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Abstract

Non-autoregressive generation (NAR) meth-001
ods, which can generate all the target tokens002
in parallel, have been widely utilized in vari-003
ous tasks including text summarization. How-004
ever, existing works have not fully considered005
the unique characteristics of the summariza-006
tion task, which may lead to inferior results.007
Specifically, text summarization aims to gen-008
erate a concise summary of the original doc-009
ument, resulting in a target sequence that is010
much shorter than the source. This poses a011
challenge of length prediction for NAR models.012
To address this issue, we propose an edit-based013
keywords-guided model named EditKSum: it014
utilizes the prominent keywords in the original015
text as a draft and then introduces editing opera-016
tions such as repositioning, inserting, and delet-017
ing to refine them iteratively to get a summary.018
This model can implicitly achieve length pre-019
diction during the editing process and avoid the020
bias introduced by the imbalance of different021
editing operation frequencies during the train-022
ing process. EditKSum is based on an encoder-023
decoder framework which is trained in an end-024
to-end manner and can be easily integrated025
with pre-trained language models. When both026
are equipped with pre-trained models, the pro-027
posed framework largely outperforms the exist-028
ing NAR baselines on two benchmark summa-029
rization datasets and even achieves comparable030
performance with strong autoregressive (AR)031
baselines.032

1 Introduction033

Non-autoregressive (NAR) generation (Gu et al.,034

2018; Lee et al., 2018) was first proposed in the neu-035

ral machine translation task. Different from autore-036

gressive (AR) models which generate tokens one037

by one and from left to right, NAR models can gen-038

erate all the target tokens in parallel, which brings a039

significant increase in the generation speed. Bene-040

fiting from this, the NAR models have received con-041

siderable attention in recent years and have been042

applied to many other natural language generation 043

tasks (Zou et al., 2021; Higuchi et al., 2021) includ- 044

ing text summarization (Liu et al., 2022a). 045

Text summarization (Rush et al., 2015; Zhong 046

et al., 2020) aims at creating a short summary that 047

conveys the key information from a long document. 048

Existing NAR models simply treat text summariza- 049

tion as a general text generation task (Qi et al., 050

2021; Su et al., 2021) while ignoring its unique 051

characteristics, which may lead to inferior results. 052

In detail, text summarization is different from other 053

text generation tasks from the following aspects: 1) 054

the target sequence is much shorter than the source 055

sequence, and 2) the source document explicitly or 056

implicitly contains the information that the target 057

needs. 058

The significant difference in lengths between 059

input and output poses a challenge for length pre- 060

diction, which is an important step in NAR mod- 061

els (Xiao et al., 2023). Some previous works 062

adopt static (Yang et al., 2021) or dynamic (Su 063

et al., 2021) length prediction strategies, the per- 064

formance of which can potentially impact the qual- 065

ity of generated summaries. Another line of re- 066

search involves edit-based approaches and implic- 067

itly achieves length prediction during the process 068

of applying editing operations. However, they gen- 069

erate summaries by editing from either the long 070

original document (Agrawal and Carpuat, 2022) 071

or an empty sequence (Gu et al., 2019), both of 072

which suffer from the imbalanced frequency of dif- 073

ferent operations. For example, given the original 074

document/empty sequence, the model will learn 075

to delete/insert in most cases, which brings biases 076

into model training. We verify the statement quan- 077

titatively by analyzing the correlation between the 078

balance of different operations when generating a 079

summary and the final performance as shown in 080

Table 1. 081

To deal with the length prediction challenge in 082

text summarization, we exploit the fact that the 083
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source contains the target information explicitly or084

implicitly in summarization. Previous studies (Li085

et al., 2020; Dou et al., 2021) demonstrate that086

prominent keywords in the original text encom-087

pass crucial information required for generating088

summaries. So, we can regard the sequence of the089

keywords as the initial draft to edit from. Due to the090

closer alignment between the keyword sequence091

and the target sequence, this approach can effec-092

tively address the issue of imbalanced operation093

frequencies in previous editing-based methods.094

Based on the above analysis, we propose an edit-095

based text summarization model that edits from096

prominent keywords, named EditKSum. Specif-097

ically, we build the model based on the encoder-098

decoder framework. The encoder takes the source099

document as input, encodes its hidden representa-100

tions as well as extracts keywords from it, which is101

achieved by inserting Feed-Forward Layers (FFN)102

on top of the encoder and introducing the corre-103

sponding keyword extraction loss functions. The104

decoder takes the extracted keywords as input and105

generates the summary by iteratively applying the106

editing operations including insertion, deletion, and107

repositioning. These operations can further mod-108

ify and refine the extracted keywords, making the109

generated summary more coherent, fluent, and ac-110

curate.111

Following previous works (Liu and Lapata,112

2019; Qi et al., 2021) that utilize pre-trained lan-113

guage models to boost the performance, we incor-114

porate BERT (Devlin et al., 2019) into the frame-115

work by first initializing the encoder and decode116

with a single BERT model, and then adding light-117

weight and specialized adapters on the encoder and118

decoder sides to learn the extraction and genera-119

tion modules accordingly. The framework is jointly120

trained by optimizing the extraction and generation121

loss functions in an end-to-end manner, where the122

parameters of the pre-trained language model are123

frozen and only the adapters are tuned.124

We evaluate our model on two bench-125

mark datasets for text summarization, including126

CNN/DM (Nallapati et al., 2016b) and Giga-127

word (Rush et al., 2015). When equipped with128

pre-trained language models, the proposed model129

achieves 44.19/20.00/40.61 ROUGE-1/2/L scores130

on CNN/DM and 40.15/18.05/35.88 ROUGE-1/2/L131

scores on Gigaword, which outperforms the NAR132

baseline models with large margins. The pro-133

posed model also performs comparably with PE-134

GASUS (Zhang et al., 2020) and even better than135

y0 Rep. Ins. Bal. R-1 R-2 R-L

Empty 135 407 0.33 37.61 16.73 34.77
Keywords 48 48 0.99 44.19 20.00 40.61
Rand Words 116 94 0.81 32.70 9.17 29.25
Source 1289 10 0.01 24.74 10.96 22.47

Table 1: Results on the balance ratio and Rouge scores
of models with different initial sequences y0. “Rand
Words” indicates randomly selected words that has the
same length as keywords. “Rep.” and “Ins.” indicate
the frequency of reposition and insertion, while “Bal.”
is the balance ratio between them.

AR baselines such as Transformer (Vaswani et al., 136

2017) and BertSum (Liu and Lapata, 2019). 137

2 Related Works 138

2.1 Text Summarization 139

Text summarization is a widely studied task in nat- 140

ural language processing, which aims at generating 141

a short summary that contains the key informa- 142

tion from a long document. Generally, the exist- 143

ing works of text summarization can be classified 144

into extractive summarization (Xu et al., 2020; 145

Zhong et al., 2020) and abstractive summarization 146

(Gehrmann et al., 2018; Liu and Liu, 2021; Liu 147

et al., 2022b). 148

The text summarization models are usually 149

based on the encoder-decoder framework, which 150

takes various forms including recurrent neural net- 151

works (RNN) at first (Rush et al., 2015; Nallap- 152

ati et al., 2016a) and Transformer (Vaswani et al., 153

2017) layers recently. With the rise of large-scale 154

pre-trained models, both general (Lewis et al., 155

2020; Song et al., 2019) and specific (Zhang et al., 156

2020; Qi et al., 2020) pre-trained models are widely 157

utilized in the text summarization task, achieving 158

impressive results thanks to the powerful represen- 159

tation ability of pre-trained models. 160

Most of the previous works generate summaries 161

in an AR manner i.e., word-by-word and from left 162

to right. However, AR generation faces the problem 163

of slow inference. Recently, NAR generation meth- 164

ods (Gu et al., 2018) have been proposed, which 165

can generate all tokens in the target sequence in par- 166

allel therefore greatly speeding up the generation 167

process. However, when applied to the text sum- 168

marization task (Qi et al., 2021; Su et al., 2021), 169

these models still underperform their AR counter- 170

parts significantly. In this paper, we propose an 171

edit-based keywords guided model, which greatly 172

improves the performance of NAR summarization 173
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Figure 1: The model architecture of EditKSum.

models.174

2.2 Non-autoregressive Generation175

Non-autoregressive (NAR) generation is first pro-176

posed in the neural machine translation task (Gu177

et al., 2018; Lee et al., 2018; Ghazvininejad et al.,178

2019). Unlike AR models that generate tokens se-179

quentially, NAR models typically predict the target180

sequence length first and then proceed to generate181

tokens in parallel. NAR models improve the in-182

ference speed at the potential price of a decrease183

in accuracy. Therefore, numerous research efforts184

(Qian et al., 2021; Saharia et al., 2020; Guo et al.,185

2020a; Wang and Geng, 2022) have been proposed186

to narrow the gap between NAR models and AR187

models in terms of the generation quality. Among188

these works, edit-based generation models can bal-189

ance the inference speed and quality, as well as190

achieving length prediction implicitly by construct-191

ing output sequences through a series of atomic192

operations such as insertion (Stern et al., 2019),193

deletion (Gu et al., 2019), and reposition (Xu and194

Carpuat, 2021).195

Owing to the considerable success of NAR mod-196

els in machine translation, numerous researchers197

have recently extended this approach to a wider198

array of text generation tasks. These include gram-199

matical error correction (Omelianchuk et al., 2020),200

automatic speech recognition (Higuchi et al., 2021),201

dialogue (Zou et al., 2021), and summarization (Liu202

et al., 2022a; Qi et al., 2021; Su et al., 2021).203

On the task of text summarization, previous204

works do not take into account the discrepancy205

in lengths between the input and output sequences.206

As a result, difficulties are encountered in the step 207

of length prediction, which in turn affect the sum- 208

marization quality. In contrast, we generate sum- 209

maries by editing from the keywords extracted from 210

the source, which alleviates the above issues in prin- 211

ciple. 212

3 Methodology 213

We introduce the proposed model EditKSum in 214

this section, including an analysis of the editing 215

operations in the existing edit-based methods, and 216

the architecture of EditKSum. We start with the 217

problem definition. 218

3.1 Problem Definition 219

Two sub-problems exist in our framework: text 220

summarization and keyword extraction. 221

Text Summarization Given a parallel training 222

dataset ⟨X ,Y⟩ which consists of pairs of source 223

documents and reference summaries ⟨X,Y ⟩ ∈ 224

⟨X ,Y⟩. Text summarization aims at generating the 225

summary Y conditioned on the source document 226

X . Model parameters θ are trained to maximize 227

the conditional likelihood of the outputs. 228

argmax
θ

∑
⟨X,Y ⟩∈⟨X ,Y⟩

log p(Y |X; θ) (1) 229

Keywords Extraction Given a source sequence 230

X = (x1, x2, ..., xn), the keyword extractor out- 231

puts keywords G = (g1, g2, ..., gl), gt ∈ X from 232

the source. Since there is no golden label to train 233

the keyword extractor, we use the overlap of the 234

original document and the reference summary as 235
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pseudo keyword labels to train the keyword extrac-236

tor.237

3.2 Analysis of Operations238

We first conduct a detailed analysis on the relation239

between the balance of different operations and the240

model performance. Specifically, we train a model241

with three operations including insertion, dele-242

tion and repositioning following (Xu and Carpuat,243

2021) on the CNN/DM dataset, and generate sum-244

maries by editing from different initial sequences,245

including empty, keywords, the full source docu-246

ment, as well as a baseline setting which is the247

randomly sampled words from the source docu-248

ment with the same number of words as that of249

keywords.250

We evaluate the performance of the generated251

summary and calculate the frequency of different252

operations executed in each sample, and define the253

balance as the frequency ratio between insertion254

and reposition (we ensure the ratio is in [0, 1] by255

taking the inverse if it is greater than 1). Since256

deletion is a special case of reposition, we treat257

them as one operation. The frequency is calculated258

as an average among the test set. The results are259

listed in Table 1.260

As can be observed in Table 1, when generat-261

ing summaries from keywords, the balance ratio262

is 0.99, indicating that the two operations are well263

balanced, and the model also achieves the best re-264

sults.265

In other cases, when generating from empty,266

the full source or the baseline setting, the opera-267

tions are heavily biased with degraded performance.268

Specifically, the Pearson correlation coefficient be-269

tween the balance ratio and the Rouge-1 score is270

0.76, indicating that the performance of edit-based271

models is highly co-related with the balance of op-272

erations. Moreover, the gap between generating273

from keywords and generating from random words274

underscores the role that keywords play in the task275

of text summarization.276

3.3 Model Architecture277

In this section, we will introduce the architecture278

of EditKSum. As illustrated in Figure 1, our model279

is based on the encoder-decoder framework (Bah-280

danau et al., 2014; Vaswani et al., 2017), where281

the encoder is utilized to encode the source docu-282

ment X , followed by a keyword extractor module.283

The decoder generates the target sequence Y con-284

ditioned on the source X and the decoder input285

y0 (which will be introduced later) in an iterative 286

edit-based manner. 287

3.3.1 Keyword Extractor 288

In this paper, we simply utilize two feed-forward 289

layers as the keyword extractor, which can be 290

viewed as an adapter, to keep consistent with 291

the whole framework. Specifically, given a se- 292

quence of hidden states H = (h1, h2, ..., hn) 293

which is encoded from the source document X = 294

(x1, x2, ..., xn), the extractor calculates the infor- 295

mativeness of each token by: 296

Hext = W2 · σ(W1 ·H + b1) + b2 (2) 297

where H ∈ Rn×dh and Hext ∈ Rn×2, W and b 298

indicates the parameters of two FFN layers, σ(·) in- 299

dicates the activation function which is ReLU (Nair 300

and Hinton, 2010) in this paper, and dh is the di- 301

mension of the hidden representation. 302

Given Hext which contains the informativeness 303

of each token in the document, the extractor is ex- 304

pected to predict whether each token is a keyword 305

or not. We introduce two loss functions to achieve 306

that. The first is a binary classification loss based 307

on cross-entropy: 308

L1
ext = −

1∑
c=0

yc log σ(Hc
ext) (3) 309

where σ(·) indicates the softmax function. And yc 310

is the real label of each class. 311

Besides predicting keywords directly, an alter- 312

native is to rank the positive examples ahead of 313

the negative ones according to the informativeness 314

scores Hext of each token: 315

L2
ext =

∑
p−,p+∈T

max(0, 1−H
p+
ext +H

p−
ext ) (4) 316

where p+ and p− denote the keywords and non- 317

keywords respectively. 318

Then the loss function of the extractor can be 319

written as: 320

Lext = L1
ext + L2

ext. (5) 321

3.3.2 Edit-Based Generation 322

We introduce the edit-based generation algorithm 323

in this subsection. We regard it as a Markov De- 324

cision Process (MDP), which is defined by a quin- 325

tuple (Y;A; E ;R; y0), where Y is a set of discrete 326

sequences (y0, y1, ..., yn). Each sequence yi ∈ Y 327

is a state in the iterative refinement process, and 328

y0 indicates the initial state. A denotes the set of 329
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actions, which includes operations of deletion, in-330

sertion, reposition and so on in text generation task.331

At each decoding iteration, the environment E re-332

ceives an input yi ∈ Y , chooses an action a ∈ A,333

outputs the refined sequence yi+1 = E(yi, a) and334

gets a reward r. R denotes the reward function.335

Generally, R measures the distance D between the336

generated output and the ground-truth sequence,337

R(y) = −D(y, y∗). The goal of edit-based gener-338

ation is to learn a policy π that maps the current339

sequence yi to a probability distribution over A,340

i.e., π : yi → P (A).341

It is worth mentioning that y0 is crucial in edit-342

based generation. As shown in Table 1, the initial343

state y0 affects the balance between actions as well344

as the final performance of the model. In this paper,345

y0 is a sequence consisting of keywords rather than346

an empty sequence or a complete document as in347

previous summarization works.348

Actions We mainly follow previous works to de-349

termine the atomic operations (Xu and Carpuat,350

2021), including reposition, deletion and inser-351

tion. These operations are suitable for handling352

keywords. Specifically, the reposition operation is353

able to change the order of each token. For each354

token yti in a subsequence yt, the reposition pol-355

icy πrep(r|i, yt) predicts an integer r and moves356

the r-th token into the current index, i.e., ytr will357

be placed in the i-th position after the operation.358

The deletion is a special case of reposition, i.e.,359

when the policy predicts 0, the i-th token yti will360

be deleted. As for the insertion operation, it is di-361

vided into two steps. Firstly, the placeholder policy362

πplh(p|i, yt) predicts the number of placeholders363

p (the [UNK] symbol in implementation) to be in-364

serted in each slot between yi and yi+1. Then, the365

token prediction policy πtok(j|i, yt) replace the366

placeholder by predicting the content token ytj .367

All of the three policies are implemented by the368

corresponding policy classifiers which are inserted369

on the top of decoder layers. Specifically, the repo-370

sition and deletion policy can be written as:371

πrps
θ (r|i, y) = softmax(hi · [e0; e1; ...; en]), (6)372

where ej denotes the embedding of the j-th token in373

the current subsequence, e0 represents the deletion374

embedding, and [·; ·] represent the concatenation375

function. The placeholder and token prediction376

policy can be written as: 377

πplh
θ (p|i, y) = softmax([hi;hi+1] ·W T

plh), (7) 378

πtok
θ (j|i, y) = softmax(hi ·W T

tok), (8) 379

where Wplh ∈ R(K+1)×2dmodel and Wtok ∈ 380

R|V |×dmodel are the parameters of the two policies 381

to be trained, K is a hyper-parameter that repre- 382

sents the maximum number of tokens that can be 383

inserted in each slot, |V | is the vocabulary size and 384

dmodel is the hidden size of the model. 385

3.3.3 Adapters on Encoder and Decoder 386

Recent text summarization works (Liu and Lap- 387

ata, 2019; Zhang et al., 2020) show that large-scale 388

pre-trained language models such as BERT (De- 389

vlin et al., 2019) are able to improve the compre- 390

hension and generation capabilities of the summa- 391

rization model. We incorporate BERT into our 392

framework by first initializing the encoder and 393

decoder with one pre-trained BERT model, and 394

adding light-weight adapters into each pre-trained 395

layer. We only fine-tune the adapters and freeze the 396

pre-trained model while training, in order to reduce 397

the scale of trainable parameters and alleviate the 398

catastrophic forgetting problem (Bapna and Firat, 399

2019; Houlsby et al., 2019). 400

Specifically, we mainly follow AB-Net (Guo 401

et al., 2020b) and design different adapter modules 402

on the encoder and decoder sides, i.e., the encoder 403

adapter is based on FFN layers, while the decoder 404

adapter consists of a multi-head cross-attention 405

module as well as two FFN layers. The keyword 406

extractor can also be considered as an adapter on 407

the encoder side. 408

3.4 Training and Inference 409

We utilize imitation learning to train the edit-based 410

model, which consists of a roll-in policy πin and 411

a roll-out policy πout. The roll-in policy generates 412

an initial sequence to be edited from, and the roll- 413

out policy provides the oracle demonstration to be 414

learned from. In this paper, the roll-in policy for 415

training reposition/insertion predictor is a stochas- 416

tic mixture of the outputs of the insertion/reposition 417

predictor and a noised version of the reference y∗ 418

with random word dropping and shuffle. 419

And the oracle roll-out policy is determined by 420

the Levenshtein edit distance (Levenshtein, 1965), 421

which indicates the minimum number of editing 422

operations required to convert from one sequence 423

to the other. We define the oracle policy π∗ as the 424
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Figure 2: An illustration of the generation process of
the proposed model.

optimal action to transform y0 to y∗, and train the425

model policy π by minimizing the KL divergence426

between the action distributions produced by π and427

π∗ (Brantley et al., 2019):428

Lgen = DKL[π
∗(a|y, y∗)||π(a|y)] (9)429

In summary, we train the proposed framework by430

minimizing the linear combination of the keyword431

extractor loss Lext and the the summary generator432

loss Lgen:433

L = Lext + Lgen. (10)434

At the inference stage, we first obtain keywords435

from the keyword extractor conditioned on the436

source document. Then, we join the keywords437

together with the order in the source document to438

get the initial sequence. Then, we apply a sequence439

of actions (a1, a2, ...) in a circulation of insertions440

and repositions, e.g., as (p1, t1, r1; p2, t2, r2, ..), to441

refine the initial sequence iteratively. The refine-442

ment will be terminated when either two consec-443

utive refinement iterations return the same output444

or a maximum number of iterations is reached. We445

provide an illustration of the generation process in446

Figure 2.447

4 Experiments448

4.1 Datasets449

We conduct experiments on two mainstream450

public datasets of the text summarization task,451

CNN/DM (Nallapati et al., 2016b) and Giga-452

word (Rush et al., 2015).453

CNN/DM is a widely used text summarization cor- 454

pus consisting of pairs of news articles and the cor- 455

responding multi-sentence summaries. We use its 456

non-anonymized version which contains 287112 457

training pairs, 13367 validation pairs and 11490 458

test pairs. The source documents and the reference 459

summaries consist of an average number of 781 460

and 56 tokens respectively. We truncate the source 461

documents that exceed the maximum length (which 462

is 512 in our implementation). 463

Gigaword is a sentence summarization corpus 464

with short documents and summaries, which con- 465

tains 3.8M/190K/2K training/validation/test sam- 466

ples. The average numbers of tokens in the docu- 467

ments and the summaries are 31.4 and 8.3 respec- 468

tively. 469

It is worth mentioning that X-Sum (Narayan 470

et al., 2018) is also a widely used text summariza- 471

tion dataset. However, due to its abstractive nature, 472

i.e. the average overlap rate between the source 473

documents and summaries is relatively low, it is 474

not suitable for the edit-based models (Malmi et al., 475

2022). In addition, we regard the overlap between 476

a given source document and the corresponding 477

reference summary as the golden keywords. Too 478

few coincidence tokens also induce difficulties to 479

train the keyword extractor. Based on the above rea- 480

sons, we do not conduct experiments on the X-Sum 481

dataset. 482

The proposed model EditKSum is more suitable 483

for scenarios where there is a high degree of overlap 484

between the original text and the summary. Further 485

discussions about this phenomenon will be pro- 486

vided in Section D of the supplementary materials. 487

4.2 Experimental Setup 488

Following previous edit-based and non- 489

autoregressive methods (Gu et al., 2018, 2019; 490

Xu and Carpuat, 2021), we apply sequence-level 491

knowledge distillation (Kim and Rush, 2016) to 492

distill the original training set, in order to alleviate 493

the multi-modality problem of non-autoregressive 494

models. Specifically, we distill CNN/DM by an 495

autoregressive pre-trained model bart-large-cnn 496

and use the raw training set on Gigaword as it is 497

much shorter. Then we tokenize the datasets by the 498

bert-cased tokenizer, resulting in a dictionary 499

with 30K tokens. 500

Evaluation Metrics Following previous text 501

summarization models, we used ROUGE (Lin, 502

2004) as the automatic evaluation metric which re- 503
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Model CNNDM Gigaword
ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

NAUS (Liu et al., 2022a)† - - - 28.55 9.97 25.78
Bert+CRF-NAT (Su et al., 2021)† - - - 35.05 16.48 33.28
BANG (Qi et al., 2021) 35.77 12.87 33.07 - - -
LevT (Gu et al., 2019)† 36.35 15.56 33.72 36.14 17.14 34.34
EDITOR (Xu and Carpuat, 2021) 37.61 16.74 34.77 36.89 16.30 34.28
EDITOR w/ BERT 38.84 17.63 35.93 38.10 17.50 35.43

Transformer (Vaswani et al., 2017)† 39.50 16.06 36.63 37.57 18.90 34.69
BERTSum (Liu and Lapata, 2019)† 42.00 19.44 38.98 - - -
PEGASUS (Zhang et al., 2020)† 44.17 21.47 41.11 39.12 19.86 36.24

EditKSum w/o BERT 43.02 18.94 39.39 38.22 16.57 34.35
EditKSum 44.19 20.00 40.61 40.15 18.05 35.88

Table 2: The main results on the CNNDM and the Gigaword datasets. "w/ BERT" or "w/o BERT" indicates whether
the model’s encoder and decoder are initialized with a single BERT model or not. The top scores are highlighted in
bold, while the second-best scores are underlined. † signifies that the results for at least one dataset are sourced
from the original papers or public leaderboards.

ports the precision/recall/F scores of the 1-gram/2-504

gram/longest common subsequences that are over-505

lapped between the generated and the reference506

summary.507

Additionally, we also utilized the GPT-4508

API(OpenAI, 2023) for subjective evaluation of the509

fluency and coherence of the generated summaries.510

Model Configurations We build our model511

based on the bert-base-cased model (nlayers =512

12, nheads = 12, dhidden = 768, dFFN = 3072).513

We set dFFN = 2048 and dhidden = 768 for FFN514

and the attention based adapters. As for the key-515

word extractor, we set dFFN = 512. Besides, we516

apply dropout on the encoders and decoders with a517

probability of 0.1.518

We train our framework on 4 Nvidia 3090 GPUs519

for 100 epochs and it takes 2~3 days to converge.520

The batch size is set as 8000 tokens. The Model is521

optimized with Adam (Kingma and Ba, 2015) with522

a beta value of (0.9, 0.98). We set the learning rate523

to 5e-4 and use 10% of the epochs to warm-up with524

the initial learning rate as 1e-7. We implement our525

model and baselines on fairseq (Ott et al., 2019).526

The code and pre-trained models will be released527

upon acceptance.528

Baselines To make a comprehensive comparison,529

we consider the following baselines.530

NAUS (Liu et al., 2022a) is a specialized unsu-531

pervised NAR model designed for text summariza-532

tion tasks; BERT+CRF-NAT (Su et al., 2021) em-533

ploys BERT as the backbone of a NAR model and534

proposes an elegant decoding mechanism to help535

length prediction; BANG (Qi et al., 2021) is a large- 536

scale pre-trained model which simultaneously sup- 537

ports AR, NAR and semi-NAR generation. We 538

finetune the pre-trained model provided for another 539

20 epochs on the CNNDM and Gigaword datasets; 540

LevT (Gu et al., 2019) is a classical edit-based 541

generation model which applies deletion and in- 542

sertion operations on empty sequences to generate 543

the targets; EDITOR (Xu and Carpuat, 2021) is 544

an edit-based model with reposition, insertion and 545

deletion operations. We compare with it to show 546

the effectiveness of introducing keywords. We also 547

initialize the encoder of EDITOR with BERT to 548

make a fair comparison; Transformer (Vaswani 549

et al., 2017) serves as a widely used AR baseline; 550

BertSum (Liu and Lapata, 2019) is an AR sum- 551

marization model with the encoder initialized with 552

BERT; PEGASUS (Zhang et al., 2020) is a pow- 553

erful AR baseline specifically designed as a pre- 554

trained model for summarization. It may not be 555

fair for EditKSum to compare with PEGASUS, but 556

we chose it to demonstrate our strong capabilities 557

of EditKSum. 558

4.3 Main Results 559

The main results on the CNN/DM and Gigaword 560

datasets are summarized in Table 2. The upper 561

group of the table shows the results of NAR (in- 562

cluding edit-based) models, while the bottom group 563

shows the AR model results. Overall, the pro- 564

posed EditKSum model significantly outperforms 565

most of the NAR and AR baselines on the two 566

datasets, while achieving comparable performance 567
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Datasets CNNDM Gigaword
Lat. Iter. Lat. Iter.

EDITOR 90.8 3.4 70.3 2.7
LevT 88.4 3.4 74.5 2.9
Transformer 576.6 52.3 147.1 14.2
EditKSum 68.6 2.4 60.3 2.3

Table 3: The average inference latency (ms) and the
number of iterations of EditKSum and baselines. For
edit-based models, one iteration corresponds to com-
pleting a cycle of actions, whereas for AR models, the
number of iterations is equal to the length of the gener-
ated sequence.The top scores are highlighted in bold.

in ROUGE-1 with powerful AR pre-trained models568

PEGASUS. Among the NAR methods, our model569

already outperforms the baselines with large mar-570

gins without the help of the pre-trained language571

model. When equipped with BERT, our model572

achieves improvements of 5.35/2.37/4.68 Rouge573

scores over EDITOR w/ BERT, showing the effec-574

tiveness of editing with keywords. EditKSum also575

outperforms BANG, BERT+CRF-NAT, and BERT-576

Sum, both of them are boosted by a large-scale577

pre-trained model.578

4.4 Inference Speed579

In this section, we evaluate the inference speed of580

EditKSum. For a fair comparison, all models have581

been configured with a beam size of 1 and a batch582

size of 1. Moreover, the network hyperparameters583

are consistent across all models.584

As shown in Table 3, we measured the inference585

latency and the number of iterations for different586

models on the CNN/DM and Gigaword test sets.587

Compared with AR or NAR baseline models,588

thanks to editing from keywords, EditKSum can589

generate summaries with fewer iterations. As a590

result, it requires less inference latency to generate591

a summary.592

It is worth noting that for the CNNDM dataset,593

due to the longer length of the original text, the594

effect of EditKSum in improving generation ef-595

ficiency will be more pronounced. Specifically,596

EditKSum achieves 7.40/0.28 times speedup over597

Transformer/LevT in the CNNDM dataset.598

4.5 Fluency and Consistency599

We used the GPT-4 API(OpenAI, 2023) to assess600

the fluency and consistency of the summaries gen-601

erated by EditKSum. We chose 100 samples ran-602

domly from both CNNDM and Gigaword datasets603

Metrics Fluency Consistency
Datasets CNNDM Gigaword CNNDM Gigaword

Editor 6.33 6.27 6.91 7.09
EditKSum 7.03 6.95 8.26 8.47

Table 4: The fluency and consistency of EditKSum
Evaluated by GPT-4. The highest numbers are in bold.

.

respectively, then scored the fluency and consis- 604

tency of the summaries generated by EditKSum 605

and Editor. 606

As shown in table 4, on the one hand, due to the 607

iterative refinement process of editing, EditKSum 608

can generate results that are more fluent compared 609

to the NAR baseline. On the other hand, the process 610

of extracting keywords preserves most of the key 611

information in the original text, so the consistency 612

of EditKSum is also significantly better than that 613

of EDITOR. 614

Specifically, on the CNNDM/Gigaword dataset, 615

EditKSum has a score of 7.03/6.95 out of 10 in flu- 616

ency and 8.26/8.47 out of 10 in consistency on aver- 617

age, outperforming the Editor’s score of 6.33/6.27 618

and 6.91/7.09. 619

5 Conclusion 620

In this paper, we propose an edit-based model with 621

keywords named EditKSum to slove the length pre- 622

dictiong issue in the text summarization task. We 623

first conduct a thorough analysis validating a strong 624

correlation between the balance of different oper- 625

ations and the generation performance, i.e., more 626

balanced operations imply better results. Consider- 627

ing that the salience words in the source document 628

can provide useful information when generating 629

summaries, we propose to edit from keywords by 630

introducing a keyword extractor to extract promi- 631

nent words from the source document, which are 632

taken as the initial state for the edit-based decoder. 633

The proposed EditKSum is particularly well-suited 634

for scenarios where there is a high degree of overlap 635

between the original text and the summary. In ex- 636

periments, on two benchmark text summarization 637

datasets, we show that the proposed EditKSum can 638

achieve significant improvements over other NAR 639

models, while achieving comparable performance 640

to strong NR models with faster decoding speed. 641

For future work, we plan to apply our method to 642

other text generation tasks, such as text simplifica- 643

tion, dialogue, and story generation. 644
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Limitations645

As mentioned in the experimental section, our pro-646

posed model may yield less impressive results for647

datasets like XSum, where the source text does not648

explicitly contain prominent words that might ap-649

pear in the target sequence. This is because the650

model needs to extract keywords from the source651

text and then edit them, which can be challenging652

in such cases. In our future work, we aim to inves-653

tigate more robust keyword prediction and editing654

modules to effectively tackle such issues.655
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A The Structure of Adapters974

As mentioned in the main part of paper, we975

adopt four different kinds of adapters including976

encoder adaper, decoder adapter, keywords extrac-977

tor adapter and adapters for three different editing978

operations. The structure of keywords extractor979

adapter has been specifically introduced in the main980

text. Therefore, we will introduce the other kinds981

of adapters in detail below.982

A.1 Encoder Adapter983

On the encoder side, we construct the adapter with984

a normalization layer and two feed-forward layers985

with a non-linearity ReLU between them:986

Z = W1 · LN(H) (11)987

Henc = H +W2 · (σ(Z)) (12)988

where W1 and W2 are the trained parameters of989

feed-forward layers. LN denotes layer normaliza-990

tion. H and Henc are the input and output hidden991

states of adapter respectively. σ(·) indicates the the992

activation function ReLU.993

A.2 Decoder Adapter994

On the decoder side, the adapter need to process995

the information from source. So we regard a multi-996

head cross-attention module as the decoder adapter:997

Hdec = ATTN(H,HE , HE) (13)998

where ATTN(Q,K, V ) represents the multi-head999

attention. HE and H denotes hidden states of en-1000

coder and decoder respectively. Hdec is the output1001

of decoder adapter.1002

A.3 Operation Adapter1003

Setting R-1 R-1 R-L

Shared 44.19 20.00 40.61
Separate 43.80 19.69 40.29

Table 5: The results of different settings of operation
adapter. Shared means placeholder policy and token
policy share the same adapter. Separate means three
policies use different adapter.

Following the decoder adapter are the reposi-1004

tion adapter, placeholder adapter and token adapter.1005

They adopt the same structure as the encoder1006

adapter.1007

It is worth to mention that the three policies can1008

share the common adapter to achieve the purpose1009

Strategy Hyper-Para. R-1 R-2 R-L

TopN

20 40.76 18.99 37.50
40 42.92 19.73 39.32
60 43.98 19.78 40.17
80 42.45 18.61 38.29

Threshold

0.4 43.15 19.82 39.54
0.6 43.77 19.96 40.04
0.8 44.05 19.93 40.25
1.0 44.19 20.00 40.61

Table 6: Results of EditKSum on CNN/DM dataset
of different keyword extraction strategies. TopN and
Threshold indicates corresponding keyword extraction
strategy. The following number represents the hyper-
parameter N or ϵ. The highest numbers are in bold.

of joint training. Specifically, in this paper, the 1010

placeholder policy and token policy share the same 1011

adapter because they are both related to the inser- 1012

tion operation. As shown in Table 5, the shared 1013

setting achieves better results. 1014

Hyper-parameter of Adapters Whether in en- 1015

coder adapter or operation adapter, we can flexi- 1016

bly control the amount of parameters by adjusting 1017

the bottleneck dimension between the two feed- 1018

forward layers. The hidden dimension between 1019

two FFN layers are both set as denc=2048. The 1020

hidden dimension of the cross-attention module is 1021

set equal to the hidden dimension of BERT model 1022

i.e. ddec=768. 1023

B Comparison of Different Keyword 1024

Extraction Strategies 1025

In EditKSum, the keyword extractor evaluates the 1026

informativeness of all the tokens in the source doc- 1027

ument, based on which the keywords are selected. 1028

We adopt two different strategies to select key- 1029

words, one is to take the top N tokens with the high- 1030

est scores as keywords, the other is to set a thresh- 1031

old ϵ and select the tokens with scores exceeding 1032

the threshold. We investigate the effect of the key- 1033

word selection strategies and hyper-parameter set- 1034

tings. As we can see in Table 6, when we adopt 1035

the threshold strategy and ϵ equals 1.0, the best 1036

ROUGE-1/L scores is achieved (best ROUGE-2 1037

scores is achieved when ϵ equals 0.8). Although 1038

the best result obtained by the topN strategy is sim- 1039

ilar to the threshold strategy, the selection of N 1040

has a great influence on the result. In contrast, the 1041

threshold strategy is more robust. So the default 1042

setting for our experiments is threshold-1.0. 1043
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Datasets CNNDM Gigaword XLSum NewsRoom XSum

Overlap Rate 91.8% 58.82% 59.85% 80.61% 47.28%
PEGASUS (Zhang et al., 2020) 21.47 19.86 18.28 33.39 24.56
EditKSum 20.00 18.05 7.61 29.02 0.57
Relative Gap 6.85% 9.11% 58.37% 13.09% 97.68%

Table 7: The influence the abstractiveness of datasets. "Overlap Rate" represents the proportion of overlap between
the original text and the summary in different datasets. The following two rows respectively show the performance
of the PEGASUS and EditKSum models on these datasets, measured using the ROUGE-2 evaluation metric.

34

36

38

40

42

44

46

CAS Gsum FROST EditKSum

RO
U

G
E 

-1
 

w/o keywords

w/  keywords

Figure 3: ROUGE-1 scores of keywords-guided summa-
rization models. Blue/orange bars indicate the results
w/ or w/o the help of keywords.

C The Influence the Abstractiveness of1044

Datasets1045

To quantify the abstractiveness of different datasets,1046

we measured the overlap rate between source and1047

target tokens among them, a lower overlap rate1048

signifies a higher abstractiveness level.1049

As shown in Table 7, the overlap rate of1050

CNNDM/Gigaword/XLSum/Newsroom/XSum is1051

91.78%/58.82%/59.85%/80.61%/47.28% respec-1052

tively. The relative gap in ROUGE-2 score between1053

EditKSum and PEGASUS was found to have a high1054

Person’s correlation coefficient (0.76) with the over-1055

lap rate, indicating a strong correlation between1056

model performance and abstractiveness level.1057

D Improvement of Keywords-Guided1058

Summarization Models1059

For autoregressive models, the keywords are uti-1060

lized by appending them to the beginning of the1061

summary and taking as the prompt to guide the fol-1062

lowing generation. However, in this way, the model1063

are not able to edit if the keywords contain errors,1064

while the proposed edit with keywords method can1065

alleviate this problem. To verify the statement,1066

we compare the proposed EditKSum with three1067

strong keywords guided autoregressive methods, 1068

i.e., CAS, GSum and FROST. As different models 1069

are based on different pretrained models, to make 1070

a fair comparison, we only consider the impact of 1071

keywords by comparing the performance of the 1072

model w/ or w/o the help of keywords. The re- 1073

sults are visually illustrated in Figure 3, where the 1074

blue and orange columns represent the ROUGE-1 1075

scores on the CNNDM dataset of the model with- 1076

out and with keywords, respectively. Obviously, 1077

the proposed model achieves the most significant 1078

improvement over its counterparts. Specifically, 1079

EditKSum obtains an absolute improvement of 1080

5.35/2.37/4.68 on ROUGE-1/2/L over the initial- 1081

ized baseline, with 13.77% promotion in ROUGE- 1082

1, which is far ahead of the other models. The re- 1083

sults show that the proposed method benefits more 1084

from keywords by utilizing the prominent infor- 1085

mation contained in it, while also correcting the 1086

errors by changing the orders as well as removing 1087

inappropriate ones. 1088

E Case Study 1089

In order to show the generation process and demon- 1090

strate the powerful editing ability of our model 1091

more clearly, we selected a concrete example and 1092

display its specific generation process in Table 8. 1093

As the this example shows, EditKSum extracts 1094

the salient tokens in the source document at first, 1095

then deletes the inappropriate token visit and in- 1096

serts the correct tokens including ’s, visits, j, and 1097

##erus in the correct positions to make a summary 1098

with high quality. 1099
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Type Text

Source
jordan ’s crown prince hassan ibn talal arrived tuesday for his first visit
to jerusalem and was to pay his condolences to the widow of assassi-
nated prime minister yitzhak rabin .

Target jordan ’ s crown prince makes first visit to jerusalem
Hypo jordan ’ s crown prince visits troubled jerusalem city

Tokenize

j ##ord ##an ’ s crown prince has ##san ibn ta ##lal arrived t ##ues
##day for his first visit to j ##erus ##ale ##m and was to pay his con
##do ##len ##ces to the widow of assassinated prime minister y ##itz
##hak r ##abi ##n .

Extract Keywords j ##ord ##an s crown prince visit ##erus ##m
Step0 j ##ord ##an s crown prince visit ##erus ##m
Step1 j ##ord ##an s crown prince ##erus ##m
Step2 j ##ord ##an [UNK] s crown prince [UNK] [UNK] ##erus [UNK] ##m
Step3 j ##ord ##an ’ s crown prince visits j ##erus ##ale ##m
Step4 j ##ord ##an ’ s crown prince visits j ##erus ##ale ##m
Step5 j ##ord ##an ’ s crown prince visits [UNK] j ##erus ##ale ##m
Step6 j ##ord ##an ’ s crown prince visits troubled j ##erus ##ale ##m
Step7 j ##ord ##an ’ s crown prince visits troubled j ##erus ##ale ##m
Step8 j ##ord ##an ’ s crown prince visits troubled j ##erus ##ale ##m [UNK]
Step9 j ##ord ##an ’ s crown prince visits troubled j ##erus ##ale ##m city

Untokenize jordan ’ s crown prince visits troubled jerusalem city

Table 8: Case study on Gigaword dataset. “Source”, “Target” and “Hypo” represents the source document, reference
summary and generated summary respectively. “Tokenize” and “Extract Keywords” mean tokenizing the source
document and extracting keywords from it. Steps means the iterations of sequence. And “Untokenize” means
detokenize the final sequence to get generated summary.
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