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Abstract

Recent advances have led to the availability001
of many pre-trained language models (PLMs);002
however, a question that remains is how much003
data is truly needed to fine-tune PLMs for004
downstream tasks? In this work, we introduce005
DEFT, a data-efficient fine-tuning framework006
that leverages unsupervised core-set selection007
to minimize the amount of data needed to fine-008
tune PLMs for downstream tasks. We demon-009
strate the efficacy of our DEFT framework in010
the context of text-editing LMs, and compare to011
the state-of-the art text-editing model, CoEDIT.012
Our quantitative and qualitative results demon-013
strate that DEFT models are just as accurate as014
CoEDIT while finetuned on 70% less data.015

1 Introduction016

How much data do we need to fine-tune a pre-017

trained language model (PLM) for a specific down-018

stream task? While successes in language mod-019

elling have led to numerous publicly available020

PLMs and ability to produce fine-tuned models021

for downstream tasks - the answer mostly remains,022

“as large as possible, and of good quality”. For023

example, Alpaca, an instruction-following model,024

is trained with 52k data samples (Taori et al.,025

2023). Similarly, CoPoet, a collaborative poetry026

writing system is fine-tuned using 87k data sam-027

ples (Chakrabarty et al., 2022). MetaMath, a math-028

reasoning LLM is fine-tuned with 395k data sam-029

ples (Yu et al., 2023). Although fine-tuned LMs030

have demonstrated high model capabilities in task-031

specific scenarios, acquiring such large amounts032

of data is not practical in many real-world appli-033

cations which often require niche knowledge and034

domain expertise for dataset curation.035

To improve the efficiency of LLM fine-tuning,036

the NLP community has explored several differ-037

ent methods, ranging from parameter-efficient fine-038

tuning approaches (PEFT) to reduce computational039

costs by optimizing parameter updates (Fu et al.,040

2023; Hu et al., 2021), to leveraging active-learning 041

for iteratively selecting data samples during train- 042

ing to improve model learning (Su et al., 2022; 043

Diao et al., 2023). These approaches have focused 044

greatly on improving the computational efficiency 045

of fine-tuning and how to improve fine-tuning effi- 046

ciency through an iterative paradigm. The motiva- 047

tion of our work instead focuses on improving the 048

data efficiency of PLM fine-tuning without requir- 049

ing iterative fine-tuning. Similar to our motivation, 050

researchers have considered how dataset pruning 051

metrics (Paul et al., 2021; Sorscher et al., 2022) can 052

be used to improve the data efficiency of LLM train- 053

ing. For example, Marion et al. (2023) demonstrate 054

how perplexity, L2-Error Norm (EL2N) and mem- 055

orization can be utilized to select smaller, good 056

quality datasets for model pre-training. Similarly, 057

(Attendu and Corbeil, 2023) leverage EL2N to dy- 058

namically remove data samples with high EL2N 059

between training epochs. However, the metrics 060

utilized by Marion et al. (2023) and Attendu and 061

Corbeil (2023) assume access to labelled data to 062

apply dataset pruning. In real world applications, 063

utilizing such supervised, data-pruning metrics are 064

less realistic since large amounts of annotated task- 065

specific data may be costly to acquire. This leads 066

us to our main research question: Can we fine-tune 067

PLMs in a much more data-efficient manner, requir- 068

ing a relatively smaller amount of labelled data for 069

downstream tasks? 070

In this work, we introduce a new data-efficient 071

fine-tuning (DEFT) framework, which leverages 072

unsupervised core-set selection to minimize the 073

amount of data needed to fine-tune PLMs for down- 074

stream tasks. Similar to Marion et al. (2023) and 075

Attendu and Corbeil (2023), our DEFT framework 076

leverages core-set selection methods to find a repre- 077

sentative core-set for training LLMs. However, the 078

novelty of our DEFT framework is that we leverage 079

unsupervised core-set selection (UCS), inspired by 080

(Sorscher et al., 2022). Our DEFT framework is 081
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able to find a core-set from unlabelled data, which082

reduces the amount of data labelling required for083

fine-tuning. To the best of our knowledge, we084

are the first to propose a DEFT framework that085

leverages unsupervised core-set selection for data-086

efficient fine-tuning of PLMs. We investigate the087

utility of our DEFT framework in the context of088

fine-tuning PLMs for text-editing tasks. Our con-089

tributions are as follows:090

• We introduce DEFT, a data-efficient-fine tun-091

ing framework that leverages unsupervised092

core-set selection to find the smallest, repre-093

sentative core-set of data needed for produc-094

ing well performing fine-tuned models.095

• We demonstrate that our DEFT framework096

can produce fine-tuned models that are com-097

parable to the current state-of-the-art model,098

CoEDIT (Raheja et al., 2023), while leverag-099

ing a fraction of the original dataset.100

• We demonstrate that our best performing101

DEFT model generates edited sentences of102

similar quality and perceived accuracy in com-103

parison to CoEDIT (Raheja et al., 2023).104

2 Related Works105

Efficient Fine-Tuning of LLMs Most efficient106

fine-tuning techniques for LLMs have focused on107

parameter-efficient fine-tuning (PEFT) approaches108

(Fu et al., 2023; Hu et al., 2021), improving compu-109

tation efficiency by updating only a subset of model110

parameters. However, recently there has been an111

increasing focus on improving the data-efficiency112

of LLMs, considering how to pre-train and fine-113

tune LLMs with smaller subsets of data (Zhou114

et al., 2023; Mukherjee et al., 2023; Chen et al.,115

2023; Marion et al., 2023; Attendu and Corbeil,116

2023; Ivison et al., 2022). For instance, Zhou et al.117

(2023) introduce LIMA, an approach to fine-tune118

LLaMA (Touvron et al., 2023) with only 1k diverse119

and high quality samples. However, the LIMA ap-120

proach is black-boxed and underspecificed without121

a general subsampling procedure. Additionally,122

Chen et al. (2023) develop Skill-It!, which creates123

efficient data sets by learning hierarchical relation-124

ships between samples. However, identifying such125

hierarchical relationships is non-trivial and not all126

datasets may include them. More closely related,127

Ivison et al. (2022) leverage K-Nearest Neighbors128

to learn multiple data-efficient fine-tuned models129

for individual tasks using a large multi-task dataset. 130

Instead, in our work, we aim to learn a single 131

data-efficient fine-tuned model that performs com- 132

petitively across a variety of datasets. Similarly, 133

Marion et al. (2023) utilize perplexity, EL2N, and 134

memorization to find smaller datasets for LLM 135

pre-training, and Attendu and Corbeil (2023) uses 136

EL2N to iteratively remove unimportant data sam- 137

ples during LLM fine-tuning. Both Marion et al. 138

(2023) and Attendu and Corbeil (2023) assume ac- 139

cess to labelled data to perform dataset pruning. 140

In contrast, DEFT leverages unsupervised core-set 141

selection, removing the need for a labelled dataset 142

during the dataset pruning process. 143

Core-Set Selection & Dataset Pruning Several 144

works in ML have developed core-set selection 145

(Har-Peled and Kushal, 2005) or dataset pruning 146

techniques (Paul et al., 2021) to find a smaller sub- 147

set of data needed to train deep learning models 148

without model performance loss. For example, 149

CRAIG (Mirzasoleiman et al., 2020), calculates 150

core-sets by approximating gradient calculations, 151

while RETRIEVE (Killamsetty et al., 2021) finds 152

core-sets by optimizing for model loss. Addition- 153

ally, Yang et al. (2022) utilize Influence Functions 154

(Koh and Liang, 2017) to prune redundant samples. 155

A unifying factor among these pruning methods 156

is the need for labelled data. Alternatively, core- 157

set selection approaches for unlabelled data have 158

utilized clustering. For instance, Birodkar et al. 159

(2019) use Agglomerative clustering to find seman- 160

tic similarities among data points and prune redun- 161

dant samples. Similarly, Sorscher et al. (2022) use 162

vanilla k-means clustering and utilize cosine dis- 163

tance between data points and cluster centroids to 164

prune easy and hard samples. Sorscher et al. (2022) 165

provide an exhaustive analysis of when easy or hard 166

samples should be leveraged during training of im- 167

age classification models. In our work, we adapt 168

the k-means approach in Sorscher et al. (2022) to 169

fine-tune LLMs in a data-efficient manner. 170

Instruction Tuning for Text-Editing Training 171

models to explicitly follow natural language in- 172

structions has become increasingly popular for text- 173

editing tasks. For example, Shu et al. (2023) de- 174

velop RewriteLM by fine-tuning PaLM (Chowdh- 175

ery et al., 2022) variants for the task of rewriting 176

long-form texts. Similarly, Schick et al. (2022) 177

develop PEER by fine-tuning T5 (Raffel et al., 178

2020) variants to emulate the collaborative writ- 179
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ing process. Additionally, Raheja et al. (2023) de-180

velop CoEDIT by fine-tuning Flan T5 (Chung et al.,181

2022) models to perform single and compositional182

edits. Furthermore, Zhang et al. (2023) produce183

an instruction-tuned LLaMA model that improve184

text-editing capabilities. A commonality across185

these works include the usage of large datasets for186

fine-tuning. For example, CoEDIT (Raheja et al.,187

2023) and Zhang et al. (2023) leverage datasets188

with 82k and 60k examples, respectively. In our189

work, DEFT maximizes model performance of fine-190

tuned models in a data efficient manner by finding191

a representative, smaller dataset needed for fine-192

tuning. We investigate the efficacy of our DEFT193

framework applied to text-editing LLMs, utilizing194

the CoEDIT (Raheja et al., 2023) training dataset.195

3 Problem Formulation196

We formulate our data-efficient fine-tuning (DEFT)197

framework as an unsupervised core-set selection198

problem (Sorscher et al., 2022) in contrast to ex-199

isting data-efficient methods which rely mostly on200

supervised core-set selection (Attendu and Corbeil,201

2023; Marion et al., 2023).202

Specifically, let D represent an existing large203

dataset, P represent a PLM, and MD represent P204

fine-tuned on D. Our DEFT framework aims to205

find a representative core-set Dc ⊂ D such that206

leveraging Dc can fine-tune P and result in a fine-207

tuned model MDc with comparable performance208

to MD. Note, we refer to comparable evaluation209

performance in the form of both quantitative NLP210

metrics and qualitative human evaluations. Spe-211

cific to unsupervised core-set selection, our DEFT212

framework finds Dc without needing D to include213

annotations or labels. Thus, we find Dc by only214

using the input samples {x1..xn} within D. These215

input samples, in the context of instruction fine-216

tuning, represent task instructions and input texts.217

To perform unsupervised core-set selection, we218

adapt the SoTA clustering-based core-set selec-219

tion method by Sorscher et al. (2022), given its220

extensive evaluations against other supervised-221

based core-set selection methods. However, while222

Sorscher et al. (2022) demonstrate the efficacy of223

clustering-based core-set selection for ImageNet224

(Deng et al., 2009), our work is the first to investi-225

gate the effectiveness of clustering-based core-set226

selection in non-classification tasks, such as fine-227

tuning LLMs for text-editing.228

Algorithm 1 Unsupervised Core-set Selection
(UCS)
Input: Dremain = {x0, x1...xn} - Large Dataset
Input: K - Num. of Clusters
Input: A - Amount of samples per cluster
Input: α, β, - Sampling Weights
Output: Dc = {xj ..xp} - Core-Set

1: Dc = ∅
2: Dembed = ComputeEmbedding(Dremain)
3: Cl1:K , Ce1:K = KMeans(Dembed, K)
4: for i in K do
5: for d in Cli do
6: distlist = StoreCosineDistance(d, Cei)
7: end for
8: distsorted = sort(distlist)
9: Dsampled = distsorted[0 : α*A]

+ distsorted[: -β*A]
10: Dc = updateCoreSet(Dsampled, Dc)
11: end for
12: return Dc

Figure 1: Our DEFT framework utilizes unsupervised
core-set selection (UCS) to find a core-set of data Dc, as
well as initial seed data, Dbase to produce a fine-tuned
LLM, MDEFT .

4 DEFT Framework 229

Figure 1, outlines our proposed DEFT framework 230

which leverages unsupervised, clustering-based 231

core-set selection (UCS) to find a subset of D that 232

fine-tunes a PLM without compromising model 233

performance. We consider a scenario in which 234

there exists an initial amount of data, Dbase ⊂ D, 235

that is sampled in a stratified manner to provide 236

an overall representation of the downstream fine- 237

tuning task. Let Dremain represent the remaining 238

data after Dbase is sampled. The goal of UCS is 239

to then find a core-set Dc ⊂ Dremain that enriches 240

Dbase such that Dc and Dbase, together, form a 241

representative subset that can be used to fine-tune 242

a PLM and result in a fine-tuned model MDEFT 243

with comparable performance to MD, a PLM fine- 244
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tuned with D. In Algorithm 1, we detail the crux245

of our DEFT framework, the UCS method.246

Clustering in UCS The first step in UCS in-247

cludes transforming Dremain into a meaningful248

embedding representation Dembed. UCS clusters249

D based on its latent-space representation, using250

previously learned embedding spaces, such as sen-251

tenceBert (Reimers and Gurevych, 2019). Choos-252

ing an appropriate embedding representation is im-253

portant, given that such representation impacts the254

downstream clustering task within UCS. In Section255

5, we detail the types of learned embedding spaces256

we evaluate and the best embedding representation257

found for encoding sentence-based datasets.258

Given Dembed, we perform K-Means clustering259

to separate Dembed into K clusters. Note, the value260

of K is dependent on D, and defining K requires261

domain knowledge about the dataset to understand262

the different categories or tasks represented in D.263

Alternatively, K can be automatically derived using264

metrics such as Silhouette Score (Shahapure and265

Nicholas, 2020). The resulting K clusters, Cl1:K ,266

and cluster centroids, Ce1:K , are utilized to com-267

pute the cosine distance between each data sample268

d in a cluster Cli, and corresponding centroid Cei.269

Sampling Dc in UCS We leverage the clustering270

categorization presented in Sorscher et al. (2022)271

to sample Dc from Dremain. Specifically, Sorscher272

et al. (2022) explain that data samples can be cat-273

egorized as “easy” or “hard” examples. In the274

context of unsupervised clustering, Sorscher et al.275

(2022) leverage a data sample’s distance to its clus-276

ter centroid to define easy and hard samples. There-277

fore, easy/hard samples within a cluster are those278

closest/furthest to the cluster centroid. Given such279

definition, in UCS, we retrieve a weighted sam-280

pling of easy and hard samples from each cluster,281

denoted as Dsampled. The α and β weights con-282

trol the distribution of easy and hard samples in283

Dsampled, and A represents the total number of284

samples retrieved per cluster.285

Note, Dbase, K, A, γ, and α are hyperparam-286

eters within our DEFT framework, manually set287

by domain-experts. Given this is the first work,288

to our knowledge, to propose a DEFT framework289

leveraging UCS, we perform an exhaustive inves-290

tigation on how these hyperparameters influence291

fine-tuning performance (see section 7). Future292

work includes investigating automatic selection of293

such hyperparameters.294

5 DEFT Applied to CoEDIT 295

We evaluate the utility of our DEFT framework 296

in the context of instruction-based fine-tuning 297

for various text editing tasks. To our knowl- 298

edge, the current SoTA instruction fine-tuned text- 299

editing LM is CoEDIT (MCoEDIT )1 trained on 300

dataset DCoEDIT (Raheja et al., 2023). Overall, 301

DCoEDIT includes 82k improved, good-quality 302

edit instructions on a variety of different edit-tasks 303

(Raheja et al., 2023) (details of DCoEDIT in Ap- 304

pendix A.1). Given the data quality in DCoEDIT 305

and SoTA performance of MCoEDIT , we apply our 306

DEFT framework on DCoEDIT . Below, we detail 307

the hyper-parameter choices in DEFT within the 308

context of DCoEDIT . 309

DBase in CoEDIT Recall DBase refers to the 310

amount of initial data, sampled in a stratified man- 311

ner, that is used for the downstream fine-tuning task. 312

In our experimental evaluations, we study how the 313

size of DBase may influence hyperparameter selec- 314

tion within our UCS algorithm for producing a well- 315

performing MDEFT . In the context of CoEDIT, 316

we experiment with DBase = {10%, 20%, ..80%}, 317

representing 10% to 80% of DCoEDIT . Note, 318

DCoEDIT is a fully annotated dataset; however, 319

when performing core-set selection Dc ⊂ D, we 320

only consider the input sentences. 321

DEFT Hyperparameters Given that DCoEDIT 322

includes seven edit-intentions, we set K = 7, al- 323

lowing the K-Means Clustering within UCS to sep- 324

arate Dremain into 7 clusters. Additionally, recall 325

from Sec. 4 that α and β represent the sampling 326

weights for extracting easy and hard data samples 327

from each cluster to form Dsampled. To understand 328

the upper and lower bound effects of α and β, we 329

study three variants of Dsampled, representing three 330

different sampling types: Dhard
sampled, Deasy

sampled and 331

Drand
sampled. Specifically, Dhard

sampled is represented 332

by α = 0 and β = 1.0, Deasy
sampled is represented 333

by α = 1.0 and β = 0, and Drand
sampled approxi- 334

mates α = 0.5 and β = 0.5, denoting random 335

samples extracted per cluster. We also experiment 336

with sampling different amounts of data from each 337

cluster, denoted by A = {285, 570, 857}. Such set- 338

tings of A approximate {2000, 4000, 6000} total 339

samples from Dremain respectively, and represent 340

{2.5%, 5%, 7.5%} percent of Dremain. 341

1https://github.com/vipulraheja/coedit
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Evaluation Dataset Edit Task

TurkCorpus (Xu et al., 2016a) Simplification
Asset (Alva-Manchego et al., 2020) Simplification
Iterator Coherence (Du et al., 2022) Coherence
Iterator Clarity (Du et al., 2022) Clarity
Iterator Fluency (Du et al., 2022) Fluency
Iterator Global (Du et al., 2022) Clarity, Coherence, Fluency
JFLEG (Napoles et al., 2017) Grammar Correction
WNC (Pryzant et al., 2020) Neutralization

Table 1: A list of our datasets on which we evalute our
DEFT models; these datasets are sourced from EDITE-
VAL (Dwivedi-Yu et al., 2022) and prior work (Raheja
et al., 2023).

Dataset Embedding Recall that the UCS algo-342

rithm in DEFT performs clustering using a learned343

embedding representation of the input data samples.344

We investigate several embedding representations345

and select the best embedding representation by its346

ability to inform accurate clusters. Specifically, we347

study sentence-level encodings from Sentence-T5348

(Ni et al., 2021), BART (Lewis et al., 2019) CLS349

token embeddings, as well as averaged word to-350

ken embeddings from Flan-T5 (Chung et al., 2022).351

From an ablation study, our results demonstrate352

that leveraging Sentence-T5 (Ni et al., 2021) re-353

sults in the best K-Means Clustering performance.354

The ablation study results are in Appendix B.355

Model Fine-Tuning Raheja et al. (2023) de-356

velop CoEDIT-Large, CoEDIT-xl, and CoEDIT-357

xxl by fine-tuning Flan-T5’s Large, XL and XXL358

models, respectively. In our work, we focus our359

comparisons against CoEDIT-Large, referred to360

as MCoEDIT . Therefore, in our DEFT frame-361

work, we fine-tune Flan-T5-Large, producing362

MFlan−T5−LG
DEFT . Details on our fine-tuning imple-363

mentation are in Appendix A.2.364

365

6 Experiments366

We perform quantitative and qualitative experi-367

ments to evaluate the efficacy of our DEFT frame-368

work in producing well-performing fine-tuned mod-369

els with a fraction, Dbase +Dc, of DCoEDIT .370

Baselines We compare our DEFT models to371

the following baselines. The primary base-372

line for our work is the original CoEDIT-Large373

model (Raheja et al., 2023), MCoEDIT , which374

uses the entire 82k samples in DCoEDIT to375

fine-tune Flan-T5 Large. We also compare our376

DEFT framework to the LIMA approach (Zhou377

et al., 2023) by fine-tuning Flan-T5 Large on378

1k stratified samples from DCoEDIT . We re- 379

fer to such LIMA-inspired model as MLIMA. 380

We also compare MDEFT with LLamA2-7B 381

(MLLAMA2−7B) (Touvron et al., 2023), Flan-T5- 382

Large (MFLAN−T5−LG) (Chung et al., 2022) and 383

BLOOM-560M (MBLOOM−560M ) (Scao et al., 384

2022) to understand how MDEFT performs com- 385

pared to non-instruction fine-tuned LLMs. 386

Metrics We examine SARI (Xu et al., 2016b) and 387

ROUGE-L (Lin, 2004) scores for our quantitative 388

evaluations. SARI scores are largely utilized in 389

prior work to evaluate text-editing tasks (Raheja 390

et al., 2023). We also measure ROUGE-L scores to 391

understand semantic similarity between the source 392

and predicted sentences. In our human evaluation, 393

we analyze users’ perceived accuracy percentage 394

(PA%), which measures the percent of times users 395

select specific text-editing models for producing 396

accurately edited sentences. 397

Evaluation Datasets Table 1 presents the test 398

datasets used in our evaluations. These datasets 399

include the publicly available datasets evaluated by 400

CoEDIT (Raheja et al., 2023), and are extracted via 401

several text-editing benchmarks, including EDITE- 402

VAL (Dwivedi-Yu et al., 2022). In total, six editing 403

tasks are represented across the evaluation datasets. 404

See Appendix C for more details about the evalua- 405

tion sets. 406

7 Results 407

7.1 DEFT Approach vs. CoEDIT 408

Figure 2 summarize the utility of our DEFT frame- 409

work in generating fine-tuned models with compa- 410

rable performance to MCoEDIT in terms of SARI 411

(Fig. 2a) and Rouge-L (Fig. 2b) scores. We see that 412

across all evaluation datasets, there exists a DEFT 413

model, fine-tuned with a fraction of DCoEDIT , 414

with comparable, if not higher, SARI and Rouge-L 415

scores. These results indicate that UCS in DEFT 416

can effectively find a Dc for fine-tuning without 417

compromising downstream task performance. 418

Note, the DEFT models in Figure 2 reflect the 419

existence of a competitive DEFT model, and de- 420

pending on the evaluation dataset, a different frac- 421

tion of DCoEDIT is leveraged to result in the most 422

competitive SARI and ROUGE-L scores. For ex- 423

ample, to achieve comparable performance on the 424

WNC dataset a DEFT model needs above 80% 425

of DCoEDIT . In contrast, for the Asset dataset, 426

around 12% of DCoEDIT is needed to surpass 427
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(a) (b)

Figure 2: Comparisons between the CoEDIT model (Raheja et al., 2023), LIMA-inspired model MLIMA (Zhou
et al., 2023), and our DEFT models with respect to SARI (a) and ROUGE-L (b) scores.

Models Turk Asset Iterator Coherence Iterator Clarity Iterator Fluency Iterator Global JFLEG WNC

MFlan−T5−LG
DEFT 46.6 / 81.1 46.8 / 76.9 68.9 / 90.9 61.8 / 85.3 69.9 / 96.9 64.7 / 89.1 70.2 / 93.1 79.0 / 96.5

MCoEDIT 43.7 / 74.9 44.7 / 70.9 67.3 / 91.1 61.3 / 85.1 69.1 / 96.6 64.2 / 89.0 70.4 / 93.2 80.2 / 96.5

MLIMA 23.8 / 31.9 37.8 / 51.7 43.3 / 65.9 36.5 / 55.5 48.8 / 71.9 39.4 / 58.9 39.7 / 48.8 37.2 / 59.3

MLLAMA2−7B 36.8 / 17.3 41.6 / 20.3 35.8 / 26.2 41.2 / 28.5 40.4/ 33.8 38.3/ 29.7 46.0 / 17.0 27.3 / 17.2

MFlAN−T5−LG 32.3 / 59.1 41.3 / 74.7 36.7 / 52.4 34.3 / 54.3 37.9 / 64.9 35.5 / 57.7 51.3 / 80.9 30.7 / 48.9

MBLOOM−560M 27.3 / 7.7 32.0 / 8.2 19.1 / 8.8 20.6 / 9.7 16.3/ 8.2 19.6 / 9.5 27.9 / 4.9 18.8/ 8.1

Table 2: Comparisons between the overall best DEFT model, MFLan−T5−LG
DEFT with all other baselines, with the first

value representing SARI score and second value representing ROUGE-L score. Note, scores for LLAMA-7B and
BLOOM-560 model generations are calculated by first removing the prepended input sequence.

MCoEDIT SARI and ROUGE-L scores. We hy-428

pothesize that subjectivity in the neutralization edit-429

ing task (WNC) increases the complexity of the430

data samples and more data is required to fine-tune431

a model with competitive performance in compar-432

ison to less subjective editing tasks such as, text-433

simplification (Asset). Interestingly, even between434

datasets for the same editing task (Asset, Turk),435

we notice differences in the fraction of DCoEDIT436

needed for the most competitive DEFT models.437

7.2 DEFT Approach vs. LIMA Approach438

We observe that across all evaluation datasets,439

MLIMA has much lower SARI and ROUGE-L440

scores compared to MCoEDIT as well as our DEFT441

models. These results indicate that the black-box442

LIMA (Zhou et al., 2023) approach may not be gen-443

eralizable to LM tasks such as text-editing. Specifi-444

cally, these results indicate that sampling 1k good445

quality and diverse samples is not enough to ensure446

competitive model performances.447

7.3 Overall Best DEFT Model448

Given that the most competitive DEFT model for449

each evaluation dataset uses a different fraction of450

DCoEDIT , we performed an exhaustive analysis 451

to study what combination of hyper-parameters 452

result in an overall best DEFT model. We de- 453

fine an overall best DEFT model as one that sur- 454

passes MCoEDIT performances on the most eval- 455

uation datasets. From Figure 3(a) and Fig. 3(b), 456

we observe that fine-tuning Flan-T5 Large with 457

only 32.5% of DCoEDIT and performing hard 458

sampling (α = 0, β = 1.0), results in the best 459

overall DEFT model, MFLAN−T5−LG
DEFT , surpassing 460

MCoEDIT SARI and ROUGE scores on 6 of the 8 461

evaluation datasets. Note, Figure 3 provides anal- 462

ysis using up to 45% of DCoEDIT ; in Appendix 463

D.1 we provide a more exhaustive analysis up to 464

87.5% of DCoEDIT . Overall, 32.5% represents 465

the smallest fraction of DCoEDIT that results in 466

competitive SARI as well as ROUGE scores on the 467

most evaluation datasets. 468

Note, 32.5% of DCoEDIT is composed of Dbase, 469

initial data available for fine-tuning, and Dc, the 470

output of UCS within DEFT. In the context of 471

MFLAN−T5−LG
DEFT , Dbase is a stratified 30% subset 472

from DCoEDIT , and Dc is composed of another 473

2.5% of Dremain (A = 2000 samples per cluster) 474

6



(a) (b)

Figure 3: Utilizing hard sampling in UCS results in a best, overall DEFT model that requires only 32.5% of
DCoEDIT to beat 6/8 evaluation datasets considering SARI (a) and ROUGE-L (b) scores.

(a)

(b)

Figure 4: With less Dbase, leveraging hard sampling in UCS leads to better performing DEFT models (winning %);
as Dbase increases, random sampling leads to better performing DEFT models.

retrieved from UCS by performing hard sampling.475

Best DEFT Model Performance In Table 2, we476

analyze the performance of our best DEFT model,477

MFLAN−T5−LG
DEFT , fine-tuned with merely 32.5% of478

DCoEDIT . We observe that MFLAN−T5
DEFT continues479

to outperform MLIMA and MFLAN−T5−LG on all480

evaluation datasets, and outperforms MCoEDIT481

on all datasets except WNC and JFLEG, in terms482

of SARI, and JFLEG and Iterator Coherence, in483

terms of ROUGE-L. While MCoEDIT outperform484

MFLAN−T5
DEFT in these instances, the overall SARI485

and ROUGE-L scores for both models are still com-486

parable, emphasizing that a much smaller fraction487

of DCoEDIT can be utilized to produce a compara-488

ble fine-tuned text-editing model. We also observe 489

that MLLAMA2−7B and MBLOOM−560 have much 490

lower ROUGE-L scores compared to all other mod- 491

els. After examining model generated outputs, 492

we see that lower ROUGE-L scores are attributed 493

to long, repeated sentences from MLLAMA2−7B 494

MBLOOM−560. Appendix D.2 provides example 495

edited sentences from each model. 496

Influence of DBase for DEFT Model Based on 497

the downstream task, the amount of DBase may 498

vary. Thus, we analyze how the size of Dbase may 499

influence the sampling method utilized in UCS 500

for producing best-performing DEFT models. Fig- 501

ure 4 summarizes the win percentages among the 502

7



Model Perceived Accuracy (PA%)

MFlan−T5−LG
DEFT 83.8 %

MCoEDIT (Raheja et al., 2023) 70.5%

Table 3: Perceived accuracy (PA%) percentages from
our human evaluation.

three sampling methods (random sampling, easy503

sampling, hard sampling) as the size of Dbase in-504

creases. Win percentage is defined as the percent505

of times a particular sampling method achieves the506

highest SARI (Fig. 4a) or ROUGE-L (Fig. 4b)507

score across all evaluation datasets. Across both508

Figure 4a and Figure 4b we observe that as DBase509

increases, even across different Dc amounts, ran-510

dom sampling results in better SARI and ROUGE-511

L performances compared to easy and hard sam-512

pling. However, with lower amounts of DBase,513

we notice hard sampling resulting in better SARI514

and ROUGE-L performances. We hypothesize that515

with lower amounts of DBase, sampling harder516

examples may allow the model to generalize to un-517

seen examples. Such interaction between DBase518

sampling type may be dataset dependent, and fu-519

ture work should explore these trends in other task-520

specific applications. Overall, these results indicate521

interesting trends when considering how to sample522

when utilizing our DEFT framework.523

524
7.4 Human Evaluation525

We conducted a human evaluation with three par-526

ticipants who are computer scientists with English527

as their primary language. The evaluators were528

asked to evaluate 35 different text-editing scenar-529

ios. The 35 scenarios were selected by randomly530

sampling five text-editing scenarios from seven531

evaluation datasets in Table 1. 2 For each text532

editing scenario, evaluators were asked to evaluate533

two edited sentences, from our MFLAN−T5−LG
DEFT534

as well from MCoEDIT , and select the most accu-535

rately edited sentence based on their perception and536

preference. Given that many edited sentences from537

MFLAN−T5−LG
DEFT and MCoEDIT were similar or538

identical, evaluators were able to select more than539

one edited-sentence as accurately edited. To re-540

duce bias, the generated sentence ordering between541

the models was randomized for each scenario. Ta-542

ble 3 summarizes the average perceived accuracy543

percentages (PA%). Overall, our MFLAN−T5−LG
DEFT544

2We did not sample from Iterator Global since such dataset
is a combination of Iterator Clarity, Fluency and Coherence.

results in higher PA% compared to MCoEDIT . We 545

additionally performed an inter-rater reliability test 546

to understand the agreement among evaluators on 547

their PA%, and found moderate agreement with 548

a Fleiss-Kappa (Fleiss and Cohen, 1973) score of 549

0.44. These results indicate that while evaluators 550

perceived our MFLAN−T5−LG
DEFT to produce more 551

accurately edited-sentences, the evaluators did not 552

have a strong agreement over their selections, in- 553

dicating comparable quality of edited sentences 554

between MCoEDIT and MFLAN−T5−LG
DEFT . 555

8 Conclusion 556

Our work introduces DEFT, a data-efficient fine- 557

tuning framework that leverages unsupervised core- 558

set selection to find the minimum amount of data 559

needed to fine-tune a PLM for downstream tasks. 560

Our quantitative results demonstrate that DEFT 561

models, fine-tuned with less data, perform com- 562

parably to the SoTA text-editing model CoEDIT 563

(Raheja et al., 2023), and superior to the LIMA ap- 564

proach (Zhou et al., 2023) when considering SARI 565

and ROUGE-L scores. Additionally, our qualitative 566

analysis, via a human evaluation, demonstrate that 567

the overall best performing DEFT model, trained 568

with only 32.5% of the CoEDIT dataset, generates 569

edited sentences with similar perceived accuracy as 570

the CoEDIT model (Raheja et al., 2023). These re- 571

sults indicate the overall utility of our DEFT frame- 572

work for a data-efficient approach to PLM fine- 573

tuning. Overall, our work builds a foundation for 574

the usability of data-efficient fine-tuning for task 575

specific applications. While our results are promis- 576

ing, below we present several areas of future work 577

to better investigate the generalizability of DEFT 578

and improve upon our DEFT framework. 579

Limitations The hyper-parameters within the 580

UCS algorithm of our DEFT framework are se- 581

lected manually using task specific knowledge. Fu- 582

ture work should consider how to automate the 583

selection of these hyper-parameters. Additionally, 584

while our UCS algorithm leverages the distance 585

between data samples and centroid distance for 586

defining sampling methods within DEFT, future 587

work should explore other sampling methods infor- 588

mative to NLP tasks. Additionally, we show the 589

utility of DEFT in the context of text-editing tasks; 590

benchmarking the utility of DEFT in other task spe- 591

cific applications is needed to understand the scope 592

of DEFT. Similarly, more work is required to in- 593

vestigate the utility of DEFT in fine-tuning various 594
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PLMs for diverse sets of downstream NLP tasks.595

Future work also entails comparing the benefit of596

utilizing DEFT against PEFT (Fu et al., 2023; Hu597

et al., 2021) approaches, understanding whether598

DEFT in conjunction with PEFT can further im-599

prove the fine-tuning efficiency of LLMs.600

Ethics Statement We utilize a publicly available601

dataset from CoEDIT3. The dataset primarily fo-602

cuses on non-meaning changing text edits and do603

not raise any privacy concerns. Nevertheless, the604

underlying autoregressive models may hallucinate605

and propagate biases. Before deploying for real606

world applications, considerations on how to in-607

corporate user feedback for continual system im-608

provement should be studied. Additionally, we609

have acknowledged the limitations of our DEFT610

framework and the need for more extensive bench-611

marking with various other PLMs and downstream612

tasks. Our work provides a initial set of contribu-613

tions and is an effort to motivate further research614

in data-efficient fine-tuning of PLMs.615
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A DEFT Applied to CoEDIT840

A.1 CoEDIT Dataset Details841

The CoEDIT dataset, DcoEDIT , from Raheja et al.842

(2023) is comprised of several edit tasks, including843

fluency, coherence, clarity, paraphrasing, neutral-844

ization and formalization. As mentioned in (Raheja845

et al., 2023), the 82k data samples follow the for-846

mat of ⟨instruction : source, target⟩ pairs. The847

source and target pairs come from a variety of dif-848

ferent datasets related to each editing task. Table 4849

summarizes the datasets utilized to represent each850

edit task in DCoEDIT . The instruction component851

are task-specific and generated from a pool of in-852

structional prompts. For example, for a grammar853

correction task, an instruction could be “Fix gram-854

mar errors” or “Fix grammatical errors in this sen-855

tence”. The list of all instructional prompts utilized856

are detailed in (Raheja et al., 2023).857

A.2 DEFT Model Fine-Tuning Details858

Recall that all DEFT models in this paper are859

produced by fine-tuning Flan-T5 Large (Chung860

et al., 2022). We fine-tune Flan-T5 Large such861

that we can make accurate comparisons with862

MCoEDIT (Raheja et al., 2023) which represents863

a fine-tuned Flan-T5-Large model on DCoEDIT .864

Furthermore, to remove any difference in model865

performances due to differing hyperparameters, we866

utilize the hyperparameters listed in Raheja et al.867

(2023). Specifically, we use the Adam optimizer868

with a learning rate of 1e-4. All DEFT models in869

the main paper are trained for 5 epochs with early870

stopping and the model checkpoints with the best871

validation loss are saved. To perform fine-tuning,872

we leverage 4 A10G GPUs, from AWS G5 in-873

stances, using Deepspeed (Rasley et al., 2020), and874

the maximum source and target sequence length is875

set to 256.876

B Embedding Representations in UCS877

B.1 Representation Details878

For K-means clustering to learn informative clus-879

ters, selecting the right latent space representa-880

tion for the input data is important. In our ap-881

plication, an accurate embedding representation882

should allow each cluster to predominantly repre-883

sent a certain type of editing task. For example884

all data related to editing for fluency should be885

clustered together, whereas all data related to gram-886

mar correction should be clustered together. To887

Edit Task Datasets in DcoEDIT

Fluency NUCLE-14
Lang-8
BEA-19

Coherence DiscoFuse
Clarity
(Simplification)

NEWSELA
WikiLarge
WikiAuto
ParabankV2
Iterator-Clarity

Paraphrasing ParabankV2
Formalization GYAFC
Neutralization WNC

Table 4: Data in DCoEDIT (Raheja et al., 2023) is com-
prised of samples from the above datasets. This table is
a simplified version of Table 1 in Raheja et al. (2023).

ultimately select an accurate embedding represen- 888

tation, we experimented with three different repre- 889

sentations: sentence-level encoding from Sentence- 890

T5 (Ni et al., 2021), BART CLS token embed- 891

ding, as well as an averaged word token embedding 892

from Flan-T5. As a brief summary, Sentence-T5 893

(Ni et al., 2021) maps sentences to a 768 dimen- 894

sional vector space using only the encoder from 895

T5. Specifically, Ni et al. (2021) demonstrate that 896

Sentence-T5 embeddings are able to lead to high 897

performance in sentence transfer tasks. Similarly, 898

we also experiment with BART (Lewis et al., 2019) 899

CLS token embeddings, inspired by the notion that 900

CLS token can provide informative representations 901

of the input sentence for downstream tasks (Devlin 902

et al., 2018). We also experiment with an average 903

pooling method of averaging all word embeddings 904

of an input sequence, using the Flan-T5 model, to 905

reach a sentence-level embedding. 906

B.2 Representation Analysis 907

Figure 5 demonstrates the K-means clustering re- 908

sults for each sentence-level embedding represen- 909

tation. Overall, we find that Sentence-T5 provides 910

the strongest sentence-level embedding that allows 911

the clustering algorithm to best separate input data 912

based on its related editing task. Specifically, when 913

analyzing Figure 5(a), we see that each cluster is 914

largely comprised of a single edit-task. For ex- 915

ample, cluster 1 largely includes data related to 916

“paraphrasing”, while cluster 4 largely includes data 917

related to improving “coherence”. In Figure 5(b) 918

and Figure 5(c) we observe that the task specific 919

data is more distributed among several clusters, 920

indicating weaker cluster separation among the dif- 921

ferent editing task related data. Although the clus- 922

12



ters formed via Sentence-T5 embeddings (Ni et al.,923

2021) are not perfect, they offer the strongest sep-924

aration of task-related data compared to the other925

embedding representations. Given these results, we926

leverage Sentence-T5 as our latent space represen-927

tation when performing UCS.928

C Evaluation Dataset Details929

For all datasets used in our evaluation, we utilize930

the publicly available test splits from each dataset.931

To each data sample (source and target pair), we932

prepend a randomly selected instructional prompt933

related to the edit task. For example, for all test934

samples from TurkCorpus, we prepend a randomly935

selected instructional prompt from the text simplifi-936

cation choices provided in Raheja et al. (2023). In937

Table 5 we provide example test data samples from938

each evaluation dataset. For context, we addition-939

ally provide the sizes of the test splits available for940

each evaluation dataset. The test splits are as fol-941

lows: TurkCorpus includes 359 test data samples,942

Asset includes 359, Iterator Coherence includes943

36, Iterator Clarity contains 186, Iterator Fluency944

contains 88, JFLEG contains 748 and WNC con-945

tains 1000. Note, we additionally evaluate on a946

combined Iterator dataset, noted as Iterator Global947

in Table 1, which includes all test samples from948

Iterator Coherence, Clarity and Fluency. The mo-949

tivation of including an Iterator Global evaluation950

dataset is to understand model performances on a951

more generic style-editing task (Du et al., 2022).952

Furthermore, in Figure 6, we provide a TSNE vi-953

sualization of the evaluation datsets, particularly954

embedding representations of all source sentences955

using Sentence-T5 (Ni et al., 2021). The visualiza-956

tion demonstrates the diversity among the different957

datasets, and highlight that the evaluation tasks are958

not all semantically similar.959

960

D Additional DEFT Results961

D.1 Extended Best DEFT Analysis962

In Section 7.3, we demonstrate that utilizing on963

32.5% of DCoEDIT can result in an overall best964

DEFT model that surpasses MCoEDIT (Raheja965

et al., 2023) SARI and ROUGE-L scores on 6 of966

the 8 evaluation datasets. While Figure 3 in the967

main paper provides an analysis using up to 45%968

of DCoEDIT , in this section, we include Figure 7969

which provides an exhaustive analysis using up to970

87.5% of DCoEDIT . From Figure 7, we observe 971

that to surpass SARI and ROUGE-L scores on 7 out 972

of the 8 evaluation datasets, 47.5% of DCoEDIT is 973

necessary. Additionally, we observe that while 75% 974

of DCoEDIT can be leveraged to surpass ROUGE- 975

L scores on all evaluation datasets. Overall, these 976

results indicate a trade-off between marginal im- 977

provement in model performance and the amount 978

of additional data required. 979

D.2 Additional Qualitative Analysis 980

In Table 6, we present example model outputs, qual- 981

itatively comparing MCoEDIT , MFlan−T5−LG
DEFT , 982

MLLAMA−7B and MBLOOM−560M . Overall, we 983

observe that the example sentences generated by 984

MFlan−T5−LG
DEFT and MCoEDIT are either identi- 985

cal or similarly edit the input sentence to reflect 986

the edit instruction. When we examine the zero- 987

shot inference outputs from MLLAMA−7B and 988

MBLOOM−560M we observe that these models are 989

not able to produce accurately edited sentences. 990

Instead, we notice repeated generation from both 991

MLLAMA−7B and MBLOOM−560M as well as ad- 992

ditional generations that are tangential. These re- 993

peated, longer, and irrelevant generated sentences 994

also explain the much lower ROUGE-L observed in 995

Table 2 within the main paper. Overall, these gen- 996

erated outputs from each model provide further un- 997

derstanding of the need for instruction-tuned LLMs 998

for tasks such as text-editing. These generated out- 999

put examples also re-iterate that our DEFT model, 1000

MFlan−T5−LG
DEFT , can generate similarly edited sen- 1001

tences to the CoEDIT baseline, MCoEDIT , while 1002

being fine-tuned on 70% less data. 1003

1004
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(a) (b)

(c)

Figure 5: Comparing the distribution of task-related data among clusters after performing K-Means when utilizing
Sentence-T5 embedding (a), BART CLS embeddings (b) and averaged Flan-T5 word embeddings (c) for sentence
representations.

Figure 6: TSNE visualization of the source sentences within all evaluation datasets.
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Evaluation Dataset Edit Task Input Example Output Example

TurkCorpus
(Xu et al., 2016a)

Text Simplification Make the sentence simple: The great
dark spot is thought to represent a hole
in the methane cloud deck of neptune.

The great dark spot is thought to repre-
sent a hole in the methane.

Asset
(Alva-Manchego et al., 2020)

Simplification Simplify this sentence: She remained in
the United States until 1927 when she
and her husband returned to France.

She remained in the United States until
returning to France with her husband in
1927.

Iterator Coherence
(Du et al., 2022)

Coherence Fix sentence flow: Based on the general
linguistic structure of humor, in this pa-
per, we propose a novel approach for
detecting humor in short texts by using
BERT sentence embedding.

In this paper, we propose a novel ap-
proach for detecting humor in short
texts by using BERT sentence embed-
ding .

Iterator Clarity
(Du et al., 2022)

Clarity Write a clearer version for the sentence:
Using our human-evaluation datasets,
we show that existing metrics based on
n-gram similarity do not correlate with
human judgments.

Using our human-evaluation datasets,
we show that widely used n-gram simi-
larity do not correlate with human judg-
ments.

Iterator Fluency
(Du et al., 2022)

Fluency Fix disfluencies in the sentence: In addi-
tion, we provide the first robust corpus
this kind for the Brazilian Portuguese
language.

In addition, we provide the first robust
corpus of this kind for the Brazilian Por-
tuguese language.

JFLEG
(Napoles et al., 2017)

Grammar Correction Fix the grammar mistakes: Every per-
son needs to know a bit about math, sci-
ences, arts, literature and history in or-
der to stand out in society.

Every person needs to know a bit about
math, science, art, literature and history
in order to stand out in society.

WNC
(Pryzant et al., 2020)

Neutralization Remove points of view: During the un-
necessary horseplay, Hamlin fell and
severely injured his hand.

During the horseplay, Hamlin fell and
severely injured his hand.

Table 5: Example data samples for each evaluation dataset. Note, the instructional prompt (italicized) are randomly
sampled from a list of instructional prompts available in Raheja et al. (2023).
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(a)

(b)

Figure 7: Presenting a full analysis, utilizing up to 87.5% of DCoEDIT , on the different sampling methods and
amounts of data needed to beat soTA MCoEDIT performance, considering SARI (a) and ROUGE-L (b) scores.
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Generated Model Outputs

Input MCoEDIT MFlan−T5−LG
DEFT MLLaMA2−7B MBLOOM−560M

Make this easier to un-
derstand: the term “pro-
tein” itself was coined
by berzelius, after mul-
der observed that all pro-
teins seemed to have the
same empirical formula
and might be composed of
a single type of -lrb- very
large -rrb- molecule.

The term “protein” itself
was created by berzelius
in 1879, after mulder
observed that all pro-
teins seemed to have the
same empirical formula
and might be composed of
a single type of very large
molecule.

berzelius thought that all
proteins seemed to have
the same empirical for-
mula and might be com-
posed of a single type of
molecule.

It is a protein made by bac-
teria that is used to make
a large number of other
proteins. This is a very
large protein that is used
to make a large number of
other proteins. This is a
very large protein that is
used to make a large num-
ber of other proteins. It is
a protein made by bacteria
that is used to make a large
number of other proteins.
It is a protein made by bac-
teria that is used to make a
large number of other pro-
teins.

The term was coined by
mulder to describe the fact
that the protein was com-
posed of a single type
of -lrb- molecule. The
term was coined by mul-
der to describe the fact
that the protein was com-
posed of a single type
of -lrb- molecule. The
term was coined by mul-
der to describe the fact that
the protein was composed
of a single type of -lrb-
molecule.

Remove non-neutral
POVs: jimi hendrix
(musician), great musician
and vocalist died while
at girlfriend’s monika
dannemann hotel room in
london.

jimi hendrix (musician),
musician and vocalist
died while at girlfriend’s
monika dannemann hotel
room in london.

jimi hendrix (musician),
musician and vocalist
died while at girlfriend’s
monika dannemann hotel
room in london.

This was an interesting
read. I think I’m going
to have to edit that arti-
cle. I’ve been doing some
research on this, and it
seems that the story is that
Hendrix was at the hotel
with Monika Dannemann.
She was a German woman
who had been a friend of
his for some time. She
was a model and an artist,
and she had been a fan of
his music since she was
a teenager. She had been
in London with him for a
couple of weeks, and she
had been helping him out
with his music.

the singer was in a coma
for a week. the singer was
in a coma for a week. the
singer was in a coma for a
week. the singer was in
a coma for a week. the
singer was in a coma for
a week. the singer was in
a coma for a week. the
singer was in a coma for
a week. the singer was in
a coma for a week. the
singer was in a coma for
a week. the singer was in
a coma for a week.

Fix grammaticality in this
sentence: The important
thing about this case is ,
each countrey hase to use
official solution for their
learning problems.

The important thing about
this case is that each coun-
try has to use an official
solution for their learning
problems.

The important thing about
this case is that each coun-
try has to use an official
solution for their learning
problems.

The important thing about
this case is that each coun-
try has to use its own offi-
cial solution for their learn-
ing problems. The impor-
tant thing about this case
is that each country has to
use its own official solu-
tion for their learning prob-
lems.

The main purpose of this
paper is to study the gram-
maticality of the sentence:
The important thing about
this case is , each countrey
hase to use official solu-
tion for their learning prob-
lems. The main purpose of
this paper is to study the
grammaticality of the sen-
tence: The important thing
about this case is, each
countrey hase to use offi-
cial solution for their learn-
ing problems.

Fix disfluencies in the
sentence: To work hard
means to run the company.

To work hard means to run
a company.

To work hard means to run
a company.

Disfluencies are speech
disruptions that are often
caused by an inability to
find the right word. Disflu-
encies are common in ev-
eryday speech. Examples
of disfluencies in English
1. To work hard means to
run the company. 2. To
work hard means to run
the company

The sentence is not a sen-
tence, but a sentence with
a disfluency. The sentence
is not a sentence, but a
sentence with a disfluency.
The sentence is not a sen-
tence, but a sentence with
a disfluency. The sentence
is not a sentence, but a
sentence with a disfluency.
The sentence is not a sen-
tence, but a sentence with
a disfluency.

Table 6: Example generated, edited sentences from each model for a given input. We observe that non-instruction
tuned LMs such as BLOOM-560M and LLAMA-7B mostly struggle in zero-shot inference as demonstrated by the
repeated or irrelevant generation. Raheja et al. (2023).
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