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ABSTRACT

Graph neural networks (GNNs) rely heavily on the underlying graph topology and
thus can be vulnerable to malicious attacks targeting at perturbing graph structures.
We propose a novel GNN defense algorithm against such attacks. In particular, we
use a robust representation of the input graph based on the theory of graph Ricci
flow, which captures the intrinsic geometry of graphs and is robust to structural
perturbation. We propose an algorithm to train GNNs using re-sampled graphs
based on such geometric representation. We show that this method substantially
improves the robustness against various adversarial structural attacks, achieving
state-of-the-art performance on both synthetic and real-world datasets.

1 INTRODUCTION

Recent years we have witnessed the success of graph neural networks (GNNs) on many graph
applications including graph classification (Xu et al., 2019b), node classification (Kipf & Welling,
2016; Veličković et al., 2018), graph generation (You et al., 2018) and recommendations (Ying et al.,
2018). As GNNs have shown great potentials, their vulnerability to adversarial attacks (Szegedy
et al., 2014; Goodfellow et al., 2015) becomes a serious concern that hinders their deployment in real
life critical applications. For example, a GNN algorithm for fraud detection in financial transaction
graphs (Wang et al., 2019a) needs to be robust against attacks aiming at disguising fraud transactions
as normal ones. In health informatics, prediction of polypharmacy side effects (Zitnik et al., 2018)
must be robust against attacks that intend to endanger certain patients. In a recommendation system,
the developers need to consider potential attacks from spammers who may create fake followers to
increase the influence scope of fake news (Zhou & Zafarani, 2018).

One way to attack a GNN model is to modify the graph topology by inserting or deleting edges
(Jin et al., 2020a). A small perturbation of the network topology can significantly impair the graph
neural network’s performance (Dai et al., 2018; Zügner & Günnemann, 2019b). For example, Meta-
Attack (Zügner & Günnemann, 2019a) can increase the misclassification rate of GCN on a political
blog data set by over 18% with only 5% perturbed edges. This is not surprising as graph topology is
essential for GNNs, both as the backbone of a GNN architecture and as important structural features.
In particular, the local neighborhood of each node is commonly used to define receptive fields for the
convolution operator. The statistics of local neighborhood, e.g., node degrees, are important structural
information used as additional node features (Veličković et al., 2018) to re-calibrate the convolutional
operation (Kipf & Welling, 2016).

In this paper, we focus on defending against global poisoning adversarial attacks which corrupt
the graph topology in the training phase. Some existing approaches assume the graph is true and
leverage known robust training techniques, e.g., enforcing priors on latent representation of data (Zhu
et al., 2019). These solutions can still be limited by the corrupted graph, considering how critical
the underlying graph is for a GNN model. Other methods assume prior knowledge on the graph
topology, and perform graph restructuring, e.g., via low-rank filtering (Entezari et al., 2020) or graph
specification (Wu et al., 2019), hoping to remove abnormal edges from the attack. These strong
priors, although proven useful, also limit the generality of the method.
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(a) Before Ricci
flow

(b) After Ricci flow

Figure 1: An illustrative example of Ricci curvature
and Ricci flow on graphs. 1(a): The bridge edges (red)
between communities have negative curvature while
the edges inside communities (blue) have positive.
1(b): The same graph after Ricci flow, in which length
of edges are proportional to weights (Ricci flow met-
ric). Nodes within one community are moved closer
whereas the two communities are moved further apart.

Figure 2: An overview of our Ricci-GNN. We first
compute the Ricci flow metric from the input (at-
tacked) graph and re-sample edges by using a Gaus-
sian filter on each node. A newly sampled graph is
used for the training phase in each iteration of a stan-
dard GCN.

1.1 A GEOMETRIC VIEW OF GRAPHS

We take a novel direction to find a robust representation of the graph topology through a geometric
lens. We view a discrete graph in a continuous framework, in which nodes stay in an underlying
metric space and the connectivity of two nodes has a stochastic nature, depending on the features of
the two nodes, their respective neighborhoods and the entire node distribution. The input graph G
is replaced by an ensemble of graphs, considered as (randomized) discrete realizations of the same
underlying metric space in which G is taken. In order to do that, we recover the metric distance
between two nodes in the underlying space through the Ricci flow metric on the input graph G. Note
that we are not trying to explicitly find an embedding which would involve choices (e.g, Euclidean
vs non-Euclidean, dimensionalities) that introduce extra and unnecessary distortion. Instead, we
represent the underlying metric space via pairwise geodesic distance between nodes.

Our geometrical approach is inspired by the Riemmanian geometry in the continuous setting (Hamil-
ton, 1982; Perelman, 2002). On a Riemmanian manifold, one can define Ricci curvature to measure
the amount of ‘bending’ or ‘curving’ at each point. With Ricci curvature, one can define a diffusion
process by changing the Riemannian metric (stretching or shrinking locally) such that curvature is
uniform everywhere. This uniformization process is called Ricci flow. This theory can be extended
to a graph setting (Ollivier, 2009). Generally speaking, edges that are locally well connected have
positive curvature while edges that are locally sparsely connected have negative curvature. In Ricci
flow, edges of negative curvature are stretched (with increased edge weight) and edges of positive
curvature are condensed (with decreased edge weight). These new edge weights that uniformize
the Ricci curvature of the graph are called the Ricci flow metric. See Figure 1 for an illustration.
Graph Ricci curvature and Ricci flow can be used to identify critical edges in a graph (Ni et al., 2015;
Sandhu et al., 2015) and to identify community structures (Ni et al., 2019; Sia et al., 2019). We also
note that graph Ricci curvature has been used in GNN for node classification task (Ye et al., 2020),
but not for defending structural attacks to GNN.

Robustness against topological perturbation. Ricci flow metric has been shown to be robust to
random deletion and addition of edges (Ni et al., 2018). This attributes to the fact that Ricci flow is a
global process that tries to uncover the underlying metric space supported by the graph topology and
thus embraces redundancy. Compared to other graph metrics such as the hop count metric and metric
obtained by spectral embedding, Ricci flow metric provides a better trade-off between robustness and
representation power of the graph metric, as shown in Figure 3. When two edges are deleted, the
Ricci flow metric is rarely affected (Figure 3 (a)), similar to the hop count metric (Figure 3 (c)); while
the distance metric by spectral embedding is substantially more sensitive (Figure 3 (b)). We note that
the hop count metric is also robust to dynamic edge deletions due to the small world phenomena
and multiple shortest paths in the graph; however the hop count metric takes only integer values and
generally lacks descriptive power to provide desirable resolution and differentiation.
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Figure 3: Changes in distance between all nodes and a fixed root in karate club graph for (a) Ricci
flow metric, (b) spectral embedding, and (c) hop count, when two edges (shown in red) are removed
from the network. Vertices are colored proportional to the magnitude of variations in distance.

To train a GNN using the Ricci flow metric, we generate an ensemble of sample graphs G1, G2, · · · ,
and use a new sample in each network layer of the GNN of every training epoch (Figure 2). Therefore
the trained model is enforced to focus on the underlying metric information represented by the
graph (which is much more robust) and not on the particular input graph topology (which could be
corrupted) per se.

Our method is agnostic to both models and attacks, thus can be applied to different GNNs and
different structural attacks. We show in both synthetic and real-world datasets that the proposed
algorithm effectively defends against various structural attacks, with improved performance compared
to other defense schemes.

We summarize our contributions as follows.

• We are the first to take a geometric view of the GNN defense problem. We propose to train
GNNs with the Ricci flow representation of a graph instead of its attacked topology.

• We design a new algorithm to sample graphs based on the Ricci flow representation for
training GNN. This effectively alleviate the impact of structural attacks by adversaries.

• We demonstrate the efficacy of our method on various synthetic and real-world datasets,
against state-of-the-art graph topology poisoning methods.

1.2 RELATED WORK

The vulnerability of deep neural network models w.r.t. adversarial attacks is well known. And graph
neural networks are not an exception (Dai et al., 2018; Zügner et al., 2018; Zügner & Günnemann,
2019a). Here we briefly review the methods for attacking and defending against GNNs.

Adversarial attack on graphs. There are two categories of attacks: evasion attacks and poisoning
attacks. Evasion attacks generate fake samples for the trained model in the testing time, while
poisoning attacks directly modify the training data. Dai et al. (2018) employs a reinforcement
learning based framework for non-targeted test-time attacks (i.e. evasion) on graph classification
and node classification. The focus is on the modifications of graph structures, and the attackers are
restricted to edge deletions only. Zügner et al. (2018) consider both training-time (i.e. poisoning)
and testing-time attacks. The attacks, called nettack, are based on a surrogate model with both
edge insertion and deletion. Nettack is a local attack, where the goal is to lower the performance
on a target node. Later, a meta-learning poisoning attack is developed by Zügner & Günnemann
(2019a) which aims to decrease classification accuracy globally. It treats the the graph structure as a
hyper-parameter and conducts training-time attacks through meta learning. Last, Xu et al. (2019a)
proposes a gradient-based attack method that directly tackling the dicrete graph data. Since these
two are the state-of-the-art non-targeted global attack method, we will mainly focus on developing
defense schemes against them.

Robustness of GNNs. To defend against these graph attacks, Miller et al. (2019) seek to increase
model robustness by decoupling structure from attributes in the classifier and re-selecting the training
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data. But their method exhibits a trade-off between robustness and performance, i.e. the performance
drops on clean data. Wang et al. (2019b) proposed graph encoder refining and adversarial contrastive
learning. They investigate the vulnerabilities in every aggregation layer and the perceptron layer
of a GNN encoder, and apply dual-stage aggregation and bottleneck perceptron to address those
vulnerabilities. They mainly focus on targeted node attacks (e.g. Nettack) instead of global topology
attacks. RGCN (Zhu et al., 2019) treats node features as a Gaussian distribution and encode the
hidden representation of nodes by mean and variance matrices. They apply self-attention on the
variance matrix to aggregate messages from neighboring nodes. However, this method only focuses
on defense against random noise on node features. GCN-Jaccard (Wu et al., 2019) pre-processes the
network by eliminating edges that connect nodes with sufficientely small Jaccard similarity of features.
GCN-SVD (Entezari et al., 2020) proposes to vaccinate GCN with the low-rank approximation of the
perturbed graph. Most of these existing methods provide insight of robustness from the perspective
of optimization or matrix ranks. DropEdge (Rong et al., 2019) randomly removes a certain amount
of edges from the input graph at each training epoch. It is designed to resolve the over-fitting and
over-smoothing issue of developing deeep GCNs. However, it can also be used for improving the
graphs robustness. Pro-GNN (Jin et al., 2020b) jointly learns a structural graph and a robust graph
neural network model from the perturbed graph guided by exploring the graph properties of sparsity,
low rank and feature smoothness to design robust graph neural networks. In this paper, we understand
the graph robustness from a geometric view and provide an efficient sampling based model.

2 GEOMETRIC RE-SAMPLING FOR ROBUST GNNS

Our method uses the robust geometric representation of the input graph to train a GNN by randomly
sampling a new graph based on the Ricci flow representation. Figure 2 shows the general framework.
Our method is agnostic to both the GNN model and the attack strategy . We start by a brief review on
graph neural networks and poisoning attacks against graphs.

2.1 BACKGROUND: GNNS AND POISONING ATTACKS

We focus on the semi-supervised node classification task. Consider a graph G = (V,E) with node
features H = (h1, h2, · · · , hN ), hi ∈ RD, where N is the number of nodes and D is the feature
dimension of each node. Only part of the graph nodes V` ⊆ V are labeled and our main task is to
predict the label of the remaining nodes Vu ⊆ V given the node features H , edges E and labels of V`.

A GNN essentially learns the low-dimensional representation of the nodes given the node features
and graph structure. There have been various types of GNNs (Bruna et al., 2014; Gori et al., 2005),
usually classified into two categories: the spectral ones and the spatial ones. Spectral graph neural
networks extend CNNs to graphs by defining convolution filters in the spectral domain (Bruna et al.,
2014; Defferrard et al., 2016; Kipf & Welling, 2016). They utilize the concept of graph Fourier
transformation, and define the spectral filters on the eigenvalues of the graph Laplacian matrix. Spatial
graph neural networks, on the other hand, define graph filters in the spatial domain. They iteratively
update graph nodes’ representation by aggregating information from neighbors (Gilmer et al., 2017).
We can see both Laplacian matrix and the neighborhood relationship essentially represent the graph
structure information, thus both types of GNNs highly rely on the graph topology and are sensitive to
structural perturbations.

Take the well known graph convolutional network (GCN) as an example (Kipf & Welling, 2016).
GCN consists of multiple layers. Layer t updates node representation from Ht−1 to Ht: Ht =

σ(ÂHt−1W t) where H0 = H , W t is the parameter for layer t, Â is a normalized version of
adjacency matrix A: Â = D̃−1/2ÃD̃−1/2 with Ã = A+ I and D̃ as the degree matrix of Ã.

As introduced in Section 1.2, a GNN is vulnerable to adversarial attacks. Usually the attackers
introduce unnoticeable perturbations by imposing restrictions to ensure that the attack preserves the
graph structure and node features. A non-targeted structural poisoning attack on graph G can be
formulated as the following optimization problem:

arg minG′∈Φ(G) Lattack(fθ∗(G
′)) (2.1)

where fθ is the GNN function for node embedding where θ is the set of parameters, Φ(G) is the
constraint set for the perturbed graph, θ∗ = arg minθ Ltrain(fθ(G

′)). As indicated in (Zügner et al.,
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2018; Zügner & Günnemann, 2019a), by treating the graph structure matrix A as a parameter (or
hyper-parameter) and solving this optimization problem, the attackers can significantly decrease
classification performance.

2.2 GEOMETRIC RESTRUCTURING OF GRAPHS

With the same insight as the unsupervised manifold hypothesis (Cayton, 2005; Narayanan & Mitter,
2010; Rifai et al., 2011) (real data in high dimensional spaces concentrate near low-dimensional
manifolds), we view a graph as a discretization of an underlying manifold. Any manifold can be
described by a collection of (local) charts, where each chart is homeomorphic to an open set in
a Euclidean space and charts that overlap are compatible (transition from one chart to another is
differentiable) (Lee & Lee, 2009). This will allow one to define the geodesic distance between two
points on the manifold.

By using graph Ricci flow, we can recover this latent metric space that is intrinsic to the input graph,
which is robust to topological perturbations. Specifically, the discrete Ollivier Ricci curvature (Ollivier,
2009) κxy of the edge (x, y) involves the ratio between the Wasserstein distance (the optimal transport
distance) W (mx,my) and their geodesic distance d(x, y)

κxy = 1− W (mx,my)

d(x, y)
. (2.2)

where mx,my are two distributions defined on the neighborhood of x and neighborhood of y,
respectively. The details are in the Appendix A.1. The computation of Ricci flow metric involves
multiple iterations until edge weights do not change much (Ni et al., 2015; 2019; 2018). In each
iteration, we calculate the Ricci curvature of each edge, and adjust the current edge weight with a
value proportional to the edge curvature. For the t-th iteration, all the new edge weights w(t+1) are
calculated as

w(t+1)(x, y) = d(t)(x, y)− κ(t)
xyd

(t)(x, y). (2.3)
We re-normalize all the edge weights to keep the total edge weight unchanged at the end of each
iteration. To speed up the computation process, we use the Sinkhorn distance (Cuturi, 2013) (on a
sampled neighborhood) as an approximation of optimal transport distance. In practice, it takes less
than 1 sec to compute Ricci curvature for Cora and Citeseer data set (of 4732 edges), and 6.9 secs
for Polblogs (with 16714 edges) on a 36 cores machines. The detailed formulas of computing Ricci
curvature and Ricci flow can be found in the Appendix A.2.

Robustness of Ricci flow metric One way to visualize this is to consider embedding the graph
on a manifold with uniform curvature. The edge weight on (u, v) describes the proximity of u, v
on the manifold. In other words, it would require a lot of changes to the graph connectivity to
create significant changes in this metric space and the underlying manifold. The benefit of the new
metric, according to the curvature definition, is the following nice property that implies robustness to
connectivity perturbation: the optimal transport distance from a distribution on neighbors of u to a
distribution on neighbors of v is (1− κ)d(u, v), which is just d(u, v) when curvature κ converges to
zero. In other words, there are paths connecting neighbors of u and neighbors of v which bypass edge
(u, v) and have similar length (in an average sense). This suggests that the removal of edge (u, v) has
small changes to lengths of (shortest) paths in the graph. This is a good thing to have, as opposed to
a graph metric where the removal of an edge incurs substantial changes to the distances of certain
pairs of nodes (often in the neighborhood) – and these edges are especially susceptible to adversarial
attacks. Depending on the graph topology, there are cases when the curvature upon convergence is
not zero (for example, when the graph is sparse and tree-like the curvature converges to a negative
value). Similarly the disturbance to the distances between nodes in the graph, upon the removal of a
single edge, is disseminated in a global manner so all pairs distances suffer similar (small) damage
due to the adversarial attack.

Graph Re-sampling in GNN Instead of using the possibly poisoned input graph for training data,
we re-sample a family of graphs from the Ricci flow metric and use this ensemble of graphs as the
training data. The edges of a graph are sampled by imposing a Gaussian filter on each node using the
Ricci flow metric distance. The use of a Gaussian kernel to convert the Euclidean distances between
data points to a similarity measure is commonly used in settings that take a manifold viewpoint on
input data.
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Algorithm 1 One GNN epoch based on Ricci flow graph restructuring
input Input adjacency matrix A, σ, β

Pre-computed Ricci flow metric F from A
Pre-computed all-pairs Ricci flow distance metric S of all nodes via F

Pre-computed edge probability matrix: P =
1

σ
√
2π

exp

(
−1

2

(
S

βσ

)2
)

1: for t = 1 to T do
2: Sampling AR from P
3: AR = AR ∨ AT

R

4: ÃR = AR + I
5: ÂR = D̃

−1/2
R ÃRD̃

−1/2
R

6: Train and update weight parameter W t

7: end for

Specifically, we first calculate the edge weights F by running Ricci flow on the attacked graph G.
Then the all-pairs Ricci flow distance metric S between any two nodes are calculated as the geodesic
distance based on the weights assigned to all the edges. To keep graph sparsity, we only sample
edges between pairs that are within k hops of each other in G (we take k = 2 in the experiments).

Two nodes is connected by an edge with probability: P (S) =
1

σ
√

2π
exp

(
−1

2

(
S

βσ

)2
)

. In each

epoch, we sample a graph Gi for each layer i in the graph convolution method and apply classical
GCN to learn weight parameter W for prediction. The pseudo code for one GNN epoch is shown in
Algorithm 1.

Intuition. Running Ricci flow provides us a chance to recover edges that should exist but are not
formed yet (or removed by the attacker). Recall that a new graph is sampled at each layer in the graph
convolution pipeline. If an edge is added from the attack and is not aligned with the main network
structure (and the underlying metric space), it is unlikely to get consistent support in the re-sampling
phase across multiple layers. If an edge from the attack is actually aligned well with the underlying
metric space, it is not creating much damage in the performance. This observation is visualized in
Figure 4. To show the benefit of Ricci flow metric in addition to the ensemble approach, we also
compared with re-sampling using other graph metrics such as spectral embedding and hop count
metric. See the experiment section.

3 EXPERIMENTS

Attack and defense baselines. We test our methods against two poisoning attacks: RAND (ran-
domly adding fake edges into the graph, provided by DeepRobust (Li et al., 2020) library) and
META (meta-learning attack (Zügner & Günnemann, 2019a)), which treats the graph structure as
a hyper-parameter and uses meta-gradients to solve the believe optimization problem in Eq. 2.1.
We ran the meta-learning with self-training (using predicted labels on unlabeled nodes) and exact
meta-gradients named as Meta-Self since it achieves state-of-the-art performance in most datasets.

For defense methods, we also compare the performance of graph attention network (GAT) (Veličković
et al., 2018), RGCN (Zhu et al., 2019), GCN-Jaccard (Wu et al., 2019), GCN-SVD (Entezari et al.,
2020) and Pro-GNN (Jin et al., 2020b). The detailed descriptions of these baseline methods can be
found in the supplementary materials. In all experiments, for each graph, we run the training and
inference tasks 20 times and take the average accuracy. For each training procedure, we run 100
epochs and use the best model based on validation performance.

Results on synthetic datasets. We evaluate our method on synthetic graphs generated from the
Stochastic Block Model (SBM) (Holland et al., 1983). We create 24 random graphs, each of
which has 1000 nodes, equally partitioned into five communities. Within each community, two
nodes are connected with intra-class probability p ∈ {0.07, 0.09, 0.11, 0.13}. Nodes from different
classes have a lower probability to connect with each other with inter-class edge probability q ∈
{0.025, 0.03, 0.035, 0.4, 0.045, 0.05}. Community 4 and 5 only have edges to community 1. For

6



Under review as a conference paper at ICLR 2021

each generated graph, we randomly select 100 nodes as the training set and the remaining 900 as
testing set for attack and defense. We assign each node a node ID feature using the one-hot encoding.

We use 2-layer GCN (Kipf & Welling, 2016) as the default graph neural network and meta-learning
attacks (Zügner & Günnemann, 2019a) as the attacking method. 5% of the total edges are perturbed
under the node degree distribution constraint as in (Zügner et al., 2018). For attacking, we follow
the setting in (Zügner & Günnemann, 2019a). For Ricci-GNN, we also use 2 layers, and the
hyperparameters are chosen from σ ∈ {0.2, 0.4, 0.6, 0.8, 1.0} and β ∈ {1, 2, 3, 4, 5}.
The classification accuracy for the original graph, the attacked graph, and our Ricci-GNN method are
84%, 82%, and 87% respectively. Our proposed method successfully negates the impact of the attack
and even improves classification accuracy. This is due to the power of the Ricci flow metric in terms
of recovering the underlying community structure and the improved robustness and diversity with our
re-sampling method. Figure 4(a) shows a graph from the SBM with inter-class probability q = 0.045
and intra-class probability p = 0.09. The meta-learning attack injected additional edges (see the red
dot in its adjacency matrix in Figure 4(b)), many of which are between different communities as this
will incur most damage to the performance. By sampling via a Gaussian filter on the Ricci flow metric
(see probability in Figure 4(c)), we can re-create graph topology that preserves the same connectivity
pattern within communities and across communities. In addition, if we sample twice and obtain two
graphs G1 and G2. Both graphs strongly preserve the community structure; but the inter-communities
edges in G1 and G2 are largely different – see the common edges in Figure 4(d). Recall that we
plug in a freshly re-sampled graph in each layer of the GCN, the influence of inter-community edges
introduced by the attack is gradually eliminated during training.

(a) (b) (c) (d)

Figure 4: The defense of meta-learning attack using Ricci-GNN on a Stochastic Block Model (SBM) graph
with 5 communities. 4(a): The clean SBM graph. 4(b): The adjacency matrix of the graph while the edges in the
clean graph are shown in blue. Edges added by the meta-learning attack are shown in red. These edges appear
disproportionately to the original edge density. Sparser blocks in the clean graph receive more edges in the
attack; nearly all edges in the attack are between different communities. 4(c): The heat map of the probability
of an edge being connected in our re-structuring method. The probability of edges in the original community
structure are higher than the attack edges. 4(d): The common edges of two randomly re-sampled graphs – the
influence of the edges in the meta-learning attack is essentially eliminated.

Results on real-world datasets. We evaluate our method on three real-world graph datasets: Cora,
Citeseer, and Polblogs, that were often used in prior work (Zügner & Günnemann, 2019a). Cora and
Citeseer (Sen et al., 2008) are citation networks, where each node represents a document and each
edge represents a citation relationship. In Polblogs (Adamic & Glance, 2005), nodes are political
blogs in 2004 US president election and edges represent citations between blog. Note that Polblogs
does not have node features so we create an N dimension one hot feature for each node.

We use the same training setup for the clean graph, poisoned graph and our method. This includes set-
ting L2 regularization with λ = 0.0005, initializing by Glorot initialization and training by minimizing
cross-entropy loss using Adam optimizer with learning rate r = 0.005.

For random attack, we randomly add 5% extra edges. The result is shown in Table 1. Our method
is on par with other methods on Cora and achieve state-of-the-art for Citeseer and Polblogs dataset.
We also ran the experiment with increasing perturbation ratio on Polblogs dataset. As shown in
Figure 5(b), by restructuring and sampling the graph based on the Ricci flow metric, our method can
negate most of the effect of added random noise even when the noise ratio is large.
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(a) Meta-learning attack (b) Random attack

Figure 5: Accuracy plot of different defense schemes with increasing perturbation rate under different
attacks on Polblogs.

Table 1: Classification accuracy for various defense schemes after random attack of 5% extra edges

Dataset GCN GAT RGCN GCN-Jaccard GCN-SVD Pro-GNN Ricci-GNN
Cora 83.54±0.34 83.27±0.28 83.51±0.24 83.09±0.36 72.94±0.46 83.24 ±0.76 83.19±0.64

Citeseer 68.75±0.48 68.76±0.57 71.08 ±1.10 71.34±0.59 64.78±1.11 70.78±1.02 71.47 ±0.53
Polblogs 92.49 ±0.94 93.03 ±1.32 92.07 ±0.28 - 93.39 ±0.33 93.28±0.91 94.10 ±0.26

Table 2: Classification accuracy for various defense schemes after meta-learning attack

Dataset Ptb rate% GCN GAT RGCN GCN-Jaccard GCN-SVD Pro-GNN Ricci-GNN
0 83.50±0.44 83.97±0.65 83.09±0.44 82.05±0.51 80.63±0.45 82.98±0.23 83.03 ±0.59
5 76.55±0.79 80.44±0.74 77.42±0.39 79.13±0.59 78.39±0.54 82.78 ±0.45 82.80 ±0.43

Cora 10 70.39±1.28 75.61±0.59 72.22±0.38 76.16±0.76 71.47±0.83 77.91±0.86 79.70 ±0.43
15 65.10±0.71 69.78±1.28 66.82±0.39 71.03±0.64 66.69±1.18 76.01 ±1.12 77.28±0.50
20 59.56±2.72 59.94±0.92 59.27±0.37 65.71±0.89 58.94±1.13 68.78 ±5.84 74.10 ±0.63
25 47.53±1.96 54.78±0.74 50.51±0.78 60.82±1.08 52.06±1.19 56.54 ±2.58 71.73±0.60

0 71.96±0.55 73.26±0.83 71.20±0.83 72.10±0.63 70.65±0.32 73.26 ±0.69 73.95±0.53
5 70.88±0.62 72.89±0.83 70.50±0.43 70.51±0.97 68.84±0.72 73.09 ±0.34 73.39±0.52

Citeseer 10 67.55±0.89 70.63±0.48 67.71±0.30 69.64±0.56 68.87±0.62 72.43 ±0.75 72.51±0.62
15 64.52±0.62 69.02±0.62 65.69±0.62 65.95±0.62 63.26±0.62 70.82 ±2.38 71.99±0.71
20 62.03±3.49 61.04±1.52 62.49±1.22 59.30±1.40 58.55±1.09 66.19 ±2.57 68.40±0.51
25 56.94±2.09 61.85±1.12 55.35±0.66 59.89±1.47 57.18±1.87 66.40 ±2.57 68.84±0.51

0 95.69±0.38 95.35±0.20 95.22±0.14 - 95.31±0.18 93.20 ±0.64 95.72±0.24
5 73.07±0.80 83.69±1.45 74.34±0.19 - 89.09±0.22 93.29 ±0.18 90.54 ±0.47

Polblogs 10 70.72±0.62 76.32±0.62 71.04±0.62 - 81.24±0.62 89.42 ±1.09 86.88±0.85
15 64.96±1.91 68.80±1.14 67.28±0.38 - 68.10±3.73 86.04 ±2.21 86.10±0.96
20 51.27±1.23 51.50±1.63 59.89±0.34 - 57.33±3.15 79.56 ±5.68 81.37±1.24
25 49.23±1.36 51.19±1.49 56.02±0.56 - 48.66±9.93 63.18 ±4.40 79.95 ±1.89
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Table 2 shows the classification accuracy (the higher the better) of different defense schemes after
attacked by meta-learning attack with different perturbation ratios. The first row of the table in each
dataset shows the accuracy of applying the defense method on the original clean graph. The result
shows that directly using our method has no negative effect on GNN models. Specially for Citeseer
and Polblog dataset, our method achieve state-of-the-art accuracy. When the perturbation increases
(the attacker is more powerful), the accuracy gap between our method and other methods widens,
clearly demonstrating the advantage of our method.

Table 3: Classification accuracy for defense using Ricci flow metric (Ricci) vs. hop count metric
(HC) and spectral embedding metric after meta-learning attack. Note that Citeseer dataset is by itself
fairly robust to attacks (See Table 2).

Ptb rate % Cora Citeseer Polblogs
HC Spectral Ricci HC Spectral Ricci HC Spectral Ricci

0 82.0 78.4 83.0 73.4 72.1 74.0 94.9 93.4 95.7
5 81.4 76.1 82.8 73.0 71.3 73.4 85.6 88.2 90.5

10 77.5 73.1 79.7 71.0 69.3 72.5 85.6 88.0 86.9
15 75.5 65.1 77.3 70.7 67.6 72.0 70.6 80.3 86.1
20 72.8 60.2 74.1 67.9 67.8 68.4 65.8 79.4 81.3
25 65.4 54.7 71.7 65.4 65.6 68.8 62.0 74.6 79.5

Benefit of Ricci flow metric. To show the importance of Ricci flow metric, we also run the entire
graph restructuring algorithm but with the hop count metric and the spectral embedding metric
against meta-learning attacks. See Table 3. In nearly all cases, using Ricci flow metric shows clear
improvement on performance. On Cora, the one with spectral embedding is the worst, as the graph is
relatively sparse and spectral embedding is least stable. On Polblogs, the one with hop count distance
is the worst, as the graph is very dense and diameter is small (only 4). It shows that the Ricci flow
metric is important for the probabilistic sampling framework to achieve the full defense potential.

4 CONCLUSION

We propose a novel approach to improve the robustness of GNNs against graph-topology focused
attacks. The curvature and flow information can effectively capture the intrinsic geometry of the
graph that is robust to structural perturbation. Our algorithm restructures and resamples the graphs
using the underlying geometry. This helps training a robust graph neural network. Our method
achieve superior performance on both synthetic and real work benchmarks under various attacks.
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A APPENDIX

In this supplemental material, we provide technical details on Ricci curvature and flow. We also
provide additional details on the experiments.

A TECHNICAL DETAILS OF RICCI CURVATURE AND FLOW

In this sub-section, we will establish the precise mathematical formulation of Ricci curvature and
Ricci flow in the discrete setting and describe their computation on un-directed graphs. We first
define Ricci curvature, which is computed for each edge. Next, we explain how Ricci flow re-weight
the edges iteratively so that Ricci curvatures of all edges are smoothed. The final weighted graph
induces the Ricci flow metric; the geodesic distance between any two nodes in this weighted graph is
their distance in the Ricci flow metric space.

A.1 DISCRETE RICCI CURVATURE.

In Ollivier’s definition Ollivier (2009) of Ricci curvature for discrete space, one aims to measure
the curvature κxy between nodes x and y. By comparing the Wasserstein distance (also called earth
mover distance) between the neighborhoods of x and y, we can determine the deviation of the edge
(x, y) from being flat.

For an undirected and edge-weighted graph G = (V,E), the neighborhood of a node x is the
collection of immediately adjacent nodes (one-hop neighbors)N (x) = {xi : (x, xi) ∈ E} associated
with some probability measure mx(xi) which sums to 1. Similarly, we have a probability measure
my on the neighborhood of y. The Wasserstein distance between thew two probability measures,
W (mx,my), is the minimum total weighted cost to move mx to my using the optimal transportation
plan M:

min
M

∑
i,j

d(xi, yj)M(xi, yj)

s.t.
∑
j

M(xi, yj) = mx(xi),∀i∑
i

M(xi, yj) = my(yj),∀j

(A.1)

where M(xi, yj) is the quantity of probability mass transferred from xi to yj using the shortest path
with graph geodesic d(xi, yj). Then the Ricci curvature κxy of the edge (x, y) takes the ratio between
this Wasserstein distance and their geodesic:

κxy = 1− W (mx,my)

d(x, y)
. (A.2)

A negative curvature means the probability mass of the neighborhood mx is transported to my mostly
through the edge (x, y). This usually happens when (x, y) is a bridge joining two communities
(red edges in Figure 1(a)). Meanwhile, an edge within a community tend to have overlapping
neighborhoods of x and y, resulting in positive curvature (blue edges in Figure 1(b)). Notice that the
curvature value depends on the edge weights. Later in Ricci flow, we will illustrate how curvature
morphs when edge weights change.

To define the probability measure of each neighborhood, we adopt a weight aware definition from Ni
et al. (2019) that discounts neighbors which are further away. With portion γ ∈ [0, 1] and discount
factor p ≥ 0,

mγ,p
x (xi) =


γ if xi = x
1−γ
C · exp(−d(x, xi)

p) if xi ∈ N (x)

0 otherwise .
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where C =
∑
i:xi∈N (x) exp(−d(x, xi)

p) is the normalizing constant to assign probability measure 1

to the entire neighborhood. When p = 0 (weight unaware), this definition of the probability measure
reduces to the uniform distribution. We take γ = 0.5 and p = 2 following the heuristics in the
literature.

A.2 RICCI FLOW

Recall the curvature describes the degree of a surface being curved. Ricci flow is an iterative process
to restore the flatness everywhere such that Ricci curvature κxy is constant for every edge. Starting
with the original input graph, the flow iteratively updates edge weights. For the t-th iteration, all the
new edge weights w(t+1) are calculated as

w(t+1)(x, y) = d(t)(x, y)− κ(t)
xyd

(t)(x, y). (A.3)
.

Each update moves the edge weight in the opposite direction of the curvature. Geometrically,
negatively curved edges acting as bridges will be extended while positively curved edges within
the community will be shortened. We re-normalize edge weights after each iteration. When the
process converges, the final set of edge weights induces a Ricci flow metric on the graph. Please see
Figure 1(b) for an illustration.

To speed up the computation of the Wasserstein distance, we use an approximate version called
Sinkhorn distance from Cuturi (2013) that smooths the optimal transportation cost with a regulariza-
tion term and then can be computed by Sinkhorn-Knopp’s matrix scaling algorithm.

B ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

B.1 DATASETS DESCRIPTION

Table 4 provides details of the datasets.

Table 4: Statistics of Real-World graph datasets.

Cora CiteSeer Polblogs
#Node 2708 3327 1222
#Edge 5429 4732 16714
AvgDeg 4.00 2.84 27.35
Diameter 19 28 4

#Feature 1433 3703 -
#Class 7 6 2

B.2 GRAPH HEATMAP

Figure 6 shows prediction accuracy of all the 24 graphs generated in Section 4.1 of the main paper.
We observe better accuracy by our method, compared with the GNN trained on the attacked graph.

B.3 ADDED BASELINES

B.3.1 NEW BASELINES RESULT ON DEFENDING META-LEARNING ATTACK FOR DIFFERENT
PERTURBATION RATE.

Tabel 5 shows the two new baselines performance on defending the meta learning attack under
different perturbation rate. It worth mentioning that CurvGN (Ye et al., 2020) is not designed for
improving the robustness of GNN. Thus CurvGN performs relatively worse than DropEdge (Rong
et al., 2019). We also move the performance of our Ricci-GNN to here to show that our method
perform better than those two methods.
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Figure 6: Defense accuracy heat maps for synthetic data of 24 SBM graphs constructed from different
{p, q}. From left to right: attacked graph, clean graph, defense result by our Ricci-GNN. For each
heat map, x-axis is the intra-community probability, p, y-axis is the inter-community probability, q.

Table 5: Classification accuracy for various defense schemes after meta-learning attack

Dataset Ptb rate% CurvGN DropEdge Ricci-GNN
0 82.8 82.8 83.0
5 75.8 79.2 82.8

Cora 10 69.3 72.3 79.7
15 60.3 65.9 77.3
20 52.8 57.9 74.1
25 46.7 47.8 71.7
0 73.4 73.4 73.9
5 70.5 71.9 73.4

Citeseer 10 66.1 69.3 72.5
15 62.9 65.9 72.0
20 52.9 58.1 68.4
25 48.1 55.6 68.8
0 94.1 94.4 95.7
5 73.7 90.7 90.5

Polblogs 10 72.2 89.0 86.9
15 68.2 82.2 86.1
20 58.5 81.3 81.4
25 55.6 78.8 80.0

15



Under review as a conference paper at ICLR 2021

B.3.2 DEFENSE RESULT ON TOPOLOGICAL ATTACK-MINMAX

Besides the Table 6 shows the extra experiment results on defending the topological attack-MinMax
(Xu et al., 2019a) under two different perturbation rate: 5% and 25%. Since the code of DropEdge
has programming error on citeseer under MinMax attack, we can’t report it’s result. (For now) From
the tabel, we can see that our methods out perform all other baselines. It confirms that our method
improved the robustness of GNN on different attack methods.

Table 6: Classification accuracy for various defense schemes after topological attack-MinMax.

Dataset Ptb rate% GCN GAT RGCN GCN-Jaccard GCN-SVD Pro-GNN DropEdge curvGN Ricci-GNN
Cora 5 82.8 83.8 81.9 71.3 83.5 83.4 80.3 82.3 83.8

25 74.2 73.5 77.3 65.5 75.9 77.2 44.5 72.6 78.6
Citeseer 5 71.6 72.2 73.3 67.8 71.6 71.7 - 72.3 73.7

25 58.7 59.3 63.5 56.0 57.5 66.4 - 67.7 68.4
Polblogs 5 88.5 87.1 51.2 86.7 71.2 92.7 80.4 93.6 94.5

25 58.5 53.0 51.4 50.2 72.2 64.9 59.4 75.6 87.9

C DETAILED DESCRIPTION OF BASELINE METHODS

GAT. Graph attention network (Veličković et al., 2018) uses node feature to learn a self attention.
The attention is used to re-weight each message passed to the node. Neighboring nodes with features
that are more important will receive higher weights. Since the message is solely learned from node
features, GAT is inherently robust to graph structure perturbation.

RGCN. RGCN (Zhu et al., 2019) models hidden layer representation of nodes as Gaussian distribution
to counter adversarial attacks. It also use attention mechanism from GAT to penalize nodes with high
variance.

GCN-Jaccard. GCN-Jaccard (Wu et al., 2019) inherits the idea of feature importance from GAT.
It choose important messages measured by Jaccard similarity of features and delete edges that
considered irrelevant.

GCN-SVD. GCN-SVD (Entezari et al., 2020) claims that most adversarial attacks will affect high-
rank spectrum of the graph, thus taking a low-rank approximation of the graph to defend the
adversarial attacks. Note that it’s originally designed to defend Nettack(Zügner et al., 2018). However,
it can be also used for meta-learning attack (Zügner & Günnemann, 2019a) and random attack.

Pro-GNN. Pro-GNN jointly learn a structural graph and a robust graph neural network model from
the perturbed graph guided by exploring the graph properties of sparsity, low rank and feature
smoothness to design robust graph neural networks.

Topological attack-MinMax. Topological attack provides two attacking methods. a) attacking a
pre-defined GNN (PGD) and b) attacking a re-trainable GNN (MinMax). We choose the MinMax
because most recent work focus on improve the robustness of re-trained GNN. The topological
attack the problem as a loss optimization problem and use the MinMax method to solve the problem.
The attacker seeks to minimize the per-node attack loss while the GNN tries defend the attack by
retraining W so that attacking GNN is more difficult.
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