. Our frame-086

work incorporates a semantic model of slang that087

uses contrastive learning to capture semantic ex-088

tensions that link conventional and slang meanings089

of words (Sun et al., 2021). Under this frame-090

work, meanings that are otherwise far apart can091

be brought close, resulting in a semantic space092

that is sensitive to the flexible extended usages093

of slang. Rather than using this learned semantic094

space to generate novel slang usages, we apply it095

to the inverse problem of slang interpretation by096

checking whether a candidate interpretation may097

be suitably expressed as a slang using the to-be-098

interpreted slang expression. For example, “sick”099

and “angry” can both replace the slang steamed100

in a given context, but “angry” may be a more ap-101

propriate meaning to be expressed using steamed102

in the slang context. As such, we build a com-103

putational framework that takes into account the104

semantic knowledge of words as well as the context105

of slang in the interpretation process.106

Figure 2 illustrates the workflow of our approach.107

We begin with a set of candidate interpretations108

informed by a context-based model (e.g., a lan- 109

guage infill model), where the set would contain 110

a list of possible meanings that fit reasonably in 111

the given context. We then rerank this set of candi- 112

date interpretations by selecting the meaning that 113

is most likely to be extended as slang from the 114

to-be-interpreted slang expression. 115

For the scope of this work, we focus on inter- 116

preting slang expressions with existing word forms 117

because extensive studies in slang have suggested 118

that a high proportion of slang usages relies on 119

the extended reuse of existing word forms (Warren, 120

1992; Green, 2010; Eble, 2012). We show that our 121

framework can enhance state-of-the-art language 122

models in slang interpretation in English and slang 123

translation from English to other languages.1 124

2 Related Work 125

2.1 Natural Language Processing for Slang 126

Existing approaches in the natural language pro- 127

cessing for slang focus on efficient construction, 128

extension, and retrieval from dictionary-based re- 129

sources for detection (Pal and Saha, 2013; Dhu- 130

liawala et al., 2016), interpretation (Gupta et al., 131

2019), and sentiment analysis of slang (Dhuliawala 132

et al., 2016; Wu et al., 2018). These studies of- 133

ten rely on heuristic measures to determine or re- 134

trieve the meaning of slang and cannot generalize 135

beyond what was available in the training data. Re- 136

cent work such as Kulkarni and Wang (2018) and 137

Pei et al. (2019) proposed deep learning based ap- 138

proaches to generalize toward unseen slang. 139

Closely related to our study is Ni and Wang 140

(2017) that formulated English slang interpretation 141

as a translation task (although they did not tackle 142

slang machine translation per se). In this work, 143

each slang query sentence in English is paired with 144

the groundtruth slang definition (also in English), 145

and such pairs are fed into a translation model. In 146

addition, the spellings of slang word forms are also 147

considered as input. In their model, both the con- 148

text and the slang form are encoded using separate 149

LSTM encoders. The two encoded representations 150

are then linearly combined to form the encoded in- 151

put for a sequence-to-sequence network (Sutskever 152

et al., 2014). During training, the combined state 153

is passed onto an LSTM decoder to train against 154

the corresponding definition sentence. During test 155

time, beam search (Graves, 2012) is applied to de- 156

code a set of candidate definition sentences. 157

1Anonymous code and data at: www.bit.ly/33yN2E1
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One key problem with this approach is that the158

Dual Encoder tends to rely on the contextual fea-159

tures surrounding the target slang but does not160

model flexible meaning extensions of the slang161

word itself. Similar issues are present in a language-162

model based approach, whereby one can use an163

infill model to infer the meaning of a target slang164

based solely on its surrounding words. Our work165

extends these context-based approaches by jointly166

considering the contextual and semantic appropri-167

ateness of a slang expression in a sentence, using168

generative semantic models of slang.169

2.2 Generative Semantic Models of Slang170

Recent work by Sun et al. (2019, 2021) proposed a171

neural-probabilistic generative framework for mod-172

eling slang word choice in novel context. Given a173

query sentence with the target slang blanked out174

and the intended meaning of that slang, their frame-175

work predicts which word(s) would be appropriate176

slang choices that fill in the blank. Relevant to their177

framework is a semantic model of slang that uses178

contrastive learning from Siamese networks (Baldi179

and Chauvin, 1993; Bromley et al., 1994) to relate180

conventional and slang meanings of words. This181

model yields a semantic embedding space that is182

sensitive to flexible slang meaning extensions. For183

example, it may learn that meanings associated184

with “vapor” can extend to meanings about “angry”185

(as in the steamed example in Figure 1).186

Differing from slang generation, our work con-187

cerns the inverse problem of slang interpretation188

that has more direct applications in natural lan-189

guage processing particularly machine translation190

(e.g., of informal language). Building on work of191

slang generation, we incorporate the generative se-192

mantic model of slang in a semantically informed193

interpretation framework that integrates context to194

infer the intended meaning of a target slang.195

3 Computational Framework196

Our computational framework is comprised of197

three key components following the workflow il-198

lustrated in Figure 2: 1) A context-based baseline199

interpreter that generates an n-best list of candi-200

date interpretations for a target slang in a query201

sentence; 2) A semantic model of slang that checks202

the appropriateness of a candidate interpretation to203

the slang context; 3) A reranker informed by the se-204

mantic model in 2) that re-prioritizes the candidate205

interpretations from the context-based interpreter206

in 1). We use this framework for both interpret- 207

ing slang within English and translating slang from 208

English to other languages. 209

3.1 Context-based Interpretation 210

We define slang interpretation formally as follows. 211

Given a target slang term S in context CS of a 212

query sentence, interpret the meaning of S by a 213

definition M . The context is an important part of 214

the problem formulation since a slang term S may 215

be polysemous and context can be used to constrain 216

the interpretation of its meaning. We define a slang 217

interpreter I probabilistically as: 218

I(S,CS) = argmax
M

P (M |S,CS) (1) 219

Given this formulation, we retrieve an n-best list of 220

candidate interpretations K (i.e., |K| = n) based 221

on an interpretation model of choice P (M |S,CS). 222

Here, we consider two alternative models for 223

P (M |S,CS): 1) a language-model (LM) based ap- 224

proach that treats slang interpretation as a cloze 225

task, and 2) a sequence-to-sequence based ap- 226

proach similar to work by Ni and Wang (2017). 227

LM-based interpreter. The first model we con- 228

sider is a language infill model in a cloze task, in 229

which the model itself is based on large pre-trained 230

language models such as GPT-2 (Radford et al., 231

2019). Although slang expressions may make spo- 232

radic appearances during training, this model is 233

not trained specifically on a slang related task and 234

thus serves as a baseline that reflects the state-of- 235

the-art language-model based NLP systems (e.g., 236

Donahue et al., 2020). 237

Given context CS containing target slang S, we 238

blank out S in the context and ask the language 239

infill model to infer the most likely words to fill in 240

the blank. This results in a probability distribution 241

P (w|CS\S) over candidate words w. The infilled 242

words can then be viewed as candidate interpreta- 243

tions of the slang S: 244

I(S,CS) =D[argmax
w

LM(w|CS\S) 245

+ 1T (w)[T (CS\S)]] (2) 246

Here, D is a dictionary lookup function that maps 247

a candidate word w to a definition sentence. In 248

this case, we constrain the space of meanings con- 249

sidered to the set of all meanings corresponding 250

to words in the lexicon. Additionally, we apply a 251

Part-of-Speech (POS) tagger T to check whether 252
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the candidate word w shares the same POS tag as253

the blanked-out word in the usage context. Words254

that share the same POS tags are preferred in the255

list of n-best retrievals.256

This baseline approach by itself does not take257

into account any (semantic) information from the258

target slang S. In the case where two distinctive259

slang terms may be placed in the same context,260

the model would generate the exact same output.261

However, this LM based approach does not require262

task-specific data to train. We show later that by263

reranking language model outputs, it is possible to264

achieve state-of-the-art performance using much265

less on-task data than existing approaches.266

Dual encoder. Ni and Wang (2017) partly ad-267

dressed the context-only limitation by encoding the268

slang term using a character-level recurrent neu-269

ral network in an end-to-end model inspired by270

the sequence-to-sequence architecture for neural271

machine translation (Sutskever et al., 2014). We272

implement their dual encoder architecture as an273

alternative context-based interpreter to LM. In this274

model, separate LSTM encoders are applied on275

the context CS and the character encoding of the276

to-be-interpreted slang S respectively. The two en-277

coders are then linearly combined using learned278

parameters. The combined state is passed onto an279

LSTM decoder to train against the corresponding280

definition sentence in Urban Dictionary (as in the281

original work of Ni and Wang 2017). For inference,282

beam search (Graves, 2012) is applied to decode283

an n-best list of candidate definition sentences.284

While this approach is trained directly on slang285

data and considers the slang word forms, it requires286

a large on-task dataset to be trained effectively.287

This model also does not take into account the ap-288

propriateness of meaning extension in slang usage.289

We next describe how a semantic model of slang290

can be incorporated to enhance the context-based291

interpreters.292

3.2 Semantic Model of Slang293

Given an n-best list of candidate interpretations K294

for the target slang S in context CS , we wish to295

model the semantic plausibility of each candidate296

interpretation k ∈ K. Specifically, we ask how297

likely one would relate the (conventional meaning298

of) target slang expression S to a candidate inter-299

pretation k. Sun et al. (2019, 2021) modeled the300

relationship between a to-be-expressed meaning301

and a word form using the prototype model (Rosch,302

1975; Snell et al., 2017). We adapt this model in 303

the context of slang interpretation: 304

f(k, S) = sim(Ek, ES) 305

= exp(−d(Ek, ES)

hm
) (3) 306

Ek is an embedding for a candidate interpretation 307

k and ES is the prototypical conventional meaning 308

of S computed by averaging the embeddings of its 309

conventional meanings in dictionary (ES): 310

ES =
1

|ES |
∑

ESi
∈ES

ESi (4) 311

The similarity function f can then be computed by 312

taking the negative exponential of the Euclidean 313

distance between the two resulting semantic em- 314

beddings. hm is a kernel width hyperparameter. 315

Following Sun et al. (2021), we learn seman- 316

tic embeddings Ek and ESi under a max-margin 317

triplet loss scheme, where embeddings of slang 318

definition sentences (ES) are brought closer in Eu- 319

clidean distance to those of their corresponding con- 320

ventional definition sentences (EP ) while pulling 321

irrelevant definition sentences (EN ) apart by a pre- 322

specified margin m: 323

Loss =
[
d(ES , EP )− d(ES , EN ) +m

]
+

(5) 324

The resulting contrasive sense encodings are shown 325

to be sensitive to slang semantic extensions that 326

have been observed during training. We leverage 327

this knowledge to check whether pairing a candi- 328

date interpretation k with the slang expression S 329

is likely given the common semantic extensions 330

observed in slang usages. 331

3.3 Semantically Informed Reranking 332

We define a semantic scorer g over the set of can- 333

didate interpretations K and the to-be-interpreted 334

slang S. The candidates are reranked based on the 335

resulting scores to obtain semantically informed 336

slang interpretations (SSI): 337

SSI(K) = argmax g(k, S) (6) 338

We define g(K, S) as a score distribution over the 339

set of candidates K given slang S, where each score 340

is computed by checking the semantic appropriate- 341

ness of a candidate meaning k ∈ K with respect to 342

target slang S by querying the semantic model f 343

from Equation 3: 344

g(k, S) = P (k|S) ∝ f(k, S) (7) 345
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In addition, we apply collaborative filtering346

(Goldberg et al., 1992) to account for a small neigh-347

borhood of words L(S) akin to the slang expres-348

sion S in conventional meaning:349

g∗(k, S) ∝
∑

S′∈L(S)

sim(S, S′)g(k, S′) (8)350

sim(S, S′) = exp(−d(S, S′)

hcf
) (9)351

Here, d(S, S′) is the cosine distance between the352

two slang’s word vectors and hcf is a hyperparam-353

eter controlling the kernel width. The collaborative354

filtering step encodes intuition from studies in his-355

toric semantic change that similar words tend to356

extend to express similar meanings (Lehrer, 1985;357

Xu and Kemp, 2015), which was found to extend358

well in the case of slang (Sun et al., 2019, 2021).359

4 Datasets360

We use two online English slang dictionary re-361

sources to train and evaluate our proposed slang in-362

terpretation framework: 1) the Online Slang Dictio-363

nary (OSD)2 dataset from Sun et al. (2021) and 2) a364

collection of Urban Dictionary (UD)3 entries from365

1999 to 2014 collected by Ni and Wang (2017).366

Each dataset contains slang gloss entries includ-367

ing a slang’s word form, its definition, and at least368

one corresponding example sentence containing369

the slang term. We use the same training and test-370

ing split provided by the original authors and only371

use entries where a corresponding non-informal372

entry can be found in the online version of the Ox-373

ford Dictionary (OD) for English4, which allows374

the retrieval of conventional senses for all slang375

expressions considered. We also filter out entries376

where the example usage sentence contains none or377

more than one exact references of the correspond-378

ing slang expression. When a definition entry has379

multiple example usage sentences, we treat each ex-380

ample sentence as a separate data entry, but all data381

entries corresponding to the same definition entry382

will only appear in the same data split. Table 1383

shows the size of the datasets after pre-processing.384

While OSD contains higher quality entries, UD385

offers a much larger dataset. We thus use OSD386

to evaluate model performance in a low resource387

scenario and UD for evaluation of larger neural388

network based approaches.389

2OSD: http://onlineslangdictionary.com
3UD: https://www.urbandictionary.com
4OD: https://en.oxforddictionaries.com

5 Evaluation and Results 390

5.1 Evaluation on Slang Interpretation 391

We first evaluate the semantically informed and 392

baseline interpretation models in a multiple choice 393

task. In this task, each query is paired with a set of 394

definitions that construe the meaning of the target 395

slang in the query. One of these definitions is the 396

groundtruth meaning of the target slang, while the 397

other definitions are incorrect or negative entries 398

sampled from the training set (i.e., all taken from 399

the slang dictionary resources described). To score 400

a model, each definition sentence is first compared 401

with the model-predicted definition by computing 402

the Euclidean distance between their respective 403

Sentence-BERT (Reimers and Gurevych, 2019) em- 404

beddings. The ideal model should produce a defini- 405

tion that is semantically closer to the groundtruth 406

definition, more so than the other competing neg- 407

atives. For each dataset, we sample two sets of 408

negatives. The first set of negative candidates con- 409

tains only definition sentences from the training 410

set that are distinct from the groundtruth definition. 411

We consider two definition sentences to be distinct 412

if the overlap in the number of content words is 413

less than 50%. The other set of negative definitions 414

is sampled randomly. We measure the performance 415

of the models by computing the standard mean 416

reciprocal rank (MRR) of the groundtruth defini- 417

tion’s rank when checked against 4 other sampled 418

negative definitions. 419

We train the semantic reranker on all definition 420

entries in the respective training sets from the two 421

data resources. When training the Dual Encoder, 422

we use 400,431 out-of-vocabulary slang entries 423

form UD in addition to the in-vocabulary entries 424

used to train the reranker. This is necessary since 425

the baseline Dual Encoder performs poorly without 426

a large number of training entries. Similarly, train- 427

ing the Dual Encoder directly on the OSD training 428

set does not result in an adequate model for com- 429

parison. We instead train the Dual Encoder on all 430

UD entries and experiment with the resulting inter- 431

preter on OSD. Any UD entries corresponding to 432

words found in the OSD testset are filtered out in 433

this particular experiment. Detailed training proce- 434

dures for all models can be found in Appendix A. 435

Table 2 summarizes the multiple-choice evalu- 436

ation results on both slang datasets. In all cases, 437

applying the semantically informed slang interpre- 438

tation framework improves the MRR of the respec- 439

tive baselines under both types of negative candi- 440
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Dataset
# of unique

slang word forms
# of slang

definition entries
# of context
sentences

# of definitions
in the test set

# of context sentences
in the test set

OSD 1,635 2,979 3,718 299 405

UD 9,474 65,478 65,478 1,242 1,242

Table 1: Summary of basic statistics for the two online slang dictionaries used in the study.

Model
Distinctively

sampled candidates
Randomly

sampled candidates

Dataset 1: Online Slang Dictionary (OSD) (Sun et al., 2021)
Language Infill Model (LM Infill) (Donahue et al., 2020), n = 50 0.532 0.502

+ Semantically Informed Slang Interpretation (SSI) 0.557 0.563
Dual Encoder* (Ni and Wang, 2017), n = 5 0.584 0.583

+ SSI 0.592 0.588
Dual Encoder*, n = 50 0.568 0.602

+ SSI 0.616 0.607
* Dual Encoders trained on UD data after filtering out slang in OSD test set.

Dataset 2: Urban Dictionary (UD) (Ni and Wang, 2017)
LM Infill, n = 50 0.517 0.521

+ SSI 0.569 0.579
Dual Encoder, n = 5 0.556 0.555

+ SSI 0.573 0.572
Dual Encoder, n = 50 0.547 0.550

+ SSI 0.582 0.584

Table 2: Evaluation of English slang interpretation measured in mean-reciprocal rank (MRR). Predictions are ranked
against 4 negative candidates distinctively or randomly sampled, yielding MRR=0.457 for the random baseline.

Query (target slang in bold italic): That chick is lit!
Groundtruth definition of target slang: Attractive.

LM Infill baseline prediction: Cute, beautiful, adorable.
LM Infill + SSI prediction: Hot, cool, fat.
Dual Encoder baseline prediction: Another word for bitch.
Dual Encoder + SSI prediction: Word used to describe someone who is very attractive.

Query: That Louis Vuitton purse is lush!
Groundtruth definition of target slang: High quality, luxurious. (British slang.)

LM Infill baseline prediction: Amazing, beautiful, unique.
LM Infill + SSI prediction: Lovely, stunning, expensive.
Dual Encoder baseline prediction: Something that is cool or awesome.
Dual Encoder + SSI prediction: An adjective used to describe something that is not cool.

Table 3: Example queries from OSD and top predictions made from both the baseline language infill models
(LM Infill) and the Dual Encoder models with n = 50, along with top predictions from the enhanced semantically
informed slang interpretation (SSI) models. Additional examples can be found in Appendix B.1.

date sampling. On the UD evaluation, even though441

the language infill model (LM Infill) is not trained442

on this specific task, LM infill based SSI is able to443

select better and more appropriate interpretations444

than the dual encoder baseline, which is trained 445

specifically on slang interpretation with more than 446

7 times the number of definition entries for training. 447

We also find that while increasing the beam size 448
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(specified by n) in the sequence-to-sequence based449

Dual Encoder model impairs its performance, SSI450

can take advantage of the additional variation in451

the generated candidates and outperform its coun-452

terpart with a smaller beam size.453

Table 3 provides example interpretations pre-454

dicted by the models. The lit example shows a455

case where the semantically informed models were456

able to correctly pinpoint the intended definition,457

among alternative definitions that describe individ-458

uals. The lush example suggests that the SSI model459

is not perfect and points to common errors made460

by the model including predicting definitions that461

are more general and applying incorrect semantic462

extensions. In this case, the model predicts the463

slang lush to mean “something that is not cool” be-464

cause polarity shift is a common pattern in slang465

usage (Eble, 2012), even though the groundtruth466

definition does not make such a polarity shift in467

this specific example.468

Note that the improvement brought by SSI is469

less prominent in the OSD experiment where the470

Dual Encoder trained on UD was used. This is471

expected because the Dual Encoder is trained to472

generate definition sentences in the style of UD en-473

tries, whereas the SSI is trained on OSD definition474

sentences instead. The mismatch in style between475

the two datasets might have caused the difference476

in performance gain.477

5.2 Zero-shot and Few-shot Interpretation478

Recent studies in deep learning have shown that479

large neural network based models such as GPT-3480

excel at learning new tasks in a few-shot learn-481

ing setting (Brown et al., 2020). We examine to482

what extent the superior performance of our SSI483

framework may be affected by fine-tuning the LM484

baseline model in zero-shot and few-shot scenarios.485

We finetune the language infill model (LM Infill)486

on the first example usage sentence that correspond487

to each definition entry in the OSD dataset, result-488

ing in 2,979 sentences. Given an example sentence,489

we mask out the slang expression and train the490

language infill model to predict the corresponding491

slang term. We randomly shuffle all examples and492

finetune LM Infill for one epoch. We then compare493

the resulting model with the off-the-shelf LM using494

examples in the test set that were not used in fine-495

tuning (i.e., entries with usage sentences that do496

not correspond to the first example usage sentence497

of a definition entry). This results in 106 novel498

Model
Distinct

negatives
Random

negatives

LM Zero-shot, n = 50 0.444 0.443
+ SSI 0.571 0.565

LM Few-shot, n = 50 0.504 0.513
+ SSI 0.567 0.564

Table 4: Interpretation results on OSD measured in
mean-reciprocal rank (MRR) before and after finetuning
the language infill model.

examples for evaluation. 499

Table 4 shows the result of this experiment. 500

While finetuning does improve test performance (a 501

6 point gain in MRR), it remains beneficial to con- 502

sider semantic information in slang context. In both 503

the zero-shot and the few-shot cases, SSI brings 504

significant performance gain even though SSI itself 505

is only trained on entries from the training set. 506

5.3 Evaluation on Slang Translation 507

We next apply the slang interpretation framework 508

to neural machine translation. Existing machine 509

translation systems have difficulty in translating 510

source sentences containing slang usage partly be- 511

cause they lack the ability to properly decode the 512

intended slang meaning. We make a first attempt 513

in addressing this problem by exploring whether 514

machine interpretation of slang can lead to bet- 515

ter translation of slang. Given a source English 516

sentence containing a slang expression S, we ap- 517

ply the LM based slang interpreters to generate a 518

paraphrased word to replace S. The paraphrased 519

sentence would then contain the intended mean- 520

ing of the slang in its literal form. Here, we take 521

advantage of the LM-based approaches’ ability to 522

directly generate a paraphrase instead of a defini- 523

tion sentence (i.e., without dictionary lookup D in 524

Equation 2), which allows direct insertion of the 525

resulting interpretation into the original sentence. 526

We perform our experiment on the OSD test 527

set because it contains higher quality example sen- 528

tences than UD. To mitigate potential biases, we 529

consider only entries that correspond to single word 530

slang expressions, and that the slang has not been 531

seen during training (where the slang attaches to 532

a different slang meaning than the one in the test 533

set). For the remaining 102 test entries, we obtain 534

gold-standard translations by first manually replac- 535

ing the slang word in the example sentence with its 536

intended definition. We then translate the sentences 537

to French and German using machine translation. 538
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Query (target slang in bold italic): I want to go get coffee but it’s bitter outside.
Definition of target slang: Abbreviated form of bitterly cold.
Groundtruth interpreted sentence: I want to go get coffee but it’s bitterly cold outside.
Original query sentence translation: Je veux aller prendre un café mais c’est amer dehors. (65.0)
Gold-standard translation: Je veux aller prendre un café, mais il fait très froid dehors.

LM Infill interpretation & translation:
(1) I want to go get coffee but it’s raining outside. Je veux aller prendre un café mais il pleut dehors. (68.1)
(2) I want to go get coffee but it’s closed outside. Je veux aller prendre un café mais il est fermé dehors. (70.7)
LM Infill + SSI interpretation & translation:
(1) I want to go get coffee but it’s cold outside. Je veux aller prendre un café, mais il fait froid dehors. (90.3)
(2) I want to go get coffee but it’s warm outside. Je veux aller prendre un café mais il fait chaud dehors. (78.1)

Table 5: An example of machine translation of slang, without or with the application of the SSI framework. The
top 2 interpreted and translated sentences are shown for each model with BLEU scores against the gold-standard
translation shown in parentheses. More examples can be found in Appendix B.4.

1 5 10 15 20
# of retrievals

50

60

70

80

BL
EU

LM + SSI (BLEU=64.15)

Baseline (BLEU=54.07)
LM Infill (BLEU=63.08)

(a) English to French

1 5 10 15 20
# of retrievals

50

60

70

80

BL
EU

LM + SSI (BLEU=64.02)

Baseline (BLEU=56.43)
LM Infill (BLEU=63.27)

(b) English to German

Figure 3: BLEU scores of translated sentences with
the slang replaced by n-best interpretations. Curves
show sentence-level BLEU score of the best translation
within the top-n retrievals. Aggregate BLEU scores
integrated over the first 20 retrievals are shown in paren-
thesis. Baselines are obtained by directly translating the
original sentence containing slang.

We make all machine translations using pre-539

trained 6-layer transformer networks (Vaswani540

et al., 2017) from MarianMT (Tiedemann and Thot-541

tingal, 2020), which are trained on a collection of542

web-based texts in the OPUS dataset (Tiedemann,543

2012). Here, we select models pre-trained on web-544

based texts to maximize the baseline model’s abil-545

ity to correctly process slang. Models are eval-546

uated by sentence-level BLEU score (Papineni547

et al., 2002) using the sentence_bleu implementa-548

tion from NLTK (Bird et al., 2009) with smoothing549

(method4 in NLTK, Chen and Cherry, 2014) to 550

account for sparse n-gram overlaps. 551

Figure 3 summarizes the results. Overall, the 552

semantically informed approach tends to outper- 553

form the baseline approaches for the range of top 554

retrievals (from 1 to 20). While not all predicted 555

interpretations correspond to the groundtruth defini- 556

tions, the set of interpreted sentences often contain 557

plausible interpretations that result in improved 558

translation of slang. Table 5 provides some exam- 559

ple translations. We observe that quality transla- 560

tions can be found reliably with a small number 561

of interpretation retrievals (i.e., around 5) and the 562

quality generally improves as we retrieve more can- 563

didate interpretations. Our approach may be ulti- 564

mately integrated with a slang detector (e.g., Pei 565

et al. 2019) to produce fully automated translations 566

in use cases involving slang. 567

6 Conclusion 568

The flexible nature of slang is a hallmark of in- 569

formal language, and to our knowledge we have 570

presented the first principled framework for auto- 571

mated slang interpretation that takes into account 572

both contextual information and knowledge about 573

semantic extensions of slang usage. We showed 574

that our framework is more effective in interpret- 575

ing and translating the meanings of English slang 576

terms in natural sentences in comparison to exist- 577

ing approaches that rely more heavily on context 578

to infer slang meaning. Our study shows promise 579

for advancing methodologies on informal language 580

processing, and it also points to future avenues 581

of research in this area such as the understanding 582

of complex expressions and novel word forms in 583

informal language use. 584
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Ethical Considerations585

We analyze entries of slang usage in our work and586

acknowledge that such usages may contain offen-587

sive information. We retain such entries in our588

datasets to preserve the scientific validity of our re-589

sults, as a significant portion of slang usage aligns590

to possibly offensive usage context. In the presen-591

tation our of results, however, we strive to select592

examples or illustrations that minimizes the extent593

to which offensive content is represented. We also594

acknowledge that models trained on datasets such595

as the Urban Dictionary have a greater tendency596

to generate offensive language. All model outputs597

shown are results of model learning and do not re-598

flect opinions of the authors and their affiliated or-599

ganizations. We hope that our work will contribute600

to the greater good by enhancing AI system’s abil-601

ity to comprehend such offensive language use,602

allowing better filtering of online content that may603

be potentially harmful.604
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A Training Procedures798

A.1 Baseline Models799

We train two context-based slang interpreters de-800

scribed in Section 3.1 as our baseline models. For801

the LM-based interpreter, we use a pre-trained802

language infill model from Donahue et al. (2020)803

based on the GPT-2 (Radford et al., 2019) archi-804

tecture. Here, we obtain the n-best list of inter-805

pretations by retrieving the list of infilled words806

with the highest infill probability. Words contain-807

ing non-alphanumeric characters are filtered out. If808

a matching dictionary entry can be found in Oxford809

Dictionary (OD), then the top definition sentence810

is retrieved as the definition sentence for the word.811

Otherwise, the word itself is used as the definition.812

In addition to the word‘s original form, we apply813

lemmatization or stemming to the original form814

using NLTK (Bird et al., 2009) to find matching815

dictionary entries. To check for Part-of-Speech816

(POS) tags, we apply the Flair tagger (Akbik et al.,817

2018) on the context sentence with the slang ex-818

pression replaced by a mask token and use counts819

from Histwords (Hamilton et al., 2016) to deter-820

mine POS tags for individual words.821

To train the Dual Encoder, we use LSTM en-822

coders with 256 and 1024 hidden units to encode823

a slang expression’s spelling and its usage context824

respectively, with 100 and 300 dimensional input825

embeddings for the characters and words respec-826

tively. Following Ni and Wang (2017), we use827

random initialization for the input embeddings and828

use stochastic gradient descent (SGD) with an adap-829

tive learning rate. We train the model for 20 epochs830

beginning with a learning rate of 0.1 and add an831

exponential decay of 0.9 every epoch. We reserve832

5% of the training examples as a development set833

for hyperparameter tuning. We train the model for834

20 epochs on a Nvidia Titan V GPU and took 12835

hours to complete. During inference, we obtain836

the n-best list of interpretations by running a beam837

search of corresponding beam width on the LSTM838

decoder.839

A.2 Semantic Reranker840

We obtain the contrastive sense encodings (CSE)841

described in Section 3.2 by using 768-dimensional842

Sentence-BERT (Reimers and Gurevych, 2019)843

embeddings as our baseline embedding. Follow-844

ing Sun et al. (2021), we train the contrastive net-845

work with a 1.0 margin (m in Equation 5) using846

Adam (Kingma and Ba, 2015) with a learning rate847

of 2−5, resulting in 768-dimensional definition 848

sense presentations. We reserve 5% of the training 849

examples as a development set for hyperparameter 850

tuning. The contrastive models are trained on a 851

Nvidia Titan V GPU for 4 epochs. The OSD model 852

took 85 minutes to train and the UD model took 8 853

hours. We follow the training procedure from Sun 854

et al. (2021) to estimate the kernel width parame- 855

ters (hm in Equation 3 and hcf in Equation 9) via 856

generative training when it is computationally fea- 857

sible to do so and otherwise use 0.1 as our default 858

value. 859

We check the similarity between two expressions 860

in Equation 9 by comparing their fastText (Bo- 861

janowski et al., 2017) embeddings. For collabo- 862

rative filtering, we consider the 5 closest words (in- 863

cluding the query word itself) in the dataset’s slang 864

expression vocabulary in terms of cosine similarity 865

in their fastText embeddings. We use the list of 866

stopwords from NLTK (Bird et al., 2009) to check 867

whether a word is a content word. We apply the 868

simple_preprocess routine from Gensim (Rehurek 869

and Sojka, 2011) before checking for the degree of 870

content word overlap between two sentences. 871

B Additional Results 872

B.1 Additional Interpretation Examples 873

Table 7 show additional example interpretations 874

made by the models evaluated in Section 5.1. 875

The first three examples illustrate cases where the 876

semantically informed models were not able to 877

predict the exact definitions, but came up with 878

definitions that are more closely related to the 879

groundtruth compared to the baseline. The latter 880

two examples show cases where the semantically 881

informed models fail to make an improvement. 882

B.2 Effect of Context Length 883

In the model evaluation described in Section 5.1, 884

we control for the content-word length of the usage 885

context sentence to examine its effect with respect 886

to interpretation performance for both the baseline 887

and the semantically informed models. Figure 4 888

shows the results partitioned by the number of con- 889

tent words in the example usage sentence excluding 890

the slang expression, evaluated against four distinc- 891

tively sampled candidates. To our surprise, we do 892

not observe any consistent trends when controlling 893

for context length. Interpretation performance for 894

both the context-based baseline models and their 895

semantically informed variants is fairly consistent 896
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Model
Distinct

negatives
Random

negatives

Dual Encoder, n = 5 0.604 0.598
+ SSI 0.612 0.599

Dual Encoder, n = 50 0.583 0.570
+ SSI 0.627 0.633

Table 6: Interpretation results on OSD measured in
mean-reciprocal rank (MRR) when training the Dual
Encoder without filtering out entries corresponding to
words in the OSD testset.

under different context length.897

B.3 Finetuning Dual Encoder898

We consider the case of finetuning the Dual En-899

coder by training it on all available UD data entries900

and test on the full OSD test set. Under this sce-901

nario, the Dual Encoder model would have seen902

examples of slang in the OSD test set, though the903

difference between the definition sentences and us-904

age examples would not allow it to memorize the905

exact answer. While examining how much knowl-906

edge can be transfered from one dataset to another,907

we also apply the SSI reranker trained on OSD908

training data on the finetuned results to simulate909

a stronger baseline model. Table 6 shows the re-910

sults. When compared to the zero-shot results in911

Table 2, finetuning on entries corresponding to the912

same slang, albeit coming from two very different913

resources, does noticeably improve interpretation914

accuracy. Moreover, applying SSI to the improved915

interpretation candidates from the finetuned Dual916

Encoder further increases interpretation accuracy.917

This finding suggests that the improvement brought918

by SSI can indeed generalize in cases where the919

baseline context-based interpretation model out-920

puts better interpretation candidates.921

B.4 Machine Translation Examples922

Table 8 and Table 9 show full example translations923

(English to French) made for the experiment de-924

scribed in Section 5.3, translating sentences con-925

taining slang before and after applying slang inter-926

pretation.927

C Data Permissions928

At the time when the research is performed, Online929

Slang Dictionary (OSD) explicitly forbids auto-930

mated downloading of data from its website ser-931

vice. We therefore have obtained written permis-932

sion from its owner to download and use the dataset933

for personal research use. We download data from 934

the online version of the Oxford Dictionary (OD) 935

under personal use. We cannot publically share the 936

two datasets used above as a result. Readers inter- 937

ested in obtaining the exact datasets used in this 938

work must first obtain relevant permission from 939

the respective data owner before the authors of this 940

work can share the data. The Urban Dictionary 941

(UD) dataset is obtained from the authors of Ni and 942

Wang (2017) under a research only license. We re- 943

lease entries relevant to our study with the original 944

data license attached. 945
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[Example 1]
Query (target slang in bold italic): That girl has a donkey.
Groundtruth definition of target slang: Used to describe a girl’s butt in a good way.

LM Infill baseline prediction: Name, crush, boyfriend.
LM Infill + SSI prediction: Horse, dog, puppy.

Dual Encoder baseline prediction: Penis.
Dual Encoder + SSI prediction: Girl with big ass and big boobs.

[Example 2]
Query: I am an onion.
Groundtruth definition of target slang: A native of Bermuda.

LM Infill baseline prediction: Adult, man, athlete.
LM Infill + SSI prediction: Ren, adult, guard.

Dual Encoder baseline prediction: An idiot.
Dual Encoder + SSI prediction: An asian person.

[Example 3]
Query: In Blastem version 4, they really nerf the EnemyToaster.
Groundtruth definition of target slang: In an update or sequel to a video game, to make a weapon weak or weaker,

such that it’s like a Nerf gun.

LM Infill baseline prediction: Were, called, attack.
LM Infill + SSI prediction: Made, hacked, came.

Dual Encoder baseline prediction: To do something.
Dual Encoder + SSI prediction: To beat someone in the face with your penis.

[Example 4]
Query: I heard Steve was sent to the cooler for breaking and entering.
Groundtruth definition of target slang: Reform school.

LM Infill baseline prediction: School, house, class.
LM Infill + SSI prediction: Bathroom, kitchen, grounds.

Dual Encoder baseline prediction: Slang term for the police.
Dual Encoder + SSI prediction: One of the most dangerous things in the world the best.

[Example 5]
Query: Do you have any safety
Groundtruth definition of target slang: Marijuana.

LM Infill baseline prediction: Money, friends, cash.
LM Infill + SSI prediction: Self, shoes, money.

Dual Encoder baseline prediction: Marijuana.
Dual Encoder + SSI prediction: Word that is used to describe something that is very good.

Table 7: Additional examples: Example OSD slang entries with predicted definitions from both the language
infill model (LM Infill) and the Dual Encoder model with n = 50, along with predictions from the corresponding
semantically informed slang interpretation (SSI) models.
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Figure 4: Evaluation of slang interpretation performance measured in mean-reciprocal rank (MRR) for all models
with n = 50. Test entries are partitioned based on the number of content words (excluding the slang expression
itself) found within the corresponding example usage sentence. Number of entries corresponding to each context
length is shown in parenthesis on the x-axis legend.
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[Example 1]
Query (target slang in bold italic): Let’s smoke a bowl of marijuana.
Definition of target slang: a marijuana smoking pipe. Most frequently bowls are made

out of blown glass, but can be made of metal, wood, etc.
Groundtruth interpreted sentence: Let’s smoke a pipe of marijuana.

Original query sentence translation: Faisons fumer un bol de marijuana. (78.1)
Gold-standard translation: Faisons fumer une pipe de marijuana.

LM Infill interpretation & translation:
(1) Let’s smoke a for of marijuana. Fumons un pour de la marijuana. (47.1)
(2) Let’s smoke a in of marijuana. On fume un peu (little) de marijuana. (51.6)
(3) Let’s smoke a myself of marijuana. Nous allons fumer moi-même de la marijuana. (51.8)
(4) Let’s smoke a or of marijuana. Fumons un ou de marijuana. (45.4)
(5) Let’s smoke a vapor of marijuana. Fumons une vapeur de marijuana. (56.4)

LM Infill + SSI interpretation & translation:
(1) Let’s smoke a pot of marijuana. Faisons fumer un pot de marijuana. (79.5)
(2) Let’s smoke a pipe of marijuana. Faisons fumer une pipe de marijuana. (100.0)
(3) Let’s smoke a pack of marijuana. Faisons fumer un paquet de marijuana. (77.7)
(4) Let’s smoke a leaf of marijuana. Faisons fumer une feuille de marijuana. (79.9)
(5) Let’s smoke a cigarette of marijuana. Faisons fumer une cigarette de marijuana. (75.7)

[Example 2]
Query: That band was so totally vast.
Definition of target slang: Cool or anything good.
Groundtruth interpreted sentence: That band was so totally cool.

Original query sentence translation: Ce groupe était si vaste. (53.2)
Gold-standard translation: Ce groupe était tellement cool.

LM Infill interpretation & translation:
(1) That band was so totally popular. Ce groupe était tellement populaire. (74.5)
(2) That band was so totally good. Ce groupe était si bon. (51.8)
(3) That band was so totally different. Ce groupe était complètement différent. (57.2)
(4) That band was so totally famous. Ce groupe était si célèbre. (54.4)
(5) That band was so totally new. Ce groupe était totalement nouveau. (64.2)

LM Infill + SSI interpretation & translation:
(1) That band was so totally huge. Ce groupe était tellement énorme. (81.1)
(2) That band was so totally big. Ce groupe était tellement grand. (83.0)
(3) That band was so totally important. Ce groupe était si important. (55.9)
(4) That band was so totally cool. Ce groupe était tellement cool. (100.0)
(5) That band was so totally bad. Ce groupe était si mauvais. (52.3)

Table 8: Additional examples of machine translation of slang, without or with the application of the SSI framework.
The top 5 interpreted and translated sentences are shown for each model with BLEU scores against the gold-standard
translation shown in parentheses.
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[Example 3]
Query (target slang in bold italic): Man, I ain’t been to that place in a fortnight!
Definition of target slang: An unspecific, but long-ish length of time.
Groundtruth interpreted sentence: Man, I ain’t been to that place in a long time!

Original query sentence translation: Je ne suis pas allé à cet endroit en une quinzaine! (36.1)
Gold-standard translation: Je n’y suis pas allé depuis longtemps!

LM Infill interpretation & translation:
(1) Man, I ain’t been to that place in a while! Je ne suis pas allé à cet endroit depuis un moment! (46.9)
(2) Man, I ain’t been to that place in a million! Je ne suis pas allé à cet endroit dans un million! (38.8)
(3) Man, I ain’t been to that place in a both! Je ne suis pas allé à cet endroit dans les deux! (42.2)
(4) Man, I ain’t been to that place in a vanilla! Mec, je n’ai pas été à cet endroit dans une vanille! (16.2)
(5) Man, I ain’t been to that place in a ignment! Mec, je n’ai pas été à cet endroit dans un ignement! (16.2)

LM Infill + SSI interpretation & translation:
(1) Man, I ain’t been to that place in a week! Je ne suis pas allé à cet endroit en une semaine! (38.2)
(2) Man, I ain’t been to that place in a minute! Je ne suis pas allé à cet endroit en une minute! (38.8)
(3) Man, I ain’t been to that place in a hour! Je ne suis pas allé à cet endroit en une heure! (38.7)
(4) Man, I ain’t been to that place in a decade! Je n’y suis pas allé depuis une décennie (68.8)
(5) Man, I ain’t been to that place in a day! Je ne suis pas allé à cet endroit en une journée! (37.1)

[Example 4]
Query: I want to go get coffee but it’s bitter outside.
Definition of target slang: Abbreviated form of bitterly cold.
Groundtruth interpreted sentence: I want to go get coffee but it’s bitterly cold outside.

Original query sentence translation: Je veux aller prendre un café mais c’est amer dehors. (65.0)
Gold-standard translation: Je veux aller prendre un café, mais il fait très froid dehors.

LM Infill interpretation & translation:
(1) I want to go get coffee but it’s raining outside. Je veux aller prendre un café mais il pleut dehors. (68.1)
(2) I want to go get coffee but it’s closed outside. Je veux aller prendre un café mais il est fermé dehors. (70.7)
(3) I want to go get coffee but it’s pouring outside. Je veux aller chercher du café, mais ça coule dehors. (51.9)
(4) I want to go get coffee but it’s been outside. Je veux aller prendre un café, mais ça a été dehors. (68.4)
(5) I want to go get coffee but it’s starting outside Je veux aller prendre un café, mais ça commence dehors. (68.5)

LM Infill + SSI interpretation & translation:
(1) I want to go get coffee but it’s cold outside. Je veux aller prendre un café, mais il fait froid dehors. (90.3)
(2) I want to go get coffee but it’s warm outside. Je veux aller prendre un café mais il fait chaud dehors. (78.1)
(3) I want to go get coffee but it’s driving outside. Je veux aller prendre un café mais il conduit dehors. (70.4)
(4) I want to go get coffee but it’s closing outside. Je veux aller prendre un café mais il se ferme dehors. (69.8)
(5) I want to go get coffee but it’s dark outside. Je veux aller prendre un café, mais il fait noir dehors. (82.3)

Table 9: Continuation of Table 8.
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