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Abstract

Non-autoregressive generation (NAR) meth-
ods, which can generate all the target tokens
in parallel, have been widely utilized in vari-
ous tasks including text summarization. How-
ever, existing works have not fully considered
the unique characteristics of the summariza-
tion task, which may lead to inferior results.
Specifically, text summarization aims to gen-
erate a concise summary of the original doc-
ument, resulting in a target sequence that is
much shorter than the source. This poses a
challenge of length prediction for NAR models.
To address this issue, we propose an edit-based
keywords-guided model named EditKSum: it
utilizes the prominent keywords in the original
text as a draft and then introduces editing opera-
tions such as repositioning, inserting, and delet-
ing to refine them iteratively to get a summary.
This model can implicitly achieve length pre-
diction during the editing process and avoid the
bias introduced by the imbalance of different
editing operation frequencies during the train-
ing process. EditKSum is based on an encoder-
decoder framework which is trained in an end-
to-end manner and can be easily integrated
with pre-trained language models. When both
are equipped with pre-trained models, the pro-
posed framework largely outperforms the exist-
ing NAR baselines on two benchmark summa-
rization datasets and even achieves comparable
performance with strong autoregressive (AR)
baselines.

1 Introduction

Non-autoregressive (NAR) generation (Gu et al.,
2018; Lee et al., 2018) was first proposed in the neu-
ral machine translation task. Different from autore-
gressive (AR) models which generate tokens one
by one and from left to right, NAR models can gen-
erate all the target tokens in parallel, which brings a
significant increase in the generation speed. Bene-
fiting from this, the NAR models have received con-
siderable attention in recent years and have been

applied to many other natural language generation
tasks (Zou et al., 2021; Higuchi et al., 2021) includ-
ing text summarization (Liu et al., 2022a).

Text summarization (Rush et al., 2015; Zhong
et al., 2020) aims at creating a short summary that
conveys the key information from a long document.
Existing NAR models simply treat text summariza-
tion as a general text generation task (Qi et al.,
2021; Su et al., 2021) while ignoring its unique
characteristics, which may lead to inferior results.
In detail, text summarization is different from other
text generation tasks from the following aspects: 1)
the target sequence is much shorter than the source
sequence, and 2) the source document explicitly or
implicitly contains the information that the target
needs.

The significant difference in lengths between
input and output poses a challenge for length pre-
diction, which is an important step in NAR mod-
els (Xiao et al.,, 2023). Some previous works
adopt static (Yang et al., 2021) or dynamic (Su
et al., 2021) length prediction strategies, the per-
formance of which can potentially impact the qual-
ity of generated summaries. Another line of re-
search involves edit-based approaches and implic-
itly achieves length prediction during the process
of applying editing operations. However, they gen-
erate summaries by editing from either the long
original document (Agrawal and Carpuat, 2022)
or an empty sequence (Gu et al., 2019), both of
which suffer from the imbalanced frequency of dif-
ferent operations. For example, given the original
document/empty sequence, the model will learn
to delete/insert in most cases, which brings biases
into model training. We verify the statement quan-
titatively by analyzing the correlation between the
balance of different operations when generating a
summary and the final performance as shown in
Table 1.

To deal with the length prediction challenge in
text summarization, we exploit the fact that the



source contains the target information explicitly or
implicitly in summarization. Previous studies (Li
et al., 2020; Dou et al., 2021) demonstrate that
prominent keywords in the original text encom-
pass crucial information required for generating
summaries. So, we can regard the sequence of the
keywords as the initial draft to edit from. Due to the
closer alignment between the keyword sequence
and the target sequence, this approach can effec-
tively address the issue of imbalanced operation
frequencies in previous editing-based methods.

Based on the above analysis, we propose an edit-
based text summarization model that edits from
prominent keywords, named EditKSum. Specif-
ically, we build the model based on the encoder-
decoder framework. The encoder takes the source
document as input, encodes its hidden representa-
tions as well as extracts keywords from it, which is
achieved by inserting Feed-Forward Layers (FFN)
on top of the encoder and introducing the corre-
sponding keyword extraction loss functions. The
decoder takes the extracted keywords as input and
generates the summary by iteratively applying the
editing operations including insertion, deletion, and
repositioning. These operations can further mod-
ify and refine the extracted keywords, making the
generated summary more coherent, fluent, and ac-
curate.

Following previous works (Liu and Lapata,
2019; Qi et al., 2021) that utilize pre-trained lan-
guage models to boost the performance, we incor-
porate BERT (Devlin et al., 2019) into the frame-
work by first initializing the encoder and decode
with a single BERT model, and then adding light-
weight and specialized adapters on the encoder and
decoder sides to learn the extraction and genera-
tion modules accordingly. The framework is jointly
trained by optimizing the extraction and generation
loss functions in an end-to-end manner, where the
parameters of the pre-trained language model are
frozen and only the adapters are tuned.

We evaluate our model on two bench-
mark datasets for text summarization, including
CNN/DM (Nallapati et al., 2016b) and Giga-
word (Rush et al., 2015). When equipped with
pre-trained language models, the proposed model
achieves 44.19/20.00/40.61 ROUGE-1/2/L scores
on CNN/DM and 40.15/18.05/35.88 ROUGE-1/2/L.
scores on Gigaword, which outperforms the NAR
baseline models with large margins. The pro-
posed model also performs comparably with PE-
GASUS (Zhang et al., 2020) and even better than

Yo \ Rep. Ins. Bal \ R-1 R-2 R-L
Empty 135 407 033 | 37.61 16.73 34.77
Keywords 48 48 099 | 44.19 20.00 40.61
Rand Words 116 94 081 | 3270 9.17 29.25
Source 1289 10  0.01 | 2474 1096 2247

Table 1: Results on the balance ratio and Rouge scores
of models with different initial sequences yy. “Rand
Words” indicates randomly selected words that has the
same length as keywords. “Rep.” and “Ins.” indicate
the frequency of reposition and insertion, while “Bal.”
is the balance ratio between them.

AR baselines such as Transformer (Vaswani et al.,
2017) and BertSum (Liu and Lapata, 2019).

2 Related Works

2.1 Text Summarization

Text summarization is a widely studied task in nat-
ural language processing, which aims at generating
a short summary that contains the key informa-
tion from a long document. Generally, the exist-
ing works of text summarization can be classified
into extractive summarization (Xu et al., 2020;
Zhong et al., 2020) and abstractive summarization
(Gehrmann et al., 2018; Liu and Liu, 2021; Liu
et al., 2022b).

The text summarization models are usually
based on the encoder-decoder framework, which
takes various forms including recurrent neural net-
works (RNN) at first (Rush et al., 2015; Nallap-
ati et al., 2016a) and Transformer (Vaswani et al.,
2017) layers recently. With the rise of large-scale
pre-trained models, both general (Lewis et al.,
2020; Song et al., 2019) and specific (Zhang et al.,
2020; Qi et al., 2020) pre-trained models are widely
utilized in the text summarization task, achieving
impressive results thanks to the powerful represen-
tation ability of pre-trained models.

Most of the previous works generate summaries
in an AR manner i.e., word-by-word and from left
to right. However, AR generation faces the problem
of slow inference. Recently, NAR generation meth-
ods (Gu et al., 2018) have been proposed, which
can generate all tokens in the target sequence in par-
allel therefore greatly speeding up the generation
process. However, when applied to the text sum-
marization task (Qi et al., 2021; Su et al., 2021),
these models still underperform their AR counter-
parts significantly. In this paper, we propose an
edit-based keywords guided model, which greatly
improves the performance of NAR summarization
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Figure 1: The model architecture of EditKSum.

models.

2.2 Non-autoregressive Generation

Non-autoregressive (NAR) generation is first pro-
posed in the neural machine translation task (Gu
et al., 2018; Lee et al., 2018; Ghazvininejad et al.,
2019). Unlike AR models that generate tokens se-
quentially, NAR models typically predict the target
sequence length first and then proceed to generate
tokens in parallel. NAR models improve the in-
ference speed at the potential price of a decrease
in accuracy. Therefore, numerous research efforts
(Qian et al., 2021; Saharia et al., 2020; Guo et al.,
2020a; Wang and Geng, 2022) have been proposed
to narrow the gap between NAR models and AR
models in terms of the generation quality. Among
these works, edit-based generation models can bal-
ance the inference speed and quality, as well as
achieving length prediction implicitly by construct-
ing output sequences through a series of atomic
operations such as insertion (Stern et al., 2019),
deletion (Gu et al., 2019), and reposition (Xu and
Carpuat, 2021).

Owing to the considerable success of NAR mod-
els in machine translation, numerous researchers
have recently extended this approach to a wider
array of text generation tasks. These include gram-
matical error correction (Omelianchuk et al., 2020),
automatic speech recognition (Higuchi et al., 2021),
dialogue (Zou et al., 2021), and summarization (Liu
et al., 2022a; Qi et al., 2021; Su et al., 2021).

On the task of text summarization, previous
works do not take into account the discrepancy
in lengths between the input and output sequences.

As a result, difficulties are encountered in the step
of length prediction, which in turn affect the sum-
marization quality. In contrast, we generate sum-
maries by editing from the keywords extracted from
the source, which alleviates the above issues in prin-
ciple.

3 Methodology

We introduce the proposed model EditKSum in
this section, including an analysis of the editing
operations in the existing edit-based methods, and
the architecture of EditKSum. We start with the
problem definition.

3.1 Problem Definition

Two sub-problems exist in our framework: text
summarization and keyword extraction.

Text Summarization Given a parallel training
dataset (X', )) which consists of pairs of source
documents and reference summaries (X,Y) €
(X,)). Text summarization aims at generating the
summary Y conditioned on the source document
X. Model parameters 6 are trained to maximize
the conditional likelihood of the outputs.

D

(X,)Y)e(x,y)

logp(Y|X;60) (1)

arg max

Keywords Extraction Given a source sequence
X = (z1,2,...,25), the keyword extractor out-
puts keywords G = (g1, 92, .., g1), gt € X from
the source. Since there is no golden label to train
the keyword extractor, we use the overlap of the
original document and the reference summary as



pseudo keyword labels to train the keyword extrac-
tor.

3.2 Analysis of Operations

We first conduct a detailed analysis on the relation
between the balance of different operations and the
model performance. Specifically, we train a model
with three operations including insertion, dele-
tion and repositioning following (Xu and Carpuat,
2021) on the CNN/DM dataset, and generate sum-
maries by editing from different initial sequences,
including empty, keywords, the full source docu-
ment, as well as a baseline setting which is the
randomly sampled words from the source docu-
ment with the same number of words as that of
keywords.

We evaluate the performance of the generated
summary and calculate the frequency of different
operations executed in each sample, and define the
balance as the frequency ratio between insertion
and reposition (we ensure the ratio is in [0, 1] by
taking the inverse if it is greater than 1). Since
deletion is a special case of reposition, we treat
them as one operation. The frequency is calculated
as an average among the test set. The results are
listed in Table 1.

As can be observed in Table 1, when generat-
ing summaries from keywords, the balance ratio
is 0.99, indicating that the two operations are well
balanced, and the model also achieves the best re-
sults.

In other cases, when generating from empty,
the full source or the baseline setting, the opera-
tions are heavily biased with degraded performance.
Specifically, the Pearson correlation coefficient be-
tween the balance ratio and the Rouge-1 score is
0.76, indicating that the performance of edit-based
models is highly co-related with the balance of op-
erations. Moreover, the gap between generating
from keywords and generating from random words
underscores the role that keywords play in the task
of text summarization.

3.3 Model Architecture

In this section, we will introduce the architecture
of EditKSum. As illustrated in Figure 1, our model
is based on the encoder-decoder framework (Bah-
danau et al., 2014; Vaswani et al., 2017), where
the encoder is utilized to encode the source docu-
ment X, followed by a keyword extractor module.
The decoder generates the target sequence Y con-
ditioned on the source X and the decoder input

1o (which will be introduced later) in an iterative
edit-based manner.

3.3.1 Keyword Extractor

In this paper, we simply utilize two feed-forward
layers as the keyword extractor, which can be
viewed as an adapter, to keep consistent with
the whole framework. Specifically, given a se-
quence of hidden states H = (hy,ha,...,hy,)
which is encoded from the source document X =
(1,2, ..., Zn), the extractor calculates the infor-
mativeness of each token by:

Hey =Wo-o(Wy - H+b1) + b )

where H € R™"%% and Hey € R 2, W and b
indicates the parameters of two FFN layers, o (-) in-
dicates the activation function which is ReLU (Nair
and Hinton, 2010) in this paper, and dj, is the di-
mension of the hidden representation.

Given H. which contains the informativeness
of each token in the document, the extractor is ex-
pected to predict whether each token is a keyword
or not. We introduce two loss functions to achieve
that. The first is a binary classification loss based
on cross-entropy:

1

Lic=—Y vy logo(Hg,) 3)
c=0

where o (+) indicates the softmax function. And y°
is the real label of each class.

Besides predicting keywords directly, an alter-
native is to rank the positive examples ahead of
the negative ones according to the informativeness
scores H,y; of each token:

L2, =

ext —

Z max (0,1 — HL) + HY ) (4)
p—p+€T

where py and p_ denote the keywords and non-
keywords respectively.
Then the loss function of the extractor can be
written as:
Lex = Lelzxt + Lgxt' o)

3.3.2 Edit-Based Generation

We introduce the edit-based generation algorithm
in this subsection. We regard it as a Markov De-
cision Process (MDP), which is defined by a quin-
tuple (V; A; E;R; y0), where ) is a set of discrete
sequences (Yo, ¥1, ---, Yn ). Each sequence y; € Y
is a state in the iterative refinement process, and
1o indicates the initial state. A denotes the set of



actions, which includes operations of deletion, in-
sertion, reposition and so on in text generation task.
At each decoding iteration, the environment & re-
ceives an input y; € ), chooses an action a € A,
outputs the refined sequence y;+1 = £(y;,a) and
gets a reward r. R denotes the reward function.
Generally, R measures the distance D between the
generated output and the ground-truth sequence,
R(y) = —D(y, y*). The goal of edit-based gener-
ation is to learn a policy 7 that maps the current
sequence ¥; to a probability distribution over A,
ie,m:y; — P(A).

It is worth mentioning that gy is crucial in edit-
based generation. As shown in Table 1, the initial
state yg affects the balance between actions as well
as the final performance of the model. In this paper,
Yo 1s a sequence consisting of keywords rather than
an empty sequence or a complete document as in
previous summarization works.

Actions We mainly follow previous works to de-
termine the atomic operations (Xu and Carpuat,
2021), including reposition, deletion and inser-
tion. These operations are suitable for handling
keywords. Specifically, the reposition operation is
able to change the order of each token. For each
token y! in a subsequence 3, the reposition pol-
icy 7"P(r|i,y") predicts an integer r and moves
the r-th token into the current index, i.e., yﬁ will
be placed in the i-th position after the operation.
The deletion is a special case of reposition, i.e.,
when the policy predicts 0, the i-th token y! will
be deleted. As for the insertion operation, it is di-
vided into two steps. Firstly, the placeholder policy
7P (pli, yt) predicts the number of placeholders
p (the [UNK] symbol in implementation) to be in-
serted in each slot between y; and y;1. Then, the
token prediction policy 7% (j|i,y') replace the
placeholder by predicting the content token y§

All of the three policies are implemented by the
corresponding policy classifiers which are inserted
on the top of decoder layers. Specifically, the repo-
sition and deletion policy can be written as:

;en])’ 6)

my"*(r|i, y) = softmax(h; - [eo; €15 ...

where e; denotes the embedding of the j-th token in
the current subsequence, e represents the deletion
embedding, and [-; -] represent the concatenation
function. The placeholder and token prediction

policy can be written as:

5" (pli,y) = softmax([h; hia] - Wopp), (D)

7r§°k(j|i, y) = softmax(h; - W/tzk), ®)

where Wy € RE+HDX2dmoa and Wi €
RIV¥dmoset gre the parameters of the two policies
to be trained, K is a hyper-parameter that repre-
sents the maximum number of tokens that can be
inserted in each slot, | V| is the vocabulary size and
dmodel 18 the hidden size of the model.

3.3.3 Adapters on Encoder and Decoder

Recent text summarization works (Liu and Lap-
ata, 2019; Zhang et al., 2020) show that large-scale
pre-trained language models such as BERT (De-
vlin et al., 2019) are able to improve the compre-
hension and generation capabilities of the summa-
rization model. We incorporate BERT into our
framework by first initializing the encoder and
decoder with one pre-trained BERT model, and
adding light-weight adapters into each pre-trained
layer. We only fine-tune the adapters and freeze the
pre-trained model while training, in order to reduce
the scale of trainable parameters and alleviate the
catastrophic forgetting problem (Bapna and Firat,
2019; Houlsby et al., 2019).

Specifically, we mainly follow AB-Net (Guo
et al., 2020b) and design different adapter modules
on the encoder and decoder sides, i.e., the encoder
adapter is based on FFN layers, while the decoder
adapter consists of a multi-head cross-attention
module as well as two FFN layers. The keyword
extractor can also be considered as an adapter on
the encoder side.

3.4 Training and Inference

We utilize imitation learning to train the edit-based
model, which consists of a roll-in policy 7" and
a roll-out policy 7. The roll-in policy generates
an initial sequence to be edited from, and the roll-
out policy provides the oracle demonstration to be
learned from. In this paper, the roll-in policy for
training reposition/insertion predictor is a stochas-
tic mixture of the outputs of the insertion/reposition
predictor and a noised version of the reference y*
with random word dropping and shuffle.

And the oracle roll-out policy is determined by
the Levenshtein edit distance (Levenshtein, 1965),
which indicates the minimum number of editing
operations required to convert from one sequence
to the other. We define the oracle policy 7* as the
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Figure 2: An illustration of the generation process of
the proposed model.

optimal action to transform g to y*, and train the
model policy m by minimizing the KL divergence
between the action distributions produced by 7 and
7* (Brantley et al., 2019):

Lgen = Drep[n” (aly, y*)|[m(aly)] (9

In summary, we train the proposed framework by
minimizing the linear combination of the keyword
extractor loss Lex: and the the summary generator
loss Lgen:

L= Lext + Lgen~ (10)

At the inference stage, we first obtain keywords
from the keyword extractor conditioned on the
source document. Then, we join the keywords
together with the order in the source document to
get the initial sequence. Then, we apply a sequence
of actions (a',a?,...) in a circulation of insertions
and repositions, e.g., as (p*, ¢}, r!;p?, 62,72, ), to
refine the initial sequence iteratively. The refine-
ment will be terminated when either two consec-
utive refinement iterations return the same output
or a maximum number of iterations is reached. We
provide an illustration of the generation process in
Figure 2.

4 Experiments

4.1 Datasets

We conduct experiments on two mainstream
public datasets of the text summarization task,
CNN/DM (Nallapati et al., 2016b) and Giga-
word (Rush et al., 2015).

CNN/DM is a widely used text summarization cor-
pus consisting of pairs of news articles and the cor-
responding multi-sentence summaries. We use its
non-anonymized version which contains 287112
training pairs, 13367 validation pairs and 11490
test pairs. The source documents and the reference
summaries consist of an average number of 781
and 56 tokens respectively. We truncate the source
documents that exceed the maximum length (which
is 512 in our implementation).

Gigaword is a sentence summarization corpus
with short documents and summaries, which con-
tains 3.8M/190K/2K training/validation/test sam-
ples. The average numbers of tokens in the docu-
ments and the summaries are 31.4 and 8.3 respec-
tively.

It is worth mentioning that X-Sum (Narayan
et al., 2018) is also a widely used text summariza-
tion dataset. However, due to its abstractive nature,
i.e. the average overlap rate between the source
documents and summaries is relatively low, it is
not suitable for the edit-based models (Malmi et al.,
2022). In addition, we regard the overlap between
a given source document and the corresponding
reference summary as the golden keywords. Too
few coincidence tokens also induce difficulties to
train the keyword extractor. Based on the above rea-
sons, we do not conduct experiments on the X-Sum
dataset.

The proposed model EditKSum is more suitable
for scenarios where there is a high degree of overlap
between the original text and the summary. Further
discussions about this phenomenon will be pro-
vided in Section D of the supplementary materials.

4.2 Experimental Setup

Following previous edit-based and non-
autoregressive methods (Gu et al., 2018, 2019;
Xu and Carpuat, 2021), we apply sequence-level
knowledge distillation (Kim and Rush, 2016) to
distill the original training set, in order to alleviate
the multi-modality problem of non-autoregressive
models. Specifically, we distill CNN/DM by an
autoregressive pre-trained model bart-large-cnn
and use the raw training set on Gigaword as it is
much shorter. Then we tokenize the datasets by the
bert-cased tokenizer, resulting in a dictionary
with 30K tokens.

Evaluation Metrics Following previous text
summarization models, we used ROUGE (Lin,
2004) as the automatic evaluation metric which re-



Model CNNDM Gigaword
ROUGE-1 ROUGE-2 ROUGE-L | ROUGE-1 ROUGE-2 ROUGE-L

NAUS (Liu et al., 2022a)} - - - 28.55 9.97 25.78
Bert+CRF-NAT (Su et al., 2021)} - - - 35.05 16.48 33.28
BANG (Qi et al., 2021) 35.77 12.87 33.07 - - -
LevT (Gu et al., 2019)} 36.35 15.56 33.72 36.14 17.14 34.34
EDITOR (Xu and Carpuat, 2021) 37.61 16.74 34.77 36.89 16.30 34.28
EDITOR w/ BERT 38.84 17.63 35.93 38.10 17.50 3543
Transformer (Vaswani et al., 2017)7F 39.50 16.06 36.63 37.57 18.90 34.69
BERTSum (Liu and Lapata, 2019)¥ 42.00 19.44 38.98 - - -
PEGASUS (Zhang et al., 2020) 44.17 21.47 41.11 39.12 19.86 36.24
EditKSum w/o BERT 43.02 18.94 39.39 38.22 16.57 34.35
EditKSum 44.19 20.00 40.61 40.15 18.05 35.88

Table 2: The main results on the CNNDM and the Gigaword datasets. "w/ BERT" or "w/o BERT" indicates whether
the model’s encoder and decoder are initialized with a single BERT model or not. The top scores are highlighted in
bold, while the second-best scores are underlined. T signifies that the results for at least one dataset are sourced

from the original papers or public leaderboards.

ports the precision/recall/F scores of the 1-gram/2-
gram/longest common subsequences that are over-
lapped between the generated and the reference
summary.

Additionally, we also utilized the GPT-4
API(OpenAl, 2023) for subjective evaluation of the
fluency and coherence of the generated summaries.

Model Configurations We build our model
based on the bert-base-cased model (nayers =
12, nheads = 12, dpidden = 768, dppn = 3072).
We set dppny = 2048 and djiggen = 768 for FFN
and the attention based adapters. As for the key-
word extractor, we set dppy = 512. Besides, we
apply dropout on the encoders and decoders with a
probability of 0.1.

We train our framework on 4 Nvidia 3090 GPUs
for 100 epochs and it takes 2~3 days to converge.
The batch size is set as 8000 tokens. The Model is
optimized with Adam (Kingma and Ba, 2015) with
a beta value of (0.9, 0.98). We set the learning rate
to Se-4 and use 10% of the epochs to warm-up with
the initial learning rate as le-7. We implement our
model and baselines on fairseq (Ott et al., 2019).
The code and pre-trained models will be released
upon acceptance.

Baselines To make a comprehensive comparison,
we consider the following baselines.

NAUS (Liu et al., 2022a) is a specialized unsu-
pervised NAR model designed for text summariza-
tion tasks; BERT+CRF-NAT (Su et al., 2021) em-
ploys BERT as the backbone of a NAR model and
proposes an elegant decoding mechanism to help

length prediction; BANG (Qi et al., 2021) is a large-
scale pre-trained model which simultaneously sup-
ports AR, NAR and semi-NAR generation. We
finetune the pre-trained model provided for another
20 epochs on the CNNDM and Gigaword datasets;
LevT (Gu et al., 2019) is a classical edit-based
generation model which applies deletion and in-
sertion operations on empty sequences to generate
the targets; EDITOR (Xu and Carpuat, 2021) is
an edit-based model with reposition, insertion and
deletion operations. We compare with it to show
the effectiveness of introducing keywords. We also
initialize the encoder of EDITOR with BERT to
make a fair comparison; Transformer (Vaswani
et al., 2017) serves as a widely used AR baseline;
BertSum (Liu and Lapata, 2019) is an AR sum-
marization model with the encoder initialized with
BERT; PEGASUS (Zhang et al., 2020) is a pow-
erful AR baseline specifically designed as a pre-
trained model for summarization. It may not be
fair for EditKSum to compare with PEGASUS, but
we chose it to demonstrate our strong capabilities
of EditKSum.

4.3 Main Results

The main results on the CNN/DM and Gigaword
datasets are summarized in Table 2. The upper
group of the table shows the results of NAR (in-
cluding edit-based) models, while the bottom group
shows the AR model results. Overall, the pro-
posed EditKSum model significantly outperforms
most of the NAR and AR baselines on the two
datasets, while achieving comparable performance



Datasets CNNDM Gigaword
Lat. Iter. Lat. Iter.
EDITOR 90.8 3.4 70.3 2.7
LevT 88.4 3.4 74.5 2.9
Transformer | 576.6 52.3 | 147.1 14.2
EditKSum 68.6 24 60.3 2.3

Table 3: The average inference latency (ms) and the
number of iterations of EditKSum and baselines. For
edit-based models, one iteration corresponds to com-
pleting a cycle of actions, whereas for AR models, the
number of iterations is equal to the length of the gener-
ated sequence.The top scores are highlighted in bold.

in ROUGE-1 with powerful AR pre-trained models
PEGASUS. Among the NAR methods, our model
already outperforms the baselines with large mar-
gins without the help of the pre-trained language
model. When equipped with BERT, our model
achieves improvements of 5.35/2.37/4.68 Rouge
scores over EDITOR w/ BERT, showing the effec-
tiveness of editing with keywords. EditKSum also
outperforms BANG, BERT+CRF-NAT, and BERT-
Sum, both of them are boosted by a large-scale
pre-trained model.

4.4 Inference Speed

In this section, we evaluate the inference speed of
EditKSum. For a fair comparison, all models have
been configured with a beam size of 1 and a batch
size of 1. Moreover, the network hyperparameters
are consistent across all models.

As shown in Table 3, we measured the inference
latency and the number of iterations for different
models on the CNN/DM and Gigaword test sets.

Compared with AR or NAR baseline models,
thanks to editing from keywords, EditKSum can
generate summaries with fewer iterations. As a
result, it requires less inference latency to generate
a summary.

It is worth noting that for the CNNDM dataset,
due to the longer length of the original text, the
effect of EditKSum in improving generation ef-
ficiency will be more pronounced. Specifically,
EditKSum achieves 7.40/0.28 times speedup over
Transformer/LevT in the CNNDM dataset.

4.5 Fluency and Consistency

We used the GPT-4 API(OpenAl, 2023) to assess
the fluency and consistency of the summaries gen-
erated by EditKSum. We chose 100 samples ran-
domly from both CNNDM and Gigaword datasets

Metrics Fluency Consistency
Datasets CNNDM  Gigaword | CNNDM  Gigaword
Editor 6.33 6.27 6.91 7.09
EditKSum 7.03 6.95 8.26 8.47

Table 4: The fluency and consistency of EditKSum
Evaluated by GPT-4. The highest numbers are in bold.

respectively, then scored the fluency and consis-
tency of the summaries generated by EditKSum
and Editor.

As shown in table 4, on the one hand, due to the
iterative refinement process of editing, EditKSum
can generate results that are more fluent compared
to the NAR baseline. On the other hand, the process
of extracting keywords preserves most of the key
information in the original text, so the consistency
of EditKSum is also significantly better than that
of EDITOR.

Specifically, on the CNNDM/Gigaword dataset,
EditKSum has a score of 7.03/6.95 out of 10 in flu-
ency and 8.26/8.47 out of 10 in consistency on aver-
age, outperforming the Editor’s score of 6.33/6.27
and 6.91/7.09.

5 Conclusion

In this paper, we propose an edit-based model with
keywords named EditKSum to slove the length pre-
dictiong issue in the text summarization task. We
first conduct a thorough analysis validating a strong
correlation between the balance of different oper-
ations and the generation performance, i.e., more
balanced operations imply better results. Consider-
ing that the salience words in the source document
can provide useful information when generating
summaries, we propose to edit from keywords by
introducing a keyword extractor to extract promi-
nent words from the source document, which are
taken as the initial state for the edit-based decoder.
The proposed EditKSum is particularly well-suited
for scenarios where there is a high degree of overlap
between the original text and the summary. In ex-
periments, on two benchmark text summarization
datasets, we show that the proposed EditKSum can
achieve significant improvements over other NAR
models, while achieving comparable performance
to strong NR models with faster decoding speed.
For future work, we plan to apply our method to
other text generation tasks, such as text simplifica-
tion, dialogue, and story generation.



Limitations

As mentioned in the experimental section, our pro-
posed model may yield less impressive results for
datasets like XSum, where the source text does not
explicitly contain prominent words that might ap-
pear in the target sequence. This is because the
model needs to extract keywords from the source
text and then edit them, which can be challenging
in such cases. In our future work, we aim to inves-
tigate more robust keyword prediction and editing
modules to effectively tackle such issues.
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A The Structure of Adapters

As mentioned in the main part of paper, we
adopt four different kinds of adapters including
encoder adaper, decoder adapter, keywords extrac-
tor adapter and adapters for three different editing
operations. The structure of keywords extractor
adapter has been specifically introduced in the main
text. Therefore, we will introduce the other kinds
of adapters in detail below.

A.1 Encoder Adapter

On the encoder side, we construct the adapter with
a normalization layer and two feed-forward layers
with a non-linearity ReLLU between them:

1D
12)

Z =W, - LN(H)
Henc =H+ W2 : (J(Z))

where W and W, are the trained parameters of
feed-forward layers. LN denotes layer normaliza-
tion. H and H,, are the input and output hidden
states of adapter respectively. o(-) indicates the the
activation function ReL.U.

A.2 Decoder Adapter

On the decoder side, the adapter need to process
the information from source. So we regard a multi-
head cross-attention module as the decoder adapter:

(13)

where ATTN(Q, K, V') represents the multi-head
attention. H¥ and H denotes hidden states of en-
coder and decoder respectively. H g is the output
of decoder adapter.

Hg.. = ATTN(H, H? HF)

A.3 Operation Adapter

Setting | R-1 ~ R-1  R-L
Shared | 44.19 20.00 40.61
Separate | 43.80 19.69 40.29

Table 5: The results of different settings of operation
adapter. Shared means placeholder policy and token
policy share the same adapter. Separate means three
policies use different adapter.

Following the decoder adapter are the reposi-
tion adapter, placeholder adapter and token adapter.
They adopt the same structure as the encoder
adapter.

It is worth to mention that the three policies can
share the common adapter to achieve the purpose
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Strategy | Hyper-Para. | R-1 R-2 R-L
20 4076 18.99 37.50

TooN 40 4292 1973 39.32
P 60 4398 1978  40.17
80 4245 18.61 3829

0.4 43.15 19.82 39.54

0.6 4377 1996  40.04

Threshold 0.8 4405 1993 4025
1.0 4419 20.00 40.61

Table 6: Results of EditKSum on CNN/DM dataset
of different keyword extraction strategies. TopN and
Threshold indicates corresponding keyword extraction
strategy. The following number represents the hyper-
parameter IV or e. The highest numbers are in bold.

of joint training. Specifically, in this paper, the
placeholder policy and token policy share the same
adapter because they are both related to the inser-
tion operation. As shown in Table 5, the shared
setting achieves better results.

Hyper-parameter of Adapters Whether in en-
coder adapter or operation adapter, we can flexi-
bly control the amount of parameters by adjusting
the bottleneck dimension between the two feed-
forward layers. The hidden dimension between
two FEN layers are both set as de,=2048. The
hidden dimension of the cross-attention module is
set equal to the hidden dimension of BERT model
i.e. dgec=768.

B Comparison of Different Keyword
Extraction Strategies

In EditKSum, the keyword extractor evaluates the
informativeness of all the tokens in the source doc-
ument, based on which the keywords are selected.
We adopt two different strategies to select key-
words, one is to take the top IV tokens with the high-
est scores as keywords, the other is to set a thresh-
old € and select the tokens with scores exceeding
the threshold. We investigate the effect of the key-
word selection strategies and hyper-parameter set-
tings. As we can see in Table 6, when we adopt
the threshold strategy and e equals 1.0, the best
ROUGE-1/L scores is achieved (best ROUGE-2
scores is achieved when € equals 0.8). Although
the best result obtained by the topN strategy is sim-
ilar to the threshold strategy, the selection of N
has a great influence on the result. In contrast, the
threshold strategy is more robust. So the default
setting for our experiments is threshold-1.0.



Datasets | CNNDM Gigaword XLSum NewsRoom  XSum
Overlap Rate 91.8% 58.82% 59.85% 80.61% 47.28%
PEGASUS (Zhang et al., 2020) 21.47 19.86 18.28 33.39 24.56
EditKSum 20.00 18.05 7.61 29.02 0.57
Relative Gap 6.85% 9.11% 58.37% 13.09% 97.68%

Table 7: The influence the abstractiveness of datasets. "Overlap Rate" represents the proportion of overlap between
the original text and the summary in different datasets. The following two rows respectively show the performance
of the PEGASUS and EditKSum models on these datasets, measured using the ROUGE-2 evaluation metric.

m w/o keywords

mw/ keywords

FROST EditKSum

ROUGE - 1

B4

Gsum

Figure 3: ROUGE-1 scores of keywords-guided summa-
rization models. Blue/orange bars indicate the results
w/ or w/o the help of keywords.

C The Influence the Abstractiveness of
Datasets

To quantify the abstractiveness of different datasets,
we measured the overlap rate between source and
target tokens among them, a lower overlap rate
signifies a higher abstractiveness level.

As shown in Table 7, the overlap rate of
CNNDM/Gigaword/XLSum/Newsroom/XSum is
91.78%/58.82%/59.85%/80.61%/47.28% respec-
tively. The relative gap in ROUGE-2 score between
EditKSum and PEGASUS was found to have a high
Person’s correlation coefficient (0.76) with the over-
lap rate, indicating a strong correlation between
model performance and abstractiveness level.

D Improvement of Keywords-Guided
Summarization Models

For autoregressive models, the keywords are uti-
lized by appending them to the beginning of the
summary and taking as the prompt to guide the fol-
lowing generation. However, in this way, the model
are not able to edit if the keywords contain errors,
while the proposed edit with keywords method can
alleviate this problem. To verify the statement,
we compare the proposed EditKSum with three
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strong keywords guided autoregressive methods,
i.e., CAS, GSum and FROST. As different models
are based on different pretrained models, to make
a fair comparison, we only consider the impact of
keywords by comparing the performance of the
model w/ or w/o the help of keywords. The re-
sults are visually illustrated in Figure 3, where the
blue and orange columns represent the ROUGE-1
scores on the CNNDM dataset of the model with-
out and with keywords, respectively. Obviously,
the proposed model achieves the most significant
improvement over its counterparts. Specifically,
EditKSum obtains an absolute improvement of
5.35/2.37/4.68 on ROUGE-1/2/L over the initial-
ized baseline, with 13.77% promotion in ROUGE-
1, which is far ahead of the other models. The re-
sults show that the proposed method benefits more
from keywords by utilizing the prominent infor-
mation contained in it, while also correcting the
errors by changing the orders as well as removing
inappropriate ones.

E Case Study

In order to show the generation process and demon-
strate the powerful editing ability of our model
more clearly, we selected a concrete example and
display its specific generation process in Table 8.

As the this example shows, EditKSum extracts
the salient tokens in the source document at first,
then deletes the inappropriate token visit and in-
serts the correct tokens including ’s, visits, j, and
#iterus in the correct positions to make a summary
with high quality.



Type

Text

jordan ’s crown prince hassan ibn talal arrived tuesday for his first visit

Source to jerusalem and was to pay his condolences to the widow of assassi-
nated prime minister yitzhak rabin .
Target jordan ’ s crown prince makes first visit to jerusalem
Hypo jordan ’ s crown prince visits troubled jerusalem city
j ##ord ##an ° s crown prince has ##san ibn ta ##lal arrived t ##ues
Tokenize ##day for his first visit to j ##erus ##ale ##m and was to pay his con

Extract Keywords
Step0
Stepl
Step2
Step3
Step4
Step5
Step6
Step7
Step8
Step9

Untokenize

##do #i#len ##ces to the widow of assassinated prime minister y ##itz
##hak r ##abi ##n .

j ##ord ##an s crown prince visit ##erus ##m

j ##tord ##an s crown prince visit ##erus ##m

j ##ord ##an s crown prince ##erus ##m

j ##ord ##an [UNK] s crown prince [UNK] [UNK] ##erus [UNK] ##m
j ##ord ##an ’ s crown prince Vvisits j ##erus ##ale ##m

j ##ord ##an ’ s crown prince visits j ##erus ##ale ##m

j ##tord ##an > s crown prince visits [UNK] j ##erus ##ale ##m

j ##ord ##an ’ s crown prince visits troubled j ##erus ##ale ##m

j ##ord ##an ’ s crown prince visits troubled j ##erus ##ale ##m

j ##ord ##an ° s crown prince visits troubled j ##erus ##ale ##m [UNK]
j ##tord ##an * s crown prince visits troubled j ##erus ##ale ##m city
jordan ’ s crown prince visits troubled jerusalem city

Table 8: Case study on Gigaword dataset. “Source”, “Target” and “Hypo” represents the source document, reference
summary and generated summary respectively. “Tokenize” and “Extract Keywords” mean tokenizing the source
document and extracting keywords from it. Steps means the iterations of sequence. And “Untokenize” means
detokenize the final sequence to get generated summary.

14



	Introduction
	Related Works
	Text Summarization
	Non-autoregressive Generation

	Methodology
	Problem Definition
	Analysis of Operations
	Model Architecture
	Keyword Extractor
	Edit-Based Generation
	Adapters on Encoder and Decoder

	Training and Inference

	Experiments
	Datasets
	Experimental Setup
	Main Results
	Inference Speed
	Fluency and Consistency

	Conclusion
	The Structure of Adapters
	Encoder Adapter
	Decoder Adapter
	Operation Adapter

	Comparison of Different Keyword Extraction Strategies
	The Influence the Abstractiveness of Datasets
	Improvement of Keywords-Guided Summarization Models
	Case Study

