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ABSTRACT

Deep learning techniques are increasingly being adopted for classification tasks
over the past decade, yet explaining how deep learning architectures can achieve
state-of-the-art performance is still an elusive goal. While all the training informa-
tion is embedded deeply in a trained model, we do not yet understand much about
its performance by only analyzing the model. This paper examines the neuron acti-
vation patterns of deep learning-based classification models and explores whether
the models’ performances can be explained through neurons’ activation behavior.
We propose two approaches: one that models neurons’ activation behavior as a
graph and examines whether the neurons form meaningful communities, and the
other examines the predictability of neurons’ behavior using entropy. Our experi-
mental study reveals that both the community quality and entropy can provide new
insights into the deep learning models’ performances, thus paves a novel way of
explaining deep learning models directly from the neurons’ activation pattern.

1 INTRODUCTION

Deep learning allows the researchers to engineer better features and representation of data through
representation learning (LeCun et al., 2015). Despite the widespread usage of deep learning methods,
it is still considered a black box, and there is a lack of understanding of the working procedure of
the models (Rai, 2020; Oh et al., 2019; Tzeng & Ma, 2005; Rudin, 2019). Researchers often rely on
intuition and domain knowledge when designing deep learning architectures (Shahriari et al., 2015).
They use the models’ accuracy and loss to evaluate the performance and tune the hyperparameters to
optimize the models (Géron, 2019; Gigante et al., 2019). However, to gain a deeper insight into the
model, it is crucial to look beyond its accuracy and loss, i.e., we need to design additional evaluation
metrics that can provide a level of confidence in the model predictions.

Exploring network architecture helps explain why some models perform better than others. For
example, by comparing the weight optimization against model architecture, Gaier & Ha (2019)
showed that a model’s performance depends mostly on its architecture. Zhang et al. (2018) created an
explanatory graph that can disentangle different part patterns from feature maps of the convolutional
neural network (CNN). Visual analytics tools have also been used to understand the architectures
better (Hohman et al., 2019; Gigante et al., 2019). However, such approaches sometimes require
domain knowledge, and are also subject to human interpretation as they do not provide quantitative
measures for the evaluation.

Motivation. In this paper, our main focus is on classification models. A deep learning model that
performs a classification task is optimized to minimize the difference between the model’s prediction
and the actual value. The prediction is recorded as accurate if it is above a threshold, but this process
does not fully leverage the information hidden inside the architecture. The neuron activation pattern
that appears during the training contains rich information that, if understood well, can potentially
be combined with model prediction to provide a level of confidence in the prediction value. It may
also allow us to design more efficient models and additional evaluation metrics to help reduce the
number of false negatives and false positives. If it is possible to relate the model’s performance with
the neuron activation pattern, we may understand why some models perform better than others by
analyzing the pattern. This motivated us to explore different ways to examine neurons’ activation
pattern and establish their relation to the training and test accuracy.
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Contribution. We study the neuron activation pattern using two approaches: one based on a graph-
theoretic model, and the other is based on an information-theoretic model. Our proposed metrics
show a correlation with the accuracy on both benchmark and real-life datasets in both cases.

For the graph-theoretic approach, we created a novel ‘activation pattern graph’ model and showed that
the set of neurons that are frequently and highly activated for a class often forms a community (i.e.,
an induced subgraph that contains more edges within than outside of the subgraph) in the activation
pattern graph. We observed that modularity, a widely used metric to measure community quality, is
closely related to the model’s training and test accuracy.

For the information-theoretic model, we propose a novel method that allows us to measure the
predictability of the neurons’ activation behavior leveraging entropy (Gray, 2011). Our experimental
results show that the entropy of the neurons is relevant to the model’s training and test accuracy.

2 RELATED WORK

Neuron Activation Pattern. Researchers have investigated both neuron activation patterns and
loss function to explain deep learning models. Olah et al. (2017) studied what the neurons respond
to and proposed that neurons work in a group. Li et al. (2017) showed a relationship between the
performance of the deep learning model and the convexity of the loss function. Mahendran & Vedaldi
(2015) studied the feature maps of the CNN models to understand the activation pattern by inverting
the models and showed that there is indeed a relation between the performance of the model and the
activation pattern. Kim et al. (2018) vectorized the activation values of hidden layers and created
striped patterns to find relevance between pattern and decision. However, they experimented with a
small dataset without directions for generalizability.

Bau et al. (2017) studied the relation between the activation pattern and semantic concepts. They
optimized the hyperparameters of the deep learning models and quantitively analyzed the effect of
changing different parameters. The relevance between activation patterns and semantic concepts
was further studied by Fong & Vedaldi (2018). They created vector response of semantic concepts
based on activation pattern and established that the neurons work in a group, and the same neuron
can represent multiple concepts. We found a similar characteristic of the neuron activation pattern
in our study, where there was an overlap of neurons representing multiple classes. However, with
training, a class was represented by more unique neurons.

Another way of interpreting the deep learning models’ learning is by selecting image patches that
maximize the neuron activation (Zeiler & Fergus, 2014). Zhou et al. (2014) described scenes using the
units from the feature maps and also proposed that individual units behave as object detectors. Simon
et al. (2014) analyzed the deep learning model’s feature maps and found a spatial relation between
the activation centers and the semantic parts or bounding boxes of the ground truth images. Zhang
et al. (2018) used hierarchical explanatory graphs across layers to propose a way of maximizing
a deep learning model’s performance. Bau et al. (2020) discovered that individual units of CNN
can learn concepts from the images and some of them strongly influence the decision of the model.
Although there have been several attempts to explain activation patterns, in this paper we take a very
different approach to the explanation of the neural network models by combining the graph-theoretic
and information-theoretic approaches, which allow us to relate various quantitative measures to the
model’s performance.

Visualization and Interpretability. Visualization is considered to be a promising approach for
explaining complex systems, and as a result, there have been several attempts to explain the deep
learning models using visualization tools (Hohman et al., 2018; Chung et al., 2016). A dataflow
diagram is a simple way to visualize a deep learning model’s architecture (Wongsuphasawat et al.,
2017). However, dataflow diagrams do not tell much about the model’s learning process.

Smilkov et al. (2017) proposed “Tensorflow Playground,” where users can train a model by changing
the hyperparameters and observe the training process with various plots and charts. Harley (2015),
proposed an interactive visual inspection tool, where a model was trained on the MNIST dataset (Le-
Cun et al., 2010), and for input data, the tool showed which feature maps were activated and also
which part of the input data was activating the maps. ACTIVIS (Kahng et al., 2017) is an interactive
visualization tool that, along with the dataflow diagram, provides a projection of the neuron activation
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for different instances. This only allows users to explore the activation pattern for different samples,
classes, and subsets rather than explaining the model’s working procedure. CNNComparator (Zeng
et al., 2017) is a tool to compare the performance metrics and the distribution of hyperparameters of
two deep learning models.

A rich body of research examines ways of visualizing feature maps of CNN models (Dobrescu et al.,
2019; Simonyan et al., 2013; Zeiler & Fergus, 2014). A common limitation of studies that rely on
visualization is that the visual assessment is subjective and often hard to evaluate quantitatively.

Entropy and Deep Learning. Entropy is commonly used to quantify errors, e.g., the cross entropy is a
widely used loss function (Gordon-Rodriguez et al., 2020). Many researchers proposed modifications
to this loss function. Martinez & Stiefelhagen (2018) proposed Tamed Cross Entropy, which has the
same convergence property as the cross entropy but is more robust against uniformly distributed label
noise, Zhou et al. (2019) proposed Maximum Probability based Cross Entropy (MPCE) loss function,
which uses a MPCE based gradient update algorithm and has less back-propagation error than
cross entropy, and Gordon-Rodriguez et al. (2020) proposed to use log-likelihood of the continuous
categorical distribution in the place of the cross entropy loss used in label smoothing and actor-mimic
reinforcement learning.

Barbiero et al. (2021) proposed an entropy-based linear layer for concept-based deep learning models,
which utilizes entropy to choose limited subset of input concepts, allowing it to provide concise
explanations of its predictions. Huo et al. (2020) implemented a maximum entropy regularizer that
encourages uniform weight distribution. Li et al. (2020) approximated the gradient of the cross
entropy loss function, which are robust against noise and can avoid the vanishing gradient problem.

Although entropy measures has been used for model optimization, we leveraged it to analyze the
activation pattern of the models and propose performance metric that correlates to the model accuracy.

3 TECHNICAL BACKGROUND

Graph and Community Structure. A graph consists of a set of elements (nodes) and a set of pairs
of elements (edges), where the nodes represent objects and edges represent pairwise relationships.
A community of a graph is defined as a subgraph that contains more edges within than the edges
connecting them to the rest of the graph. Community detection algorithms often define a quality
measure for the communities and then attempts to find a partition of the nodes that maximizes the
quality measure (Fortunato & Castellano, 2007; Newman & Girvan, 2004). Later, we will define
graphs with nodes as neurons and edges as their simultaneous activation. We will examine the
communities of these graphs based on several quality measures as explained in the next section.

Modularity. Modularity is a widely used metric to assess the quality of a given set of non-overlapping
communities (Newman, 2004; Duch & Arenas, 2005; Clauset et al., 2004). The idea of modularity
is based on comparing the given graph G with a random graph. Given two communities Ci and Cj

in G, we use the notation e(Ci, Cj) to denote the number of edges between these two communities.
Let aCi

be the fraction of all the edges connecting the community Ci to all other communities, i.e.,
aCi

=
∑

j eCiCj
. For a random graph, the fraction of the resulting edges that connect nodes within

the community Ci is aCi
2. Hence the modularity (Newman & Girvan, 2004) can be formalized as

Qno−overlap =
∑

i(eCiCi − aCi
2. This is commonly expressed leveraging the adjacency matrix of

the graph (Blondel et al., 2008). Let Avw be the adjacency matrix of G, and let m be the number of
edges in G. For a vertex v (resp., w) in G, we denote its degree and community by kv and Cv (resp.,
kw and Cw). Then

Qno−overlap =
1

2m

∑
v,w

(Avw − kvkw
2m

)δ(Cv, Cw),where δ(Cv, Cw) =

{
1, if Cv = Cw

0, otherwise.
(1)

In Eq. 1, kvkw

2m represents the probability that two nodes v and w are connected in a random graph,
and Avw is 1 or 0 depending on whether v and w are adjacent in G or not. The term 1

2m is for
normalizing the modularity value, and δ(Cv, Cw) regulates the algorithm only to consider the edges
of a specific community. A larger modularity score indicates better quality for the communities.

The modularity above is defined only on a partition, i.e., when the communities are disjoint. Shen
et al. (2009) proposed an extension of Eq. 1 for undirected, unweighted graphs with overlapping
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communities, as follows:

Qunweighted,overlap =
1

2m

∑
v,w

(Avw − kvkw
2m

)
1

OvOw
, (2)

where Ov and Ow is the number of communities containing node v and w, respectively. Thus the
modularity becomes larger when the communities have less overlap. Chen et al. (2010) proposed a
further extension for weighted, undirected graphs with overlapping communities:

Qweighted,overlap =
1

2m

∑
c∈C

∑
v,w

(Avw − kvkw
2m

)αcvαcw, (3)

where αcv is the belonging coefficient (Nicosia et al., 2009) for a community c and vertex v is
defined as αcv = kcv∑

c∈C kcv
and kcv =

∑
p∈c Wvp, where C is the set of community in graph G and

c ∈ C, Wvp is the weight of the edge between node v and p. In Eq. 3, if node v belongs to only
one community c, αcv is equal to 1; if node v does not belong to community c, αcv is equal to 0,
which ensures the consistency of Eq. 3 with Eq. 1. Compared to Eq. 1, Eq. 3 considers overlapping
communities similar to Eq. 2, but unlike Eq. 1 it considers the edge weights too. The benefit of Eq. 3
over other equations is, a pair of nodes within a community with higher edge weight contributes more
to the quality measure compared to the pairs with low edge weight.

Entropy. Entropy is a metric that measures the level of uncertainty in a system, and a rich body of
research examines different ways of measuring entropy (Borowska, 2015). Shanon entropy is a widely
used metric in information theory (Shannon, 2001), which calculates the average information available
based on the probability of a variable’s possible outcomes. Let X be a discrete random variable with
possible outcomes x1, x2, ..., xk which occurs with probabilities P (x1), P (x2), ..., P (xk), then the
Shanon entropy, H of the variable X is defined as follows:

H = −
k∑

i=1

P (xi) logP (xi). (4)

A higher value of Shanon’s entropy indicates a more uncertain outcome, which is difficult to predict.

4 HYPOTHESIS

We assume that if a neuron is frequently activated with a high activation value for a particular class,
then the neuron is a representative of that class. Consider a graph with nodes as neurons and edges
representing simultaneous activation of pairs of neurons. We refer to such a graph as an ‘activation
pattern graph’, and describe the details in Section 5.1. Although one neuron can be representative for
multiple classes, over the training, we expect the class representatives to have less overlap. Hence we
also expect the activation pattern graph to evolve such that the neurons representing a class form a
community. Furthermore, over the training, the neurons are expected to have more certainty in their
activation pattern for various classes (rather than being random). Therefore, we expect the ‘activation
pattern entropy’, a measure related to the predictability of a neuron behavior, as described later in
Section 5.2, to decrease. In particular, we examine the following hypotheses.

H1: The neurons that are frequently activated together form a community in activation pattern graph.

H2: The modularity of the activation pattern graph is related to a deep learning model’s performance.

H3: The entropy of the activation pattern is related to a deep learning model’s performance.

5 METHODOLOGY

In this section, we describe the activation pattern graph and activation pattern entropy, which are at
the core of our methodology and experimental design.

5.1 ACTIVATION PATTERN GRAPH

Assume that there are C classes in the training dataset, and let Di, where 1 ≤ i ≤ k, be the subset
corresponding to the ith class. Let ℓ be a fully connected layer in the neural network with n neurons.
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By the notation vi(q, ℓ, d), we denote the activation value of a neuron q ∈ ℓ for a data d that belongs
to the ith class. Thus the average activation value of a neuron q in layer ℓ for a class i is as follows:

Vi(q, ℓ) =

∑
d∈Di

vi(q, ℓ, d)

|Di|
. (5)

We construct the activation pattern graph G of a layer ℓ as follows. We first calculate each neuron’s
average activation value for a class. Next, for every class, we select S neurons with the highest average
activation value and take their union to create the vertex set of G. Let p, q be a pair of neurons in S
and let δp,q be the number of data elements in Di, where both p and q obtain activation values that are
larger than their individual average activation values, i.e., δp,q = |{d : d ∈ Di, vi(p, ℓ, d)>Vi(p, ℓ)
and vi(q, ℓ, d)>Vi(q, ℓ)}|. Then, for class i, we create an adjacency matrix, Ai,ℓ = (ap,q)n×n, where

ap,q =

{
δp,q
|Di| , if p ∈ S and q ∈ S

0, otherwise.
(6)

The final adjacency matrix, Aℓ of the activation pattern graph is computed as Aℓ =
∑k

i=1 Ai,ℓ. Thus
intuitively, an activation pattern graph maintains a set of neurons that are frequently activated, where
a weighted edge between a pair of neurons represents the frequency of their simultaneous activation.
We created a graph for every iteration and every fully connected layer (except the output layer).

5.2 ENTROPY OF ACTIVATION PATTERN

In a neural network with fully connected layers and ReLU (Rectified Linear Unit) as the activation
function, the activation of each neuron is calculated as ReLU(y) = max(0, y), where y is the output
of a layer. Let Wℓ and Bℓ be the weight and bias of layer ℓ of a neural network. Then for an input I ,
the output of the layer ℓ is calculated as yℓ = (Wℓ×I)+Bℓ. At the beginning of training, the weights
and biases are randomly initialized, and over the training, these values are updated for improved
predictions. The neuron activation thus gets more and more influenced by the classes present in the
data. Due to random initial weights, the activation of the neurons also becomes unpredictable. In such
a case, the activation patterns’ entropy is high, reflecting the system’s randomness. As the training
progresses, the activation pattern is biased by the data, and thus the entropy will decrease.

We now compute the activation pattern entropy of a particular neuron, which is based on the idea of
measuring the predictability of its activation value. We create a |D| ×N activation pattern matrix, F ,
where |D| is the size of the training dataset, and N is the total number of neurons in the architecture,
except for the neurons in the last layer (output layer). Each entry (i, j) of F contains the activation
value of the jth neuron subject to the ith element of the dataset D. We then compute a normalized
matrix Fnorm by dividing each column by the column sum, i.e., Fnorm(i, j) = F (i,j)∑|D|

i=1 F (i,j)
.

To examine the predictability of the activation value for jth neuron, we categorized its normalized
activation values using R equal size bins. In other words, we create a histogram for the jth column
values of Fnorm(i, j). The intuition is that if the neuron’s activation is unpredictable, then the
histogram will not have well-defined maxima or contain many local maxima. Otherwise, it will be
activated for one or only a few classes and likely to produce a global peak. There is an exception,
where a neuron may never be activated and will create a global maxima at the bin that contains the 0
value. Therefore, to create the histogram, we only consider the non-zero activation values. Let Bk

and Hk, where 1 ≤ k ≤ R, be the kth bin and its number of elements. Let hi be the normalized value,
i.e., hi =

Hk∑R
i=1 Hi

. We use the vector Fv = [h1, . . . , hR] to compute the activation pattern entropy

Ej for the jth neuron. Ej = −
∑R

i=1 −hi · log(hi). The activation pattern entropy, E, of a deep
learning model over all the neurons in all the fully connected layers is calculated as E =

∑N
j=1 Ej .

6 DATASET AND MODEL ARCHITECTURE

In our study, we used three benchmark datasets: MNIST (LeCun et al., 2010), Fashion
MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky et al., 2009) and one real-life dataset Plant
village (Mohanty, 2018). We also created MNIST Mixed and Fashion MNIST Mixed by ran-
domizing the labels of the respective datasets to examine the reliability of the proposed metrics.
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Table 1: Details of the architecture of the deep learning mod-
els for different datasets. In the model we only used fully
connected (FC) and dropout layers.

Dataset Image
Size

Fully
Connected

Layers

Output
Layer

Itera-
tions

Training
Accuracy

(%)

Testing
Accuracy

(%)

MNIST 28×28 512, 512 10 20 99.56 98.24

MNIST
Mixed 28×28 512, 512 10 20 12.44 9.85

Fashion
MNIST 28×28 512, 512 10 20 91.80 88.9

Fashion
MNIST
Mixed

28×28 512, 512 10 20 11.02 10.12

CIFAR-10 32×32
1024, 1024,
1024, 512,
256, 128

10 40 46.24 43.43

Plant
Village 256×256

8192, 2048,
1024, 512,

256, 128, 64
9 100 80.65 79.55

The architecture for each dataset is
illustrated in Table 1. The MNIST,
Fashion MNIST, CIFAR-10 datasets
each consists of 10 classes. There
are 60,000 grayscale 28 × 28 im-
ages for training and 10,000 for test-
ing in MNIST and Fashion MNIST,
and 50,000 grayscale 32×28 images
for training and 10,000 for testing in
CIFAR-10.

The Plant village dataset consists of
28693 segmented color images of the
healthy apple, blueberry and cherry,
corn, grape, orange, peach and pep-
per, soybean, strawberry and squash,
and tomato classes, and 6890 testing
images. We transformed the color
images to grayscale and reshaped the
images to size 256× 256.

For all the models, apart from the
input and output layers, we only used fully connected layers and dropout layer. For the fully
connected layers, we used ReLU as the activation function, and Softmax activation for the output
layer. For each model, we collected the weight values from 20 iterations at a uniform interval, where
each iteration represents training the model with the dataset once. We denote the corresponding
activation pattern graphs as G(1), G(2), . . . , G(20). Since different models needed a different
number of training iterations, this interval length varies, e.g., the CIFAR-10 model collected every
two iterations, whereas the Plant Village model every five iterations. See the supplementary materials
for detailed model architecture.

7 RESULT AND DISCUSSION

In this section, we describe the experimental results. To create the activation pattern graphs, we took
50 neurons per class (i.e., we choose |S| = 50 in Eq. 6) with the largest average activation value. We
repeated the experiments for the top 25 and top 100 neurons per class and achieved similar results.

7.1 COMMUNITY FORMATION (H1)

Let G(k) be a pattern activation graph of a fully connected layer at iteration k and let Ni be the
set of neurons which are representative of the ith class, i.e., neurons that are frequently and highly
activated for that class. The unique neurons of a pair of classes i and j are the neurons that belong to
both Ni and Nj , but in no other set Nk where k ̸∈ {i, j}. In other words, these neurons represents
both classes i and j, but no other class. If i = j, then we obtain the unique neurons of class i. We
observed that in most cases, the number of unique neurons for a single class increases with training,
whereas unique neurons for a pair of distinct classes decrease. This behavior indicates that the overlap
between the communities is decreasing and the classes are forming a stronger community among
themselves. Table 2 compares the confusion metrics obtained from G(1) and G(20) for the MNIST
dataset, where each entry at the diagonal of a matrix represents the unique neurons for a single class.
We observed similar behavior for all the datasets.

Training Accuracy and Average Community Size: We used Gephi (Bastian et al., 2009), a widely
used graph visualization software, to compute force directed layouts (Jacomy et al., 2014) of the
activation pattern graphs of different iterations. The communities were detected based on the Louvain
method (Blondel et al., 2008). Although the visualization revealed community structures in these
graphs, the change in the communities over the number of iterations was not readily visible from the
graph layouts (see the supplementary material). Hence, we quantitatively examined how the number
of nodes per community varies over the training. For each dataset, we used Gephi’s modularity
function with a resolution value of 0.5 to find the communities in G(1), G(2), . . . , G(20). Table 3
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Table 2: Two confusion metrics computed from layer 1 for MNIST dataset. Each matrix represents
the number of unique neurons for pairwise classes. Darker red color represents a higher value.

Iteration 1 Iteration 20
20 1 9 8 7 14 11 7 7 4 30 0 7 5 3 6 7 4 5 2
1 11 14 17 4 7 8 10 19 7 0 23 7 12 4 4 4 9 13 10
9 14 13 17 5 9 16 4 15 5 7 7 11 13 8 3 13 7 16 8
8 17 17 11 4 19 6 4 14 5 5 12 13 10 1 18 3 4 13 7
7 4 5 4 11 11 11 14 14 28 3 4 8 1 19 5 10 10 12 24
14 7 9 19 11 7 6 6 22 12 6 4 3 18 5 12 7 5 15 10
11 8 16 6 11 6 16 5 7 3 7 4 13 3 10 7 18 3 10 8
7 10 4 4 14 6 5 14 8 20 4 9 7 4 10 5 3 21 10 15
7 19 15 14 14 22 7 8 3 20 5 13 16 13 12 15 10 10 5 21
4 7 5 5 28 12 3 20 20 4 2 10 8 7 24 10 8 15 21 7

Table 3: Number of nodes in different communities of the activation pattern graph (detected by
Gephi). For each dataset, the communities of G(1) and G(20) are shown along with the PCC between
the average node per community and training accuracy. Darker red color represents higher value.

MNIST

Iteration C1 C2 C3 C4 C5 C6 C7 C8 PCC

1 35 33 35 34 28 25 25 26

20 38 37 36 36 34 33 31 30 0.52

MNIST Mixed

Iteration C1 C2 C3 C4 C5 C6 C7 C8 PCC

1 7 5 5 5 4 4 4 3

20 13 12 8 7 7 5 5 4 -0.27

Fashion MNIST

Iteration C1 C2 C3 C4 C5 C6 C7 C8 PCC

1 35 16 16 14 11 10 8 7

20 32 27 25 21 15 15 12 11 0.71

Fashion MNIST Mixed

Iteration C1 C2 C3 C4 C5 C6 C7 C8 PCC

1 9 7 6 6 5 5 4 3

20 10 7 7 7 7 6 5 5 0.28

CIFAR-10

Iteration C1 C2 C3 C4 C5 C6 C7 C8 PCC

1 12 12 11 9 6 6 6 4

20 39 27 26 25 14 11 10 10 0.80

Plant Village

Iteration C1 C2 C3 C4 C5 C6 C7 C8 PCC

1 40 26 26 21 6 4 3 3

20 62 62 46 35 34 12 5 4 0.82

shows the number of nodes in the eight largest communities C1, C2, . . . , C8 in layer 2 for different
datasets and for two different iterations 1 and 20, where the distribution of community sizes appears to
be less skewed over the training. We then perform the Pearson Correlation Coefficient (PCC) between
the training accuracy and average node per community over the 10 iterations. For most of the datasets,
we observed the average node per community to have a positive correlation with the training accuracy
(Table 3), i.e., the PCC correlation was higher than 0. However, the weak (near-zero) correlation
coefficient for MNIST Mixed and Fashion MNIST Mixed represents the randomness of the formation
of the communities of the model. This indicates that, for models with good performance, the number
of well defined communities increases with training and supports hypothesis H1.

7.2 MODULARITY AND ACCURACY (H2)

So far, we have observed that community detection can reveal meaningful clusters in the pattern
activation graph, i.e., clusters are related to representative neuron sets for different classes. We now
examine the other side, i.e., can the representative neuron sets for different classes be seen as well as
the defined communities? To assess this, we compute different modularity metrics (Eq. 1– 3) for the
activation pattern graphs G(1), . . . , G(20). We also used different community detection algorithms
available in the python library NetworkX (Hagberg et al., 2008) and iGraph (Csardi & Nepusz, 2006).
Note that these algorithms take an initial partition of the neurons and then change those partitions to
optimize some quality measure. Therefore, they are not suitable in this context, yet, the Kernighan
Lin Bisection (KLB) (Kernighan & Lin, 1970) could generate consistent results.

We computed the Spearman correlation coefficient (SCC) and Pearson correlation coefficient (PCC)
to examine the potential relation between modularity and training accuracy (Table 4). A positive
correlation value indicates that the communities’ quality is positively correlated with training accuracy.
We observed the same relation with the test accuracy. A large number of strong positive correlation
coefficients in Table 4 supports hypothesis H2. A stronger correlation is observed in later layers for
all the dataset. For most datasets, the unweighted overlap (Eq. 2), and weighted overlap metric (Eq. 3)
captures the relation better, which is expected since the no-overlap metric neither considers weight
nor the community overlap.
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Table 4: Spearman and Pearson correlation coefficient between modularity and training accuracy for
different layers. Darker blue represents higher values and darker red represents lower values. (See
the supplementary material for the relation with test accuracy.)

MNIST MNIST
Mixed

Fashion
MNIST

Fashion
MNIST Mixed

L1 L2 L1 L2 L1 L2 L1 L2

PCC SCC PCC SCC PCC SCC PCC SCC PCC SCC PCC SCC PCC SCC PCC SCC

KLB 0.24 0.16 0.50 0.61 -0.76 -0.81 -0.73 -0.84 -0.04 -0.10 0.42 0.44 -0.03 -0.07 -0.44 -0.38

No-overlap 0.22 0.19 0.23 0.19 -0.44 -0.55 0.46 0.37 0.42 0.46 0.62 0.61 0.28 0.40 0.14 0.29

Unweighted,
Overlap 0.53 0.37 0.78 0.68 -0.70 -0.73 0.36 0.37 0.71 0.67 0.77 0.72 0.43 0.51 0.22 0.35

Weighted,
Overlap 0.36 0.33 0.77 0.57 -0.63 -0.69 0.48 0.47 0.56 0.46 0.78 0.79 0.43 0.51 0.26 0.38

CIFAR-10

L1 L2 L3 L4 L5 L6

PCC SCC PCC SCC PCC SCC PCC SCC PCC SCC PCC SCC

KLB 0.16 0.20 0.68 0.74 0.69 0.73 -0.18 -0.13 -0.29 -0.40 -0.01 0.06

No-overlap -0.05 -0.11 0.62 0.66 0.29 0.27 0.06 -0.05 0.01 0.03 -0.49 -0.44

Unweighted,
Overlap 0.34 0.44 0.87 0.86 0.73 0.82 0.82 0.79 0.66 0.77 -0.37 -0.29

Weighted,
Overlap 0.42 0.55 0.78 0.68 0.71 0.78 0.71 0.70 0.71 0.79 0.02 -0.03

Plant Village

L1 L2 L3 L4 L5 L6 L7

PCC SCC PCC SCC PCC SCC PCC SCC PCC SCC PCC SCC PCC SCC

KLB 0.22 0.16 0.57 0.62 0.76 0.61 0.84 0.83 -0.16 0.02 -0.34 -0.30 -0.21 -0.19

No-overlap 0.24 0.15 0.05 0.03 0.40 0.42 -0.15 -0.10 0.04 0.00 0.03 -0.17 0.46 0.58

Unweighted,
Overlap 0.14 0.09 0.49 0.47 0.83 0.80 0.91 0.85 0.63 0.65 0.46 0.47 0.74 0.82

Weighted,
Overlap 0.24 0.26 0.59 0.52 0.84 0.87 0.88 0.78 0.71 0.78 0.66 0.69 0.62 0.72

Table 5: Spearman and Pearson correlation coefficient between the entropy and training accuracy.
Darker blue represents higher values and darker red represents lower values.

MNIST Fashion Fashion Plant
MNIST Mixed MNIST MNIST CIFAR-10 Village

Mixed
PCC -0.87 0.22 -0.95 0.57 -0.95 -0.94
SCC -0.94 0.51 -0.99 0.67 -0.97 -1

7.3 ENTROPY AND ACCURACY (H3)

A higher entropy value represents more randomness in the activation behavior of a neuron. At the
beginning of the training, due to random weights, the activation of the neuron is random. So, the
entropy of the activation pattern over all the fully connected layers should be higher. As the training
progresses, the entropy should decrease, representing a biased neuron activation behavior.

Table 5 shows a negative correlation between the entropy of activation pattern and training accuracy
over model training for most of the datasets. We observed the same relation with the test accuracy.
Figure 1 shows the change of normalized entropy with training and testing accuracy for different
iterations for all the datasets, where a clear relation between the entropy and model performance can
be observed. However, MNIST Mixed and Fashion MNIST Mixed has positive correlation values,
indicating the absence of activation pattern with training due to it’s random labels, which is consistent
with hypothesis H3. Note that the evidence for hypothesis H3 is supportive of H1 and H2, where we
examined the community behavior of the neurons and observed better community structure except
for MNIST mixed and Fashion MNIST mixed.

We also examine entropy change for individual classes (Table 6), where to compute the entropy of
a class, we take the same approach as in Section 5.2, but use only the training data corresponding
to that class. In this setting, we obtain meaningful results (i.e., a negative correlation between the
entropy and training accuracy) only for all well-trained models (MNIST, Fashion MNIST, and Plant
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Table 6: Spearman and Pearson correlation coefficient between entropy and training accuracy for
individual classes. Darker blue represents higher values, and darker red represents lower values.

MNIST Fashion Fashion Plant
MNIST Mixed MNIST MNIST CIFAR-10 Village

Mixed
Class PCC SCC PCC SCC PCC SCC PCC SCC PCC SCC PCC SCC
1 -0.55 -0.67 -0.06 -0.29 0.1 0.21 -0.13 -0.4 0.22 0.17 -0.85 -0.89
2 -0.54 -0.71 0.18 -0.16 -0.24 -0.45 0.77 -0.15 0.7 0.66 -0.86 -0.93
3 -0.22 -0.31 0.47 -0.02 0.37 0.22 0.47 0.31 0.38 -0.1 -0.46 -0.42
4 -0.35 -0.7 0.36 0.11 -0.57 -0.84 0.25 -0.18 0.13 0.16 -0.88 -0.92
5 -0.71 -0.73 0.33 -0.1 -0.41 -0.30 0.48 0.11 -0.40 -0.53 -0.39 -0.25
6 -0.55 -0.52 -0.14 -0.07 -0.67 -0.67 0.33 -0.17 -0.5 -0.51 -0.86 -0.86
7 0 0.16 0.19 0.44 -0.83 -0.95 0.67 0.17 0.59 -0.17 -0.87 -0.89
8 -0.09 -0.29 0.09 0.33 -0.43 -0.62 0.7 0.3 0.16 0.19 -0.91 -0.89
9 -0.67 -0.8 0.46 0.62 -0.9 -0.96 0.63 0.33 0.01 0.14 -0.81 -0.86
10 -0.39 -0.77 0.09 0.01 -0.67 -0.60 0.90 0.86 -0.18 -0.26 - -

Figure 1: Change of normalized entropy, training and testing accuracy over iterations. Since values
are normalized, a proper comparison should focus on trends instead of individual peaks or drops.

Village). However, there are few classes with positive and small negative correlation between entropy
and accuracy. This is due to frequent change in the training accuracy of that class. For CIFAR-10,
MNIST Mixed, Fashion MNIST Mixed, we observed a positive correlation values in most of the
classes, and sometimes even found the correlation coefficient to be strongly positive. This is due to
the inability of the model to separate the classes from one another.

8 LIMITATIONS AND FUTURE WORK

We have proposed novel methods to explain the behavior of neurons in deep learning models as
the model training progresses. We used graph theoretic and entropy-based methods to model the
activation pattern of the neurons. We quantitatively showed that neurons that are highly activated
for a class form a community in our graph model. For the entropy-based approach, we analyzed the
activation pattern using the Shanon entropy and found the entropy to show a negative correlation with
the training accuracy.

There are many scope for future research. We used deep learning models with only fully connected
layers; using different model architecture may help understand the entropy and modularity behavior
with more granularity. Although we examine a diverse set of datasets, adding more datasets could
strengthen the results. Our experimental results show that the modularity of the activation pattern
graph and entropy of the activation pattern is related to the model’s performance. Although we used
widely used quality measures for the modularity and entropy, there is still scope for designing better
quality metrics specifically for neural network context. Another exciting direction of study can be to
use the modularity and entropy as a regularization in the loss function (Leavitt & Morcos, 2020) to
better optimize the performance of the deep learning models. We believe that our results will inspire
further research to explain the deep learning models using graph and information theoretic methods.
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