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Abstract

Representation learning constructs low-
dimensional representations to summarize
essential features of high-dimensional data. This
learning problem is often approached by describ-
ing various desiderata associated with learned
representations; e.g., that they be non-spurious
or efficient. It can be challenging, however, to
turn these intuitive desiderata into formal criteria
that can be measured and enhanced based on
observed data. In this paper, we take a causal per-
spective on representation learning, formalizing
non-spuriousness and efficiency (in supervised
representation learning) using counterfactual
quantities and observable consequences of causal
assertions. This yields computable metrics
that can be used to assess the degree to which
representations satisfy the desiderata of interest
and learn non-spurious representations from
single observational datasets.

1. Introduction
Representation learning constructs low-dimensional rep-
resentations that summarize essential features of high-
dimensional data. For example, one may be interested in
learning a low-dimensional representation of MNIST im-
ages, where each image is a 784-dimensional vector of pixel
values. Alternatively, one may be interested in a product
review corpus; each review is a 5, 000-dimensional word
count vector. Given an m-dimensional data point, X =
(X1, . . . , Xm) ∈ Rm, the goal is to find a d-dimensional rep-
resentation Z = (Z1, . . . , Zd) , (f1(X), . . . , fd(X)) that
captures d important features of the data, where fj : Rm →
R, j = 1, . . . , d are d deterministic functions and d� m.

A heuristic approach to the problem has been to fit a neural
network that maps from the high-dimensional data to a set
of labels, and then take the top layer of the neural network

1The full version of the paper is at https://arxiv.org/
abs/2109.03795.

as the representation of the image. When labels are not
available, a related heuristic is to fit a latent variable model
(e.g., a variational autoencoder (Kingma & Welling, 2014))
and output a low-dimensional representation based on the
inferred latent variables. In both cases, the hope is that these
low-dimensional representations will be useful in the perfor-
mance of downstream tasks and provide an interpretation of
the statistical relationships underlying the data.

These heuristic approaches do not, however, always succeed
in producing representations with desirable properties. For
example, as we will discuss in detail, common failure modes
involve capturing spurious features that do not transfer well.
For example, in fitting a neural network to images of ani-
mals, with the goal of producing a labeling of the species
found in the images, a network may capture spurious back-
ground features (e.g., grass) that are highly correlated with
the animal features (e.g., the face of a dog). Such spurious
features can often predict the label well. But they are gen-
erally not useful for prediction in a different dataset or for
performing other downstream tasks.

While non-spuriousness is a natural desideratum of repre-
sentations, they are often intuitively defined, challenging to
evaluate, and hard to optimize over algorithmically. Lacking
formal metrics for these desiderata, and not having access
to manually labeled features (e.g., grass, animal fur, or back-
ground lighting) that provide empirical guidance, prevents
us from developing representation learning algorithms that
satisfy natural desiderata.

In this work, we take a causal inference perspective on rep-
resentation learning. This perspective allows us to formal-
ize representation learning desiderata using causal notions,
specifically causal relationships among the label Y and the
d features captured by Z1, . . . , Zd. This yields calculable
metrics obtained from the observable implications of the
underlying causal relationships. These metrics enable repre-
sentation learning algorithms that target these desiderata.

We focus on efficiency and non-spuriousness in supervised
representation learning—i.e., the representations shall effi-
ciently capture non-spurious features of the data. The key
idea is to view representations as capturing features that
are potential causes of the label. From this perspective,
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a non-spurious representation should capture features that
are sufficient causes of the label. This property ensures
that the same representation is still likely to be informa-
tive of the label when employed on a new dataset. In the
running example of images, a representation that captures
the dog-face feature is non-spurious because the presence
of a dog face is sufficient to determine the dog label (i.e.,
whether a dog is present in the image). In contrast, a rep-
resentation based on the grass feature is spurious because
it cannot causally determine the dog label, even though
it is highly correlated. We formalize this connection be-
tween non-spurious representations and sufficient causes by
defining non-spuriousness using the notion of probability of
sufficiency (PS), due to Pearl (2011).

The same causal perspective also allows us to formalize the
efficiency of representations, which are those that do not
pick up redundant features. Again viewing the representa-
tion as a potential cause of the label, its efficiency corre-
sponds to the necessity of the cause. In the image example,
a representation of both “dog-face” and “four-leg” is inef-
ficient because it is not necessary to know both “dog-face”
and “four-leg” to determine the dog label. As dogs always
have four legs (in our simplified world), “four-leg” is a re-
dundant feature given “dog-face.” We therefore formalize
efficiency of a representation using the notion of probability
of necessity (PN). As we will discuss, PN and PS are aspects
of a general notion of probabilities of causation, also due to
Pearl (2011).

While these causal definitions formalize efficiency and
non-spuriousness, they do not immediately imply calcu-
lable metrics for these desiderata, because not all causal
quantities are estimable from observational data. To ob-
tain calculable metrics, we have to study observable im-
plications of these causal definitions, a problem known as
causal identification (Pearl, 2011). We discuss the unique
challenges of causal identification with high-dimensional
data—specifically, high-dimensional data are often rank-
degenerate (Stewart, 1984; Golub et al., 1976)—and we
develop identification strategies to address these challenges.
These strategies lead to calculable metrics of efficiency and
non-spuriousness in the high-dimensional setting, along
with the conditions under which they are valid.

Based on these definitions, we develop an algorithmic frame-
work that we refer to as CAUSAL-REP that formulates rep-
resentation learning as a task of finding necessary and suf-
ficient causes. In a range of empirical studies, we find that
CAUSAL-REP is more successful at finding non-spurious
representations in both images and text compared to stan-
dard benchmarks.

Through the study of non-spuriousness/efficiency, we illus-
trate how causality can provide a fruitful perspective for
representation learning. Many intuitively defined desiderata

in representation learning can be formalized using causal
notions. These causal notions can further lead to metrics
that quantify these desiderata and representation learning
algorithms that enforce these desiderata. (We defer the
discussion of related work to Section 4.)

2. Supervised Representation Learning:
Efficiency and Non-spuriousness

We begin by formulating a set of desiderata for supervised
representation learning. As a running example, we consider
a dataset of images and their labels. We focus on settings
where the labels are obtained by annotators viewing each
image and then labeling; they describe the perceived features
of the image, as opposed to the intended features of the
image. The goal is to construct a low-dimensional image
representation that efficiently captures its essential features.

Formally, we consider a dataset that contains n m-
dimensional data points and their labels, {xi, yi}ni=1 ∈
Xm × Y , assumed to be sampled i.i.d., with xi =
(xi1, . . . , xim). The variable xil might be the value of
the lth pixel of an image, with X = [0, 255]; it might
also be the number of times the lth word in the vocabu-
lary occur in the document, with X = Z+. The goal of
representation learning is to find a deterministic function
f : Xm → Rd mapping the m-dimensional data into a
d-dimensional space (d << m). Thus each data point xi
has a d-dimensional representation zi , f(xi), or equiv-
alently zi = (zi1, . . . , zid) , (f1(xi), . . . , fd(xi)), with
fj : Xm → R.

Ideally, such a representation should be efficient and non-
spurious. It shall efficiently capture features of the image
that are essential for determining the label. Below we for-
malize the desiderata of non-spuriousness and efficiency
using counterfactual notions.

2.1. Defining Efficiency and Non-spuriousness using
Counterfactuals

To formalize the desiderata of efficiency and non-
spuriousness, we posit a structural causal model (SCM)
that describes the data generating process. This SCM will
enable us to define these desiderata through counterfactual
quantities defined via this model.

2.1.1. A STRUCTURAL CAUSAL MODEL OF SUPERVISED
REPRESENTATION LEARNING

We describe a structural causal model (SCM) for supervised
representation learning and the counterfactual quantities
therein.

The structural causal model (SCM) of the labeled
dataset. We posit Figure 1 as the SCM of a data-generating
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process. (For notational simplicity, we suppress the dat-
apoint index i and focus on categorical Y .) The figure
embodies the assumption that the high-dimensional object
X = (X1, . . . , Xm) causally affects its label Y . Moreover,
there is no confounder between the two; the label Y can
be fully determined by the object X . These assumptions
hold because we assume the labels are obtained by annota-
tors viewing the images; the labeling is solely based on the
images.

Figure 1 also posits that different dimensions of the high-
dimensional object,X1, . . . , Xm, are correlated due to some
unobserved common cause C, which can potentially be
multi-dimensional. For example,C can represent the design
of an image; nearby pixels tend to be highly correlated
if an image has a smooth design. This assumption holds
because pixel values of images are not independent; they are
determined by common latent variables (Kingma & Welling,
2014; Goodfellow et al., 2014).

The representation f(X) and its interventions. The
representation Z = f(X) captures features of the high-
dimensional data X . For example, Z = (Z1, Z2) =
(1{X125 × X38 < 0.01}, X164 + 0.3 · X2

76) is a two-
dimensional representation of X , whose first dimension
represents whether pixels 125 and 38 are close to black.
More complex representations may capture more meaning-
ful features; e.g., whether a dog face is present in the image.

The representation Z = f(X) is not included in the SCM
as a separate causal variable in addition toX . The reason
is that the representation Z = f(X) is a deterministic
function of the image pixelsX and the causal variables of a
SCM must be related by functional relationships perturbed
by random disturbances. In particular,Z is not a descendant
of X because a value change in Z would imply a value
change inX (unless f is a constant function). Nor is Z an
ancestor of X because a change in the value of X would
also imply a change in Z.

DespiteZ being not explicitly included in the SCM, Figure 1
does imply that Z = f(X) is an ancestor of the label
Y . This is because X is an ancestor of Y . Moreover,
interventions on the representation Z = f(X) are also
well defined; they are functional interventions (Puli et al.,
2020; Correa & Bareinboim, 2020; Eberhardt & Scheines,
2007), also referred to as stochastic policies (Pearl, 2011,
Ch. 4.2). (We will define them rigorously in Section 5.1.)
Roughly, suppose a one-dimensional representation Z =
f(X) captures the univariate binary feature of whether the
grass is present in the image. Then the intervention do(Z =
1)—equivalently do(f(X) = 1)—means turning on the
grass feature in the image. That is, holding the design of
the image C fixed, we change the pixels of the image X
such that the grass is present: Z = 1. Accordingly, the
intervention do(Z = 0) means turning off the grass feature.

C

XmX1 X2

Y

. . . . . .

Figure 1. A SCM for supervised representation learning. X =
(X1, . . . , Xm) represents the high-dimensional object (e.g., pixels
of an image), Y represents the outcome label, and C denotes the
unobserved common cause of X1, . . . , Xm.

Holding the design C fixed, we change the pixelsX such
that the grass is absent, Z = 0.

Counterfactuals in the SCM. The SCM (Figure 1) results
in a family of counterfactuals, “what would the value of a
variable be if we intervene on some variables of the causal
model.” Here we focus on the counterfactuals obtained
when we intervene on the image features captured by the
representation Z. These counterfactuals will allow us to
define the efficiency and non-spuriousness of the represen-
tations.

We denote Y (Z = z) as the counterfactual label of an
image if we force its representation Z to take value z.2

For example, if a univariate representation Z captures the
feature “whether grass is present in the image,” then Y (Z =
0) is the counterfactual label had the image had no grass.
Accordingly, Y (Z = 0) is the counterfactual label had the
image had grass being present.

The key idea here is to evaluate the quality of the repre-
sentation Z by reasoning about the counterfactual labels:
What would the label Y be had Z taken different values?
We will show how the desiderata of non-spuriousness and
efficiency can be formalized via these counterfactuals. This
connection will allow us to develop metrics and algorithms
for these desiderata.

2.1.2. COUNTERFACTUAL DEFINITIONS OF
NON-SPURIOUSNESS AND EFFICIENCY

We next discuss how these counterfactual notions can allow
us to formalize the non-spuriousness and efficiency of a
representation f(x), for a single observed data point (X =

2The counterfactual label Y (Z = z) is also commonly written
as Yz (Pearl, 2011). Here we employ the parenthesis notation
Y (Z = z) to avoid subscripts.
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x, Y = y).

Non-spuriousness and its counterfactual definition. A
non-spurious representation captures features that can
(causally) determine the label. In the causal model, we
say that a representation captures non-spurious features if,
given an image without the feature, including this feature
would change its label.

As an example, suppose the label Y indicates whether the
image contains a dog. Then a representation Z capturing the
presence of dog-face is a non-spurious feature. Given a non-
dog image without a dog face (Y = 0, Z = 0), adding a dog
face to the image turns on the dog label, i.e., Y (Z = 1) = 1.
In other words, dog-face is a sufficient case of a dog label.
In contrast, a representation Z that captures the presence of
grass is a spurious feature. Though the presence of grass
and the dog label may be highly correlated, adding grass to
a non-dog image does not turn on the dog label.

Viewing the representation Z as a potential cause of the
label, a non-spurious representation shall be a sufficient
cause of the label. Turning on the feature (captured by) Z
should be sufficient to turn on the label. We thus measure
the non-spuriousness of a representation by the probability
of sufficiency (PS) of the feature Z causing the label Y .
Definition 1 (Non-spuriousness of representations). Sup-
pose we observe a data point with representation Z = z
and label Y = y. Then the non-spuriousness of the repre-
sentation Z for label Y is the probability of sufficiency (PS)
of 1{Z = z} for 1{Y = y}:

PSZ=z,Y=y = P (Y (Z = z) = y |Z 6= z, Y 6= y). (1)

When both the representation Z and the label Y are univari-
ate binary with z = 1, y = 1, then Equation (1) coincides
with classical definition of PS (Definition 9.2.2 of Pearl
(2011)).

PS is the probability of the representation 1{Z = z} be-
ing a sufficient cause of the label 1{Y = y}. In Pearl’s
language, it describes the capacity of the representation to
“produce” the label. PS measures the probability of a posi-
tive counterfactual label if we make the feature 1{Z = z}
be present (and all else equal), conditional on the feature
being absent and the label being negative {1{Z = z} =
0,1{Y = y} = 0}. A non-spurious representation shall
have a high PS for the label of interest.

Efficiency and its counterfactual definition. An efficient
representation captures only essential features of the data;
it does not capture any redundant features. In the causal
model, we say that the representation is efficient if, given
an image with the feature it captures, removing this feature
would change its label.

Returning to the image example with the dog label, a repre-
sentation that captures “dog-face + four-leg” is inefficient.

The reason is that, for an image with both a dog face and
four legs, removing one of the dog legs and hence turning
off the “dog-face + four-leg” feature does not necessarily
turn off the “dog label.” In contrast, the feature “dog-face”
is efficient as removing a dog face from an image will turn
off the “dog label.”

An efficient representation must capture features that are
necessary causes of the label. We can therefore define the
efficiency of a representation by the probability of necessity
(PN) of the feature causing the label (Pearl, 2011).

Definition 2 (Efficiency of representations). Suppose we
observe a data point with representation Z = z and label
Y = y. Then the efficiency of the representation Z for the
label Y is the probability of necessity (PN) of 1{Z = z}
for 1{Y = y}:3

PNZ=z,Y=y = P (Y (Z 6= z) 6= y |Z = z, Y = y). (2)

When both the representation Z and the label Y are univari-
ate binary with z = 1, y = 1, then Equation (2) coincides
with classical definition of PN (Definition 9.2.1 of Pearl
(2011)).

PN is the probability of the representation 1{Z = z} being
a necessary cause of the label 1{Y = y}. It measures the
probability of a negative counterfactual label if we remove
the feature (i.e., setting 1{Z = z} = 0 and all else equal),
conditional on the feature being present and the label being
positive {1{Z = z} = 1,1{Y = y} = 1}. An efficient
representation shall have a high PN for the label of interest.

These definitions suggest that we could leverage probability
of sufficient and necessary causation for evaluating non-
spurious and efficiency. Moreover, representation learning
amounts to finding necessary and sufficient causes. We defer
the formulation of representation learning and the algorithm
for learning non-spurious features to Section 5.

3. Discussion
Targeting the desiderata of efficiency and non-spuriousness
in the supervised setting, we view the representation as a
cause of the label and formalize these desiderata as the
probability of necessity and sufficiency (PNS) of the cause.
Studying the observable implications of PNS enables us to
measure efficiency and non-spuriousness with observational
data. It also allows us to formulate representation learning
as a task of finding necessary and sufficient causes. We

3The distribution of the counterfactual Y (Z 6= z) is defined as
that of a soft intervention (Correa & Bareinboim, 2020; Eberhardt
& Scheines, 2007); a.k.a. a stochastic policy (Pearl, 2011, Ch. 4.2):

P (Y (Z 6= z)) =

∫
P (Y (Z))P (Z |Z 6= z) dZ.
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operationalize this task by developing the CAUSAL-REP
algorithm. En route, we develop identification results for
the PNS given high-dimensional (rank-degenerate) data.
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4. Related work
There has been a flurry of recent work at the intersection of representation learning and causal inference. We provide a brief
review, highlighting the contrast between this literature and our work.

Learning non-spurious representations via invariance. Many works have considered causal formulations of representation
learning given datasets from multiple environments (Khasanova & Frossard, 2017; Zhao et al., 2019; Moyer et al., 2018;
Lu et al., 2021; Mitrovic et al., 2020; Moraffah et al., 2019; Arjovsky et al., 2019; Cheng & Lu, 2017; Veitch et al., 2021;
Creager et al., 2021; Puli et al., 2021). The basic idea is to enforce the invariance of the mapping between the learned
representation and the outcome label, thereby encouraging non-spurious representations and enabling out-of-distribution
prediction. Similar to these works, our CAUSAL-REP algorithm targets non-spurious representations. However, it differs in
its focus on the setting in which only a single observational dataset is available. That is, we do not assume access to datasets
from multiple environments, nor do we leverage the invariance principle.

Reverse causal inference. Our work is also related to a body of work on reverse causal inference, a task that aims to find
“causes of effects” (Schölkopf et al., 2013; Janzing & Schölkopf, 2015; Weichwald et al., 2014; Kilbertus et al., 2018;
Schölkopf et al., 2012; Paul, 2017; Wang & Culotta, 2020; 2021; Kommiya Mothilal et al., 2021; Galhotra et al., 2021;
Watson et al., 2021; Chalupka et al., 2015; 2017; Gelman & Imbens, 2013; Atzmon et al., 2020). Existing approaches
formulate the search for causes as causal hypotheses generation and testing. In contrast, our CAUSAL-REP algorithm
formulates this search as maximizing probabilities of causation (POC) (Pearl, 2011; 2019b; Tian & Pearl, 2000; Mueller
et al., 2021), specifically in the context of representation learning. We develop identification conditions for these POC for
high-dimensional data such as images and text (Nabi et al., 2020; Puli et al., 2020; Wang & Blei, 2019a; 2020; Ranganath
& Perotte, 2018; Wang & Blei, 2021; Pryzant et al., 2020; Grimmer & Fong, 2021; Fong & Grimmer, 2016; Wang &
Culotta, 2020; 2021). Our results build on existing identification results around multiple causes with shared unobserved
confounding (Wang & Blei, 2019a; 2020; Puli et al., 2020) and its positivity issues (D’Amour et al., 2020a; D’Amour,
2019b;a; Imai & Jiang, 2019), but are tailored to the representation learning setting where no unobserved confounding is
present.

Causal structure learning. Our causal approach to disentanglement also relates to causal structure learning; both involve
assessing the existence of causal connections between variables. Traditional approaches to causal structure learning relies
on independence tests or score-based methods, often assuming all variables are observed; see Heinze-Deml et al. (2018) for
a review. independence-of-support score (IOSS) differs from these works in that we allow for unobserved common causes
among the observed variables; we also rely on a different observable implication of the lack of causal connections.

Representation learning for causal inference. Representation learning and dimensionality reduction have significantly
improved the estimation efficiency of causal inference with high-dimensional covariates and treatments (Johansson et al.,
2019; Nabi et al., 2020; Johansson et al., 2020; Shi et al., 2020; Wu & Fukumizu, 2021; Veitch et al., 2019; 2020). The focus
in these work is on how representation learning can help causal inference with high-dimensional covariates. In contrast, we
focus on how causal inference can help produce useful representations.

5. Non-spuriousness, efficiency, and CAUSAL-REP
5.0.1. SIMULTANEOUS ASSESSMENT OF NON-SPURIOUSNESS AND EFFICIENCY

Representation learning often targets representations that are both non-spurious and efficient. How can one assess non-
spuriousness and efficiency simultaneously?

Assessing non-spuriousness and efficiency simultaneously. We invoke the notion of PNS. In more detail, non-spuriousness
is intuitively the effectiveness of turning on the label by turning on the feature captured by the representation; efficiency is
the effectiveness of turning off the label by turning off this feature. Thus a representation is both non-spurious and efficient
if the label responds to the feature in both ways. If the feature is turned on, then the label will be turned on; if the feature is
turned off, then the label will be turned off too. PNS calculates exactly this probability.

Definition 3 (Efficiency & non-spuriousness of representations). Suppose we observe a data point with representation
Z = z and label Y = y. Then the efficiency and non-spuriousness of the representation Z for label Y is the probability of
necessity and sufficiency (PNS) of 1{Z = z} for 1{Y = y}:

PNSZ=z,Y=y = P (Y (Z 6= z) 6= y, Y (Z = z) = y)). (3)
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When both the representation Z and the label Y are univariate binary with z = 1, y = 1, then Equation (3) coincides with
classical definition of PNS (Definition 9.2.3 of Pearl (2011)).

Requiring both necessity and sufficiency of the cause is a stronger requirement than requiring only necessity (or only
sufficiency). Accordingly, PNS is a weighted combination of PN and PS,

PNSZ=z,Y=y = P (Z = z, Y = y) · PNZ=z,Y=y + P (Z 6= z, Y 6= y) · PSZ=z,Y=y,

as per Lemma 9.2.6 of Pearl (2011). We note that our definitions of PN, PS, PNS (Equations (1) to (3)) generalize those in
Pearl (2011, Ch. 9) from univariate binary causes to general (continuous, discrete, or multi-dimensional) causes. We next
consider two further extensions of the PNS notion.

Extension: Efficiency and non-spuriousness over a dataset. The discussion of efficiency and non-spuriousness
(Definitions 1 to 3) has focused on individual data points up to this point, reflecting the fact that probabilities of causation
(POC) notions are most commonly discussed with respect to a single occurred event—given that the event Z = z and
Y = y has occurred, what is the probability that Z = z is a sufficient or necessary cause of Y = y?

In practice, however, we are often interested in whether a representation, f : Xm → Y , can produce an efficient and
non-spurious summary for datasets of n data points, {(xi, yi)}ni=1. We thus extend Definition 3 to this setting:

PNSn(Z, Y ) ,
n∏
i=1

PNSZ=zi,Y=yi =

n∏
i=1

P (Y (Z 6= zi) 6= yi, Y (Z = zi) = yi)), (4)

where zi = f(xi) is the representation for data point i. Loosely, this means that a representation is efficient and non-
spurious for a dataset if its efficiency and non-spuriousness holds jointly across all the data points. (One can similarly extend
Definitions 1 and 2 for PS and PN.)

Extension: Conditional efficiency and non-spuriousness. For multi-dimensional representations, one is often interested
in the efficiency and non-spuriousness of each of its dimensions. We expect each dimension of the representation to be
efficient and non-spurious conditional on all other dimensions.

We thus extend Definition 3 to formalize a notion of conditional efficiency and non-spuriousness. Consider a d-dimensional
representation Z = (Z1, . . . , Zd) = (f1(X), . . . , fd(X)). The conditional efficiency and non-spuriousness of the jth
dimension Zj for data point (xi, yi) is

PNSZj=zij ,Y=yi |Z−j,zi,−j
= P (Y (Zj 6= zij ,Z−j = zi,−j) 6= yi, Y (Zj = zij ,Z−j = zi,−j) = yi), (5)

where zij = fj(xi) is the jth dimension of the representation, and zi,−j = (zij′)j′∈{1,...,d}\j . Accordingly, the conditional
efficiency and non-spuriousness of Zj across all n data points is

PNSn(Zj , Y |Z−j) ,
n∏
i=1

PNSZ=zi,Y=yi |Z−j=zi,−j . (6)

Conditional efficiency and non-spuriousness describes how the label responds to the jth feature captured by the representation,
holding all other features fixed. Its definition resembles the definition of (unconditional) efficiency and non-spuriousness.
The only difference is that the conditional notion contrasts the counterfactual label of {Zj 6= zij ,Z−j = zi,−j} and
{Zj = zij ,Z−j = zi,−j}, while the unconditional notion contrasts that of {Zj 6= zij ,Z−j 6= zi,−j} and {Zj =
zij ,Z−j = zi,−j}.

The conditional efficiency and non-spuriousness across all dimensions of a representation is generally a stronger requirement
than (unconditional) efficiency and non-spuriousness. For example, suppose a dataset of (X, Y ) withX = (X1, X2, X3)
is generated by Y = X1 + εy. Now consider a two-dimensional representation, Z = (Z1, Z2), where Z1 = X1 and
Z2 = Z1 + ε, ε ∼ N (0, σ2). When σ2 is small, Z1 and Z2 are highly correlated. In this case, the (unconditional) efficiency
and non-spuriousness of Z is high because (Z1, Z2) is indeed non-spurious and (nearly) efficient; Z2 only introduces a
negligible amount of useless information. However, the conditional efficiency and non-spuriousness of Z2 given Z1 is low
because Z2 is completely useless given Z1.

We will leverage this conditional efficiency and non-spuriousness notion for representation learning in Section 5.2. First,
however, we study how to measure (conditional) efficiency and non-spuriousness from observational data.



Representation Learning as Finding Necessary and Sufficient Causes

5.1. Measuring Efficiency and Non-spuriousness in Observational Datasets

Definitions 1 to 3 formalize the efficiency and non-spuriousness of representations using POC. These POC are counterfactual
quantities; calculating them requires access to a causal structural equation (i.e., the true data generating process), which is
rarely available in practice.

In this section, we study the observable implications of Definitions 1 to 3. They lead to strategies to evaluate the efficiency
and non-spuriousness of representations with observational data; these strategies are known as causal identification
strategies (Pearl, 2011). For simplicity of exposition, we focus on identifying the PNS in Definition 3. (Identification
formulas for PN and PS in Definitions 1 and 2 can be similarly derived using Theorem 9.2.15 of Pearl (2011).)

To identify the counterfactual quantity PNS from observational data, we perform two steps of reduction, climbing down the
ladder of causation (Pearl, 2019a): (1) connect PNS to interventional distributions, and (2) identify these interventional
distributions from observational data. We describe these steps in detail in the next sections; they lead to an algorithm for
calculating a lower bound on the PNS (Theorem 7).

5.1.1. FROM COUNTERFACTUALS TO INTERVENTIONAL DISTRIBUTIONS

To connect the counterfactual quantity PNS with intervention distributions, we generalize the classical identification results
for PNS that have been developed for univariate binary causes and outcomes. It turns out that the PNS cannot be point-
identified by interventional distributions; for each set of interventional distributions, there may exist many values of PNS that
are consistent with the interventional distributions (Pearl, 2011). However, PNS can be bounded by the difference between
these two interventional distributions.
Lemma 4 (A lower bound on PNS). The PNS is lower bounded by the difference between two intervention distributions:

PNSZ=z,Y=y = P (Y (Z = z) = y, Y (Z 6= z) 6= y)

≥ P (Y = y |do(Z = z))− P (Y = y |do(Z 6= z)).
(7)

The inequality becomes an equality when the outcome Y is monotone in the representation Z (in the binary sense); i.e.,
P (Y (Z = z) 6= y, Y (Z 6= z) = y) = 0.

Lemma 4 generalizes Theorem 9.2.10 of Pearl (2011) to non-binary Z. (The proof is in Appendix A.) It connects the
counterfactual quantity PNS to the intervention distribution P (Y |do(Z = z)). An upper bound on PNS can be similarly
obtained by generalizing the upper bound in Theorem 9.2.10 of Pearl (2011). We focus on PNS here because a larger lower
bound on PNS implies a large PNS. In contrast, a larger upper bound on PNS does not necessarily imply a large PNS.

Reducing the counterfactual quantity PNS to the lower bound in Lemma 4 has climbed down one level of the lad-
der of causation (Pearl, 2019a); we have converted a counterfactual quantity (level three) to one with interventional
distributions (level two). Next we will descend one level further, discussing how to identify the interventional dis-
tributions P (Y |do(Z = z)) from the observational data distribution P (X, Y ) (level one); Z = f(X) is the rep-
resentation of X via some known function f . These identification results would also enable the identification of
P (Y |do(Z 6= z)) =

∫
P (Y |do(Z))P (Z |Z 6= z) dZ.

5.1.2. FROM INTERVENTIONAL DISTRIBUTIONS TO OBSERVATIONAL DATA DISTRIBUTIONS

To calculate the lower bound of PNS in Equation (7), we need to identify the intervention distribution P (Y |do(Z = z))—
equivalently P (Y |do(f(X) = z))—from observational datasets (X, Y ). Below we first state the formal definition
of functional interventions do(f(X) = z). We then discuss the challenges in identifying P (Y |do(f(X) = z)) for
high-dimensionalX . To tackle this challenge, we further provide an identification strategy and discuss its theoretical and
practical requirements.

The functional intervention do(f(X)). We begin with stating the formal definition of a functional intervention.
Definition 5 (Functional interventions (Puli et al., 2020)). The intervention distribution under a functional intervention
P (Y |do(f(X) = z)) is defined as

P (Y |do(f(X) = z)) ,
∫
P (Y |do(X),C)P (X |C, f(X) = z)P (C) dX dC, (8)

where C denotes all parents ofX .
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The functional intervention on f(X) is a soft intervention onX (Correa & Bareinboim, 2020; Eberhardt & Scheines, 2007)
conditional on all its parents C, with a stochastic policy p(X |C, f(X) = z) (Pearl, 2011, Ch. 4.2). In other words, a
functional intervention do(f(X) = z) considers all interventions onX that are consistent with the functional constraint
f(X) = z and its parental structure C. Functional interventions recover the standard backdoor adjustment as special cases
if we take the function f to be an identity function f(X) = X or one that returns a subset f(X) = XS , S ⊂ {1, . . . ,m};
see Appendix B for detailed derivations.

Following this definition, one can write the intervention distribution of interest, P (Y |do(f(X) = z)), as follows:

P (Y |do(f(X) = z)) =

∫
P (Y |X) ·

[∫
P (X |C, f(X) = z)P (C) dC

]
dX. (9)

This equality is due to the SCM in Figure 1: there is no unobserved confounding between X and Y , which implies
P (Y |do(X),C) = P (Y |X).

Equation (9) provides a way to identify P (Y |do(f(X) = z)), provided that one can calculate P (Y |X) and∫
P (X |C, f(X) = z)P (C) dC. At first sight, both quantities seem easy to calculate: one can estimate P (Y |X)

from observational sampling of P (Y,X). To calculate
∫
P (X |C, f(X) = z)P (C) dC, one may leverage probabilistic

factor models (e.g., probabilistic principal component analysis (PPCA), Gaussian mixture model (GMM), or vhvariational
autoencoder (VAE)) because the latent C renders X1, . . . , Xm conditionally independent in Figure 1. One can often read
off P (X |C, f(X) = z) and P (C) from the probabilistic factor model fit, if the factor model is identifiable.

However, P (Y |X) turns out to be challenging to calculate in practice, especially whenX represents high-dimensional
objects such as images or text, as we now discuss.

The challenge of identifying P (Y |X) with high-dimensionalX . The key challenge in identifying P (Y |X) lies in the
high-dimensionality ofX . High-dimensional objects such as images or text are often only supported on a low-dimensional
manifold, i.e., Xj = g0({X1, . . . , Xm}\Xj) for some j ∈ {1, . . . ,m} and some function g. we refer to this problem as the
rank-degeneracy problem (Stewart, 1984; Golub et al., 1976). It is akin to the classical challenge of having highly correlated
variables in a linear regression; it is also an example of the underspecification problem in deep learning (D’Amour et al.,
2020b).

The rank degeneracy of high-dimensional X = (X1, . . . , Xm) challenges the identification of P (Y |X), even if both
X and Y are observed. Intuitively, this non-identifiability problem occurs because the data can only inform P (Y |X)
on the low-dimensional manifold in Xm where P (X) is supported. The behavior of P (Y |X) outside this manifold is
unconstrained, hence non-identifiable.4

In more detail, suppose p(x, y), p(x), p(y |x) denote the relevant densities (and assume they exist). Any h0(·, ·) function
that satisfies

h0(x, y) · p(x) = p(x, y) ∀x ∈ Xm. (10)

Under rank degeneracy, it turns out that there exist many different functions h0(x, y) that satisfy Equation (10). Hence
p(y |x) is non-identifiable. The reason is that rank degeneracy implies p(x) = 0 for x ∈ X̃ ⊆ Xm, where X̃ is a set with
positive measure. If some function h′0 satisfies Equation (10), then the function h′′0 would also satisfy Equation (10) if they
differ only on the set (x, y) ∈ X̃ × Y . Note that h′0 and h′′0 are not almost surely equal; they differ on a set with positive
measure. Thus, h′0 and h′′0 are two different densities both valid for p(y |x), which implies the non-identifiability of p(y |x).

As a concrete example, consider a high-dimensional vector of image pixelsX that lives on a low-dimensional manifold; i.e.,
such that Xj − g0({X1, . . . , Xm}\Xj) is identically zero in the observational data (Kingma & Welling, 2014; Goodfellow
et al., 2014). This rank degeneracy implies that for any p(y |x) = h0(x, y) compatible with the observational data
distribution, the conditional p(y |x) = h0(x, y) + α · (xj − g0({x1, . . . , xm}\xj)),∀α ∈ R, is also compatible with the
observational data.

This fundamental non-identifiability of P (Y |X) with high-dimensional X suggests that we cannot hope to identify
functional interventions P (Y |do(f(X) = z)) where the function f non-trivially depends on all X1, . . . , Xm, or any of its
subset that are also rank degenerate.

4This non-identifiability of P (Y |X) is also why, for high-dimensional X , directly fitting a neural network for P (Y |X) can pick
up spurious correlations and fail in out-of-distribution prediction. Similar failure can also occur with linear regression when X is
approximately low rank; e.g., when different dimensions of X are highly correlated.
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Causal identification of P (Y |do(f(X)) for a restricted set of f . Given the fundamental non-identifiability of P (Y |X)
with high-dimensionalX = (X1, . . . , Xm), we restrict our attention to representations that only nontrivially depends on a
“full-rank” subset; i.e., Z = f(X) = f̃((Xj)j∈S), for some function f̃ : X |S| → Rd, and a set S ⊆ {1, . . . ,m}, where
p((xj)j∈S) > 0 for all values (xj)j∈S ∈ X |S|. We term this requirement “observability.”

Focusing on such representations f(X) = f̃((Xj)j∈S), we calculate its intervention distributions by returning to the
definition of functional interventions (Definition 5),

P (Y |do(f(X) = z)) =

∫
P (Y | (Xj)j∈S ,C)P ((Xj)j∈S |C, f(X) = z)P (C) d(Xj)j∈S dC. (11)

Equation (11) implies that P (Y |do(f(X) = z)) is identifiable as long as one can identify the unobserved common cause
C from data. This condition is often called the “pinpointability” (or “effective observability”) of C (Wang & Blei, 2020;
2019a). The following lemma summarizes the identification of P (Y |do(f(X) = z)) under these conditions.

Lemma 6 (Identification of P (Y |do(f(X) = z)). Assume the causal graph in Figure 1. Suppose the representation only
effectively depends on a subset (Xj)j∈S of (X1, . . . , Xm); i.e., f(X) = f̃((Xj)j∈S) for some function f̃ : X |S| → Rd and
some set S ⊆ {1, . . . ,m}. Then the intervention distribution P (Y |do(f(X) = z)) is identifiable by

P (Y |do(f(X) = z)) =

∫
P (Y | f(X) = z, h(X)) · P (h(X)) dh(X), (12)

if the following conditions are satisfied:

1. (pinpointability) the unobserved common causeC is pinpointable; i.e., P (C |X) = δh(X) for a deterministic function
h known up to bijective transformations,

2. (positivity) (Xj)j∈S satisfies the positivity condition given C; i.e., P ((Xj)j∈S ∈ X̃ |C) > 0 for any set X̃ ⊂ X |S|

such that P ((Xj)j∈S ∈ X̃ ) > 0,

3. (observability) P ((Xj)j∈S ∈ X̃ ) > 0 for all sets X̃ ⊂ X |S| with a positive measure.

Lemma 6 describes a set of representations Z = f(X) for which can we evaluate their intervention distribution, and hence
the lower bound of their PNS for Y . (The proof is in Appendix C.)

Lemma 6 is based on three conditions. The pinpointability ensures that the terms in Equation (11) involving C (e.g.
P (C), P ((Xj)j∈S |C, f(X) = z)) are estimable from observational data. We note that pinpointability serves a different
purpose here than in Wang & Blei (2019a; 2020) and Puli et al. (2020). We invoke pinpointability for Lemma 6 because
functional interventions require the knowledge of C; there is no unobserved confounding issue. In contrast, Wang & Blei
(2019a; 2020) and Puli et al. (2020) invoke pinpointability to handle unobserved confounders.

Pinpointability is often approximately satisfied when the high-dimensionalX is driven by a low-dimensional factor C. In
this case, P (C |X) is often close to a point mass (Chen et al., 2020b). For example, when the m-dimensional dataX is
generated by a known d-dimensional probabilistic factor model, then the latent factor C is approximately pinpointable
when m� d. In these probabilistic factor models, P (C |X) becomes increasingly closer to a point mass as m→∞ but d
fixed (Chen et al., 2020b; Bai & Li, 2016). In practice, one assess pinpointability by fitting probabilistic factor models toX .
We will discuss these practical details in the next section.

The second condition of Lemma 6 is the positivity of (Xj)j∈S givenC = h(X), also known as the overlap condition (Imbens
& Rubin, 2015). This condition ensures that P (Y | (Xj)j∈S ,C) in Equation (11) is estimable from observational data.
Positivity loosely requires that all values of (Xj)j∈S are possible conditional on C = h(X). For example, it is violated
when S = {1, . . . , n} because it is impossible to observeX = x and C = c simultaneously when h(x) 6= c. In practice,
positivity is more likely to be satisfied when (Xj)j∈S is a low-dimensional vector; e.g., the image representation only
depends on a few image pixels that are far away from each other.

Finally, the observability condition requires that it must be possible to observe all possible values of (Xj)j∈S . Together
with the positivity condition, this implies that P ((Xj)j∈S |C) > 0 for all (Xj)j∈S and, therefore, P (Y | (Xj)j∈S ,C) in
Equation (12) is estimable from observational data. This condition is violated if the observed (Xj)j∈S is rank degenerate;
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e.g., (Xj)j∈S = X represents the whole high-dimensional image vector supported only on a low-dimensional manifold.
This rank degeneracy would render P (Y | (Xj)j∈S , C) non-identifiable, for the same reason as why P (Y |X) is non-
identifiable with rank-degenerate X . In practice, this observability condition is more likely to hold when (Xj)j∈S is
low-dimensional.

Lemma 6 describes a class of representationsZ = f(X) whose intervention distributions are identifiable from observational
data. Combining Lemmas 4 and 6 allows us to lower bound the PNS of these representations and evaluate their efficiency
and non-spuriousness.

Theorem 7 (Evaluating efficiency and non-spuriousness with observational data). Under the assumptions of Lemma 6,
the efficiency and non-spuriousness of the representation Z = f(X) = f̃((Xj)j∈S) in the dataset {xi, yi}ni=1 is lower
bounded by

PNSn(f(X), Y ) ≥ PNSn(f(X), Y )

,
n∏
i=1

∫
[P (Y = yi | f(X) = f(xi),C) (13)

−P (Y = yi | f(X) 6= f(xi),C)] · P (C) dC,

where C = h(X) is the unobserved common cause pinpointed by the observational data X in Lemma 6. Similarly, the
conditional efficiency and non-spuriousness of the jth dimension of (f1(X), . . . , fd(X)) is lower bounded by

PNSn(fj(X), Y | f−j(X)) ≥ PNSn(fj(X), Y | f−j(X))

,
n∏
i=1

∫
[P (Y = yi | fj(X) = fj(xi), f−j(X) = f−j(xi),C) (14)

−P (Y = yi | fj(X) 6= fj(xi), f−j(X) = f−j(xi),C)] · P (C) dC.

Theorem 7 suggests that we evaluate efficiency and non-spuriousness using Equations (13) and (14) in practice. We
operationalize this result in the next section.

5.1.3. MEASURING EFFICIENCY AND NON-SPURIOUSNESS IN PRACTICE

We operationalize Theorem 7 to measure efficiency and non-spuriousness for a representation f(X). The full algorithm
is in Algorithm 1. The algorithm involves three steps: (1) Pinpoint the unobserved common cause C; (2) Estimate the
conditional P (Y | f(X),C); (3) Calculate the lower bounds in Theorem 7 (Equations (13) and (14)) to measure efficiency
and non-spuriousness. We discuss each step below.

Pinpointing the unobserved common cause C. Theorem 7 requires that the unobserved common cause C must be
pinpointable by the observational data: P (C |X) = δh(X) for some deterministic function h. Moreover, this pinpointing
function h needs to be known up to bijective transformations. How can we assess pinpointability and extract h in practice?

One can assess pinpointability by fitting a probabilistic factor model, viewed as a generative model; e.g., probabilistic
principal component analysis (PPCA) (Tipping & Bishop, 1999), variational autoencoder (VAE) (Kingma & Welling, 2014;
Rezende et al., 2014), mixture models (McLachlan & Basford, 1988), or mixed membership models (Pritchard et al., 2000;
Blei et al., 2003; Airoldi et al., 2008; Erosheva & Fienberg, 2005).

Specifically, suppose the dataset of n i.i.d. datapoints (xi)
n
i=1 is assumed to be generated by a PPCA model, then one can

assess pinpointability by first fitting a PPCA model,

ci
i.i.d.∼ N (0, IK), i = 1, . . . , n, (15)

xil | ci
i.i.d.∼ N (c>i θl, σ

2), l = 1, . . . ,m, (16)

where ci is the latent variable for each data point xi = (xi1, . . . , xim), and θ = (θ1, . . . , θm) is the set of parameters.
One then infers the parameters θ and the posterior p(ci |xi) for each i, using standard posterior inference algorithms like
variational inference (Blei et al., 2017) or Markov chain Monte Carlo methods (Gilks et al., 1995). Pinpointability then
approximately holds if p(ci |xi) is close to a point mass for all i.
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The choice of the latent dimensionalityK is a challenging task. We chooseK in practice by searching for a factor model that
can both fit data well (e.g., via a posterior predictive check (Gelman et al., 1996)) and approximately satisfy pinpointability.
A larger d tends to have a better fit to the data, while a smaller d is more likely to satisfy pinpointability. We proceed if
pinpointability holds, along with the other conditions—observability and positivity–from Theorem 7.

Given a fitted factor model, one can extract the pinpointing function h by computing the posterior mean, h(x) ≈
E [ci |xi = x]. The same procedure applies if the data is generated by other probabilistic factor models.

A reader might ask: Why probabilistic factor models? The reason is that the causal graph Figure 1 encodes a conditional
independence structure that coincides with the defining feature of probabilistic factor models. In more detail, Figure 1
assumes that each dimension of the dataX = (X1, . . . , Xm) is rendered conditionally independent given an unobserved
common cause C. This conditional independence is precisely the defining structure of probabilistic factor models,

ci ∼ p(· ; λC), i = 1, . . . , n, (17)
xil | ci ∼ p(· | ci ; θl), l = 1, . . . ,m, (18)

with i.i.d. data xi = (xi1, . . . , xim) and latent ci. We therefore use probabilistic factor models to assess the pinpointability
of C in Figure 1.

Calculate the conditional P (Y | f(X),C). After pinpointingC, we still need the conditional P (Y | f(X),C) to calculate
the lower bound in Theorem 7.

To estimate P (Y | f(X),C), we can fit a model to the observational data (xi, yi)
n
i=1, with f(·) being the representation

function of interest and ci = h(xi) estimated from the first step. As an example, we may posit a linear model,

P (Y | f(X),C) = N ((β0 + β>f(X) + γ>C), σ2), (19)

and estimate the parameters β = (β1, . . . , βd) and γ via maximum likelihood. One may also posit other more flexible
models like a partially linear model and target a categorical outcome:

P (Y | f(X),C) = Categorial(softmax(β0 + β>f(X) + γ>fC(C)). (20)

Calculate the lower bounds in Theorem 7. We finally calculate the lower bounds in Equations (13) and (14) using the
pinpointed C and the estimated conditional P (Y | f(X),C) from the previous two steps.

As an example, we calculate the lower bound of the conditional efficiency and non-spuriousness PNSn(fj(X), Y | f−j(X))
with the linear model (see Appendix E for the detailed derivation):

PNSn(fj(X), Y | f−j(X)) ≈ 1√
2πσ2

exp

(
1

2σ2

n∑
i=1

[
(βj · (fj(xi)− E [fj(xi)]))

2
])

. (21)

Similarly, we can obtain the lower bound of the (unconditional) efficiency and non-spuriousness,

PNSn(f(X), Y ) ≈ 1√
2πσ2

exp

 1

2σ2

n∑
i=1


 d∑
j=1

βj · (fj(xi)− E [fj(xi)])

2

 . (22)

Equations (21) and (22) illustrate how conditional efficiency and non-spuriousness differ from the unconditional version.
The conditional notion considers each βj · fj(X) at a time. The unconditional notion lumps together all d dimensions of the
representation and considers

∑d
j=1 βj · fj(X) as a whole. In this sense, the conditional PNS is finer-grained notion than the

(unconditional) PNS.

A Linear example. We illustrate Algorithm 1 on a toy rank-degenerate image dataset. (We analyze more complex and
higher-dimensional data in Section 5.3.) Imagine we collect a dataset of n = 1000 images. Each image is characterized by
its values on m = 5 chosen representative pixels,X = (X1, . . . , X5), accompanied by a label about the image brightness
Y . Both the pixel valuesX and the labels Y are real-valued.
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Algorithm 1 Calculating the (lower bound of) efficiency and non-spuriousness of a representation
input :The observational data and its label {xi, yi}ni=1; representation function f(·)
; the probabilistic factor model that generates the data P (X,C).
output :The (lower bound of) efficiency and non-spuriousness of representation f(X) for label Y

Fit a probabilistic factor model (Equations (17) and (18)) and infer p(ci |xi);
if Pinpointability holds, i.e., p(ci |xi) is close to a point mass for all i then

if Observability and positivity (Theorem 7) hold then
foreach datapoint i do

Pinpoint the unobserved common cause: ĉi = h(xi) ≈ E [ci |xi];
end
Calculate the conditional P (Y | f(X),C) by fitting a model to {xi, ĉi, yi}ni=1 (e.g., Equations (19) and (20));

end
Calculate the (lower bound of) efficiency and non-spuriousness PNSn(f(X), Y ) and PNSn(fj(X), Y | f−j(X)), j = 1, . . . , d

(Equations (13) and (14));
end

We simulate such a dataset of image pixels and labels. As the pixel values are often highly correlated, we generate
xi = (xi1, . . . , xi5) from a multivariate Gaussian distribution with strong (positive or negative) correlations—all pairwise
correlations are > 0.8. As the brightness label only depends on a small number of pixels, we simulate yi from a linear model
that only uses two of the five pixels

yi = β∗1xi1 + β∗2xi2 + εi, εi ∼ N (0, σ2), (23)

where β∗1 = 0.5, β∗2 = 1.0.

The goal is to evaluate the efficiency and non-spuriousness of a representation f(X) = (X2, 0.5 ·X1 +X4). We apply
Algorithm 1: pinpoint the unobserved common cause C, estimate P (Y | f(X),C), and finally calculate the lower bound of
efficiency and non-spuriousness PNSn(f(X), Y ) and PNSn(fj(X), Y | f−j(X)), j = 1, . . . , d.

We first pinpoint C. Suppose it is known that the data X is generated by a PPCA. We fit a one-dimensional PPCA
(Equation (15)) to {xi}ni=1; the latent variable ci is thus a scalar. The fit leads to the posterior of the unobserved common
cause, p(ci |xi). We assess the pinpointability of C by calculating Var(ci |xi) for all i. We find the variance is smaller
than 0.01 for all i, implying that p(ci |xi) is fairly close to a point mass and pinpointability is approximately satisfied. (The
threshold of 0.01 is a subjective choice.) We then calculate ĉi = E [ci |xi] for all i.

We next estimate P (Y | f(X),C) by fitting a linear model to the dataset {(yi, f(xi), ĉi)}ni=1 with f(xi) = (xi2, 0.5 · xi1 +
xi4),

yi ∼ N (β0 + β1 · xi2 + β2 · (0.5 · xi1 + xi4) + γ · ĉi, σ2). (24)

Fitting this linear model returns the regression coefficients {β̂0, β̂1, β̂2, γ̂}.

Finally, plugging in these regression coefficients to Equations (21) and (22) gives the efficiency and non-spuriousness, with
f1(xi) = xi2 and f2(xi) = 0.5 · xi1 + xi4.

5.2. CAUSAL-REP: Learning Efficient and Non-spurious Representations

We have developed a strategy to evaluate the efficiency and non-spuriousness of a given representation in Section 5.1. Here
we utilize this strategy to improve representation learning in both supervised and unsupervised settings.

5.2.1. REPRESENTATION LEARNING AS FINDING NECESSARY AND SUFFICIENT CAUSES

As representation learning requires efficient and non-spurious representations, we formulate representation learning as a task
of finding necessary and sufficient causes of the label.

Representation learning as finding necessary and sufficient causes. To operationalize this formulation, we search for a
representation that maximizes the conditional efficiency and non-spuriousness for a given dataset, following Definition 3
and Equation (6). Thus we view an ideal representation as one in which each dimension of the representation captures
features that are essential and non-spurious given all other dimensions.



Representation Learning as Finding Necessary and Sufficient Causes

We perform representation learning by maximizing the sum of log PNS across all dimensions of the representation,

max
f

d∑
j=1

log PNSn(fj(X), Y | f−j(X)), (25)

where PNSn(·, Y | ·) measures the conditional efficiency and non-spuriousness of fj(X) as in Equation (6).

Classes of representation functions. To perform this maximization over representations in practice, we consider
parameterized classes of representation functions f(·). One option is to consider a class of neural network functions with a
fixed architecture, subject to the constraint that each output dimension has zero mean and unit standard deviation:

{f : multilayer perceptrons Rm → Rd with two hidden layers of size 512
s.t. {f(xi)}ni=1 has sample mean 0 and standard error 1}. (26)

Another option is to consider representations that are convex combinations of the m-dimensional data,

{f : f(X) = X1×mWm×d,

m∑
l=1

Wlj = 1,Wlj ≥ 0,∀l ∈ {1, . . . ,m}, j ∈ {1, . . . , d}}. (27)

Each dimension of such representations is a convex combination of X1, . . . , Xm, that is, fj(X) =
∑m
l=1WljXl, j =

1, . . . , d.

A third option is to consider representations that select relevant subsets of the m-dimensional data,

{f : f(X) = X1×mWm×d,Wlj ∈ {0, 1},
m∑
l=1

Wlj ≤ 1,∀l ∈ {1, . . . ,m}, j ∈ {1, . . . , d}}. (28)

Each dimension of such representations selects one (or none) of X1, . . . , Xm. The d-dimensional representation f(X) thus
selects at most d features from X1, . . . , Xm.

CAUSAL-REP: Maximizing PNS in practice. Solving Equation (25) involves calculating counterfactual quantities such
as conditional PNS. As is discussed in Section 5.1, these quantities are not directly calculable without access to the causal
structural equations.

To employ Equation (25) in practice, we employ the lower bound of PNS derived in Equation (7). Specifically, we restrict
our attention to representations whose lower bound of PNS is identifiable via Theorem 7, and find the representation that
maximizes this lower bound:

(The CAUSAL-REP objective) max
f

d∑
j=1

log PNSn(fj(X), Y | f−j(X)) + λ ·R(f ; {xi, yi, ci}ni=1), (29)

where PNSn(fj(X), Y | f−j(X)) is the PNS lower bound (Equation (14)) in Theorem 7. The parameter λ ≥ 0 indicates
regularization strength. The term R(f ; {xi, yi, ci}ni=1) is a regularization penalty,

R(f ; {xi, yi, ci}ni=1) ,
1

d

d∑
j=1

log(1− Rsq({fj(xi) ; ci}ni=1))− α · ||W (f)||22 , (30)

where Rsq({fj(xi) ; ci}ni=1) is the R-squared of regressing the jth-dimension of the representation fj(xi) against the
unobserved common cause ci. The quantity ||W (f)||2 represents the L2-norm of the f function’s parameters, e.g., all the
weight parameters of a neural network f ; α is the relative weight of the two regularization penalties.

The first part of the objective (Equation (29)) is the lower bound of conditional PNS developed in Theorem 7. Following the
practical discussions in Section 5.1, its calculation requires pinpointing the unobserved common cause C = h(X) and
fitting a model to P (Y | f(X),C) (e.g., Equation (19)).
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The second part of the objective is the regularization penalty. It encourages representations whose lower bound of PNS is
identifiable from observational data. Specifically, these regularization penalties aim to enforce the positivity and observability
conditions in Lemma 6. (The pinpointability condition is enforced in a separate step.)

In more detail, the first penalty 1
d

∑d
j=1 log(1−Rsq({fj(xi) ; ci}ni=1)) in Equation (30) encourages the positivity of f(X)

given C in Lemma 6. The sample R-squared Rsq({fj(xi) ; ci}ni=1) evaluates the variation of fj(X) explainable by C.
When the R-squared is equal to one, then the positivity condition is violated. Accordingly, a close-to-one value of R-squared
implies that fj(X) nearly violates the positivity condition. The penalty 1

d

∑d
j=1 log(1− Rsq({fj(xi) ; ci}ni=1)) takes a

large negative value if any dimension of the representation f(X) nearly violates the positivity condition.

The second penalty −α · ||W (f)||22 encourages representations that satisfy the observability condition. Specifically, it
penalizes the coefficients in front of (X1, . . . , Xm) in the representation function f . Imposing a large regularization
parameter α > 0 leads to representations f(X) that only effectively depend on a small subset of (X1, . . . , Xm); i.e.,
f(X) = f̃((Xj)j∈S) for some function f̃ , with S ⊆ {1, . . . ,m} being a set with only a few elements. Such representations
are more likely to satisfy the observability condition—namely, P ((Xj)j∈S) > 0 for all values of (Xj)j∈S—because
lower-dimensional (Xj)j∈S are more likely to have full rank (Udell & Townsend, 2019).

Out-of-distribution prediction with CAUSAL-REP. Given a representation returned by CAUSAL-REP, how do we make
predictions, especially on out-of-distribution data?

To make predictions, we train a prediction function that maps the CAUSAL-REP representation to the labels. We note that
the predictions are only made using the CAUSAL-REP representation; it does not involve the unobserved common cause
C. This prediction function is different from the prediction model fitted for P (Y | f(X),C) (cf. Equations (19) and (20)).
The rationale is that CAUSAL-REP encourages non-spurious representations; it implies that the relationship between the
representation and the label should generalize to out-of-distribution data. However, CAUSAL-REP places no constraints on
the relationship between C and Y .

Specifically, suppose CAUSAL-REP returns f̂(·) as the representation function; i.e., it maximizes Equation (29). Then we
posit a model for P (Y | f̂(X)); e.g., a linear model:

P (Y | f̂(X)) = N (βpred
0 + (βpred)>f̂(X), (σpred)2), (31)

or a flexible exponential family model:

P (Y | f̂(X)) = EF(gpred(f̂(X))), (32)

where EF indicates an exponential family distribution and gpred indicates a link function. We fit this model to the training
data {(f̂(xi), yi)

n
i=1} using maximum likelihood estimation, and then use this fitted model to predict on out-of-distribution

data; e.g., we calculate E
[
(Y | f̂(Xtest))

]
.

CAUSAL-REP with perfectly correlated spurious and non-spurious features. We have described CAUSAL-REP,
a representation learning algorithm that targets non-spurious and efficient representations. A reader might ask: What if
spurious and non-spurious features are perfectly correlated in the training dataset? That is, what if the spurious feature is on
if and only if the non-spurious feature is also on? Intuitively, we can not hope to tease apart spurious and non-spurious
representations in this case. How would CAUSAL-REP fare?

In such a perfect correlation case, the CAUSAL-REP algorithm would capture neither the spurious feature nor the
non-spurious one. The reason is that both features are excluded from the feasible set of representations considered by
CAUSAL-REP. Their PNS lower bounds are both not identifiable, but CAUSAL-REP only considers representations whose
PNS lower bound is identifiable.

In more detail, suppose fs((Xj)j∈Ts) captures the spurious feature and fn((Xj)j∈Tn) captures the non-spurious features,
where Ts, Tn ⊂ {1, . . . ,m}. They depend on disjoint subsets of X , Ts ∩ Tn = ∅, but they are perfectly correlated
fs((Xj)j∈Ts) = fn((Xj)j∈Tn). Then both features must be measurable with respect to the unobserved common cause
C: fs((Xj)j∈Ts) = fn((Xj)j∈Tn) = q(C) for some function q.5 This measurability makes their PNS lower bounds
non-identifiable; it violates the positivity assumption required by Theorem 7.

5The reason is that C must render all Xj’s conditionally independent due to the causal graph Figure 1. It must also render the spurious
and non-spurious features conditionally independent, because they depend on disjoint subsets of X . As the two features are perfectly
correlated, the only way to render them conditionally independent is to make them measurable with respect to C.



Representation Learning as Finding Necessary and Sufficient Causes

Algorithm 2 CAUSAL-REP (Supervised)
input :The training data and its label {xtrain

i , ytrain
i }ntrain

i=1 ; the (out-of-distribution) test data {xtest
i }ntest

i=1 ; the probabilistic factor model
that generates the training data P (X,C)

output :CAUSAL-REP representation function f̂(·); predictions on the test data ŷi, i = 1, . . . , ntest

# Representation learning with CAUSAL-REP
Fit a probabilistic factor model (Equations (17) and (18)) to the training data and infer p(ci |xtrain

i ), i = 1, . . . , ntrain;
if Pinpointability holds, i.e. p(ci |xtrain

i ) is close to a point mass for all i then
foreach training datapoint i do

Pinpoint the unobserved common cause C: ci = h(xtrain
i ) , E

[
ci |xtrain

i

]
for i = 1, . . . , ntrain;

end
Maximize Equation (29) to obtain the CAUSAL-REP representation f̂ ;

end
# Out-of-distribution prediction with the CAUSAL-REP representation
Estimate P (Y | f̂(X)) by fitting a model (e.g. Equations (31) and (32)) to {f̂(xtrain

i ), ytrain
i }ntrain

i=1

Predict on test data using the fitted model: ŷi = E
[
Y | f̂(xtest

i )
]
, i = 1, . . . , ntest

5.2.2. CAUSAL-REP AND THE LINEAR EXAMPLE CONTINUED

We described each step of CAUSAL-REP in the previous section. Algorithm 2 summarizes these steps. The key step is to
maximize the CAUSAL-REP objective (Equation (29)). This step involves a nested loop of optimization: an outer loop with
respect to the representation parameters W (f), and an inner loop to estimate P (Y | f(X),C). This nesting is required
because calculating the CAUSAL-REP objective involves estimating P (Y | f(X),C) by maximum likelihood.

To maximize the CAUSAL-REP objective, one can use standard gradient-based algorithms to handle this nested loop. When
the inner loop—the maximum likelihood estimation of P (Y | f(X),C)—has a closed-form solution (e.g., under the linear
model in Equation (19)), we can plug in the solution to the CAUSAL-REP objective and directly apply a gradient-based
method for optimization. When the inner loop does not admit a closed form, we can alternate between the gradient updates
of the two optimizations, e.g., alternating between (1) one gradient update step to maximize the CAUSAL-REP objective,
and (2) multiple gradient update steps until convergence to estimate P (Y | f(X),C) with maximum likelihood.

The linear example continued. We illustrate CAUSAL-REP (Algorithm 2) with the linear example in Section 5.1.3:
pinpoint the unobserved common cause C from the training data {xtrain

i , ytraini }ntrain
i=1 , obtain the CAUSAL-REP objective

f̂ , and predict on some out-of-distribution test data {xtest
i }

ntest
i=1 . We focus on learning two-dimensional representations,

f(X) = (f1(X), f2(X)).

We first perform the same pinpointability step to obtain ĉi as in Section 5.1.3.

We next maximize the CAUSAL-REP objective (Equation (29)). We calculate the CAUSAL-REP objective by plugging in
the calculation of PNSn(fj(X), Y | f−j(X)) in Equation (21), where we adopt a linear model for P (Y | f(X),C). In more
detail, to optimize the CAUSAL-REP objective, we need to write (the parameters of) the fitted model of P (Y | f(X),C) as
a function of the representation function f . We use the closed-form estimates of these linear model parameters when fitted
to the training data {xtrain

i , ytraini }ntrain

i=1 :

(β̂0, β̂1, β̂2, γ̂) = arg min

n∑
i=1

(ytraini − β0 − β1 · f1(xtrain
i )− β2 · f2(xtrain

i )− γ · ĉi)2 = (X̃
>
X̃)−1(X̃

>
Ỹ ),

where X̃ is an ntrain × 4 matrix with X̃i1 = 1, X̃i2 = f1(xtrain
i ), X̃i2 = f2(xtrain

i ), X̃i2 = ĉi, and Ỹ is an n × 1
vector with Ỹi1 = ytraini , i = 1, . . . , n. (When closed-form solutions are not available, we need to perform gradient-based
optimization to obtain the fitted model parameters.)

Plugging in these terms, we maximize the CAUSAL-REP objective via gradient descent with respect to the parameters of
the representation function W (f). The optimal Ŵ (f) give the CAUSAL-REP representation function f̂ .

Finally, we perform out-of-distribution prediction with the CAUSAL-REP representation f̂ . We train a prediction function
by fitting a linear model to P (Y | f̂(X)),

ytraini = βpred
0 + βpred

1 · f̂1(xtrain
i ) + βpred

2 · f̂2(xtrain
i ) + ε, ε ∼ N (0, (σpred)2). (33)
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We obtain the estimated regression coefficients {β̂pred
0 , β̂pred

1 , β̂pred
2 , σpred} by maximum likelihood. They allow us to make

predictions on the test data {xtest
i }

ntest
i=1 ,

ŷi = E
[
Y | f̂(xtest

i )
]

= β̂pred
0 + β̂pred

1 · f̂1(xtest
i ) + β̂pred

2 · f̂2(xtest
i ). (34)

5.2.3. EXTENDING CAUSAL-REP TO UNSUPERVISED SETTINGS

We extend CAUSAL-REP to unsupervised settings where labels are not available. We focus on the task of instance
discrimination in unsupervised representation learning (Hadsell et al., 2006), where the goal is to find representations that
can distinguish the different subjects.

The unsupervised CAUSAL-REP. We focus on the unsupervised setting where some form of data augmentation is
available. That is, the dataset contains one raw observation for each subject; this raw observation is then augmented multiple
times, which leads to multiple observations per subject. Given this unsupervised dataset, which attach the subject ID to each
observation as a supervised label. We can thereby formulate the instance discrimination problem as a supervised task, one
that finds representations that are informative of the subject IDs and extend CAUSAL-REP to an unsupervised setting. The
resulting algorithm turns out to be closely related to contrastive learning (Chen et al., 2020a).

In more detail, we begin with a dataset with n i.i.d. samples, (x1, . . . ,xn). Assume that each data point is associated
with a different subject i. Next, we augment each data point with U − 1 augmentations, producing an augmented dataset,
{{xui }Uu=1}ni=1, U ≥ 2. We then create an n-dimensional label, yui = (yui1, . . . , y

u
in), for each data point in the augmented

dataset, where

yuis = 1{xui belongs to subject s}, s = 1, . . . , n. (35)

This labeling turns the unsupervised problem into a supervised one with respect to the augmented labeled dataset
{{xui ,yui }Uu=1}ni=1. We then employ the CAUSAL-REP objective to find representations that are necessary and suffi-
cient causes of the n outcomes (Y1, . . . , Yn):

max
f

n∑
s=1

m∑
j=1

log PNSn·U (fj(X), Ys | f−j(X)) + λ ·R(f ; {{xui , yuis, cui }Uu=1}ni=1), (36)

where PNSn·U (fj(X), Ys | f−j(X)) is the conditional efficiency and spuriousness (Equation (6)) for the sth outcome; it is
calculated on the augmented dataset {{xui ,yui }Uu=1}ni=1. The penalty term R(·) is the same penalty as in the CAUSAL-REP
objective (Equations (29) and (30)). Solving Equation (36) produces non-spurious and efficient representations ofX for
instance discrimination. (We summarize the algorithm in Algorithm 3.)

The optimization objective in Equation (36) considers the n outcomes {Ys} one at a time and averages over the n outcomes.
It focuses on the contrast of one-vs-all, finding representations that distinguish each subject from the rest. This objective
does not consider the n outcomes as a single n-dimensional outcome (Y1, . . . , Yn) and calculate its PNS.

Contrastive learning targets the same instance discrimination task as the unsupervised CAUSAL-REP does. Contrastive
learning aims for representations that can determine whether two data points come from the same subject. It thus is able to
predict whether each data point belongs to subject s, for s = 1, . . . , n. From this perspective, both contrastive learning and
the unsupervised CAUSAL-REP target the same outcome.

That said, the two algorithms only coincide when different dimensions of X are independent—they do not share an
unobserved common cause as in Figure 1. The two algorithms behave very differently when such a common cause exists,
especially when the common cause induces some spurious feature (e.g., image color). Concretely, there may be a subset of
(X1, . . . , Xm) that is highly correlated with the label Y but cannot causally determine Y . In such cases, contrastive learning
may pick up these spurious features if no augmentations are performed for these features (e.g., there is no augmentation
that randomly changes the color of images). In contrast, the unsupervised CAUSAL-REP would not capture these spurious
features.

This difference illustrates how CAUSAL-REP learns non-spurious representations in a different way than data-augmentation-
based methods (including contrastive learning). CAUSAL-REP capitalizes on a causal perspective and its treatment of
high-dimensionalX . Data-augmentation-based methods instead wipe out the correlation between spurious features and the
label by performing data augmentation. We will illustrate this difference further in Section 5.3.



Representation Learning as Finding Necessary and Sufficient Causes

PNS(Z1, Y1|Z2)

PNS(Z2, Y1|Z1)

PNS(Z1, Y2|Z2)

PNS(Z2, Y2|Z1)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(a) Conditional PNS

1.0 0.5 0.0 0.5 1.0
Corr(Z1, Z2)

0.00

0.25

0.50

0.75

P
N

(Z
1,

Y 2
)

1.0 0.5 0.0 0.5 1.0
Corr(Z1, Z2)

0.00

0.25

0.50

0.75

P
S

(Z
1,

Y 2
)

1.0 0.5 0.0 0.5 1.0
Corr(Z1, Z2)

0.0

0.2

0.4

0.6

P
N

S
(Z

1,
Y 2

)

(b) Probabilities of causation (POC) of Z1 for Y2

Figure 2. Probabilities of causation can distinguish spurious/non-spurious and efficient/inefficient features. (a) Conditional PNS signals
that Z2 is spurious for Y1. (b) Probabilities of causation (PNS, PN, PS) of Z1 for Y2 increase as Z1 and Z2 become increasingly highly
correlated.

5.3. Empirical Studies of CAUSAL-REP

We study CAUSAL-REP in both image and text datasets. We find that probabilities of causation (POC) are effective in
distinguishing efficient/inefficient and non-spurious/spurious representations. Moreover, CAUSAL-REP finds non-spurious
features in both supervised and unsupervised settings; it also outperforms existing unsupervised representation learning
algorithms in downstream out-of-distribution prediction.

5.3.1. HOW WELL DO PROBABILITIES OF CAUSATION MEASURE EFFICIENCY AND NON-SPURIOUSNESS OF FEATURES?

We first study the correspondence between probabilities of causation (PS, PN, PNS) and the efficiency/non-spuriousness of
representations. We generate features with known efficiency and non-spuriousness properties; we find that the (lower bound
of) probabilities of causation in Lemma 4 are consistent with these properties.

The simulated data. We simulate two binary features Z1, Z2 and two binary outcomes Y1, Y2:

Z1 ∼ Bernoulli(0.4),

Z2 = Z1 ⊕ Bernoulli(p), p ∈ {0, 0.1, . . . , 0.9, 1},
Y1 = Z1 ⊕ Bernoulli(0.2),

Y2 = (Z1&Z2)⊕ Bernoulli(0.2),

where ⊕ indicates the XOR operator. We vary the parameter p; a small p implies a high correlation between Z1 and Z2. The
generative process of Y1, Y2 implies that (1) Z1 is necessary (a.k.a. efficient) and sufficient (a.k.a. non-spurious) for Y1, but
is necessary and insufficient for Y2; (2) Z2 is neither necessary nor sufficient for Y1, but is necessary and insufficient for Y2;
(3) Z1&Z2 is necessary and sufficient for Y2. Moreover, when the correlation between Z1 and Z2 increases, then using both
features as a representation become increasingly inefficient; the conditional necessity decreases. We calculate the lower
bound of PS, PN, PNS of Z1, Z2 for both outcomes Y1, Y2; the exact value is not identifiable from data.

Results. Figures 2, 6 and 7 present the probabilities of causation of the features. Figure 2a shows that the (lower bound of)
conditional PNS can correctly signal the non-spuriousness of features: Z2 is spurious for Y1, but Z1 is non-spurious for Y1,
and both Z1, Z2 are non-spurious for Y2. Moreover, we study how probabilities of causation (POC) fare when the correlation
between Z1 and Z2 increases. Figure 2 shows that the (lower bounds of) POC of Z1 for Y2 increase as the correlation
increases, which is consistent with the intuition that Z2 becomes less necessary for Y2 given Z1 given increasingly higher
correlations. Similarly, Figures 6 and 7 show that (the lower bounds of) the unconditional POC of Z2 for Y1 also increase. It
is also consistent with the intuition: Z2 is an increasingly better surrogate of Z1 for Y1 under higher correlations between Z1

and Z2.

5.3.2. DOES THE SUPERVISED CAUSAL-REP PICK UP SPURIOUS FEATURES IN SYNTHETIC DATA?

We next study the performance of the supervised CAUSAL-REP in a toy synthetic dataset. We use PPCA as the pinpointing
factor model and linear functions as the class of representation functions.

The simulated data. We generate a dataset of core and spurious features (X1, . . . , X5), who are highly correlated in the
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Figure 3. CAUSAL-REP learns non-spurious representations in both supervised and unsupervised settings. (a) CAUSAL-REP outperforms
linear regression in OOD prediction in toy synthetic data. (b) CAUSAL-REP outperforms baseline representation learning algorithms (e.g.
directly fitting neural networks, or performing contrastive learning, or adopting VAE representations) in the colored and shifted MNIST
dataset. The dashed yellow line indicates the theoretical maximum of OOD predictive accuracy. (Higher is better.)

training set but not so in the test set,

X̄train
1 , . . . , X̄train

5 ∼ N (0, 0.05 · I5 + 0.95 · J5),

X̄test
1 , . . . , X̄test

5 ∼ N (0, 0.05 · I5 + 0.05 · J5),

where I5 is a 5 × 5 identity matrix and J5 is a 5 × 5 all-ones matrix. For both training and test sets, we inject noise to
features to lower the signal-to-noise ratio of the problem: Xj ∼ N (X̄j , 0.4

2), j = 1, 2;Xj ∼ N (X̄j , 0.3
2), j = 3, 4, 5.

Finally, we generate an outcome Y that only depends on the core features Y ∼ N (β1X1 + β2X2, 1), where the coefficients
are drawn from a uniform βj ∼ Unif[0, 10], j = 1, 2.

Results. We compare the performance of CAUSAL-REP, linear regression, and an oracle algorithm; the oracle is equipped
with the knowledge of which features are spurious and only performs linear regression against the non-spurious features.
We study whether these algorithms pick up spurious features by evaluating their the out-of-distribution (OOD) predictive
performances. If an algorithm picks up spurious features, then its OOD predictions will suffer, because spurious features
are much less predictive in test data than in training data. Figure 3a presents the result: CAUSAL-REP outperforms linear
regression in OOD predictive R-squared; its predictive performance is not far from the oracle algorithm.

5.3.3. DOES THE SUPERVISED CAUSAL-REP PRODUCE NON-SPURIOUS REPRESENTATIONS FOR IMAGE DATA? A
STUDY ON COLORED MNIST AND CELEBA

We next study the supervised CAUSAL-REP in image datasets: Colored MNIST (Arjovsky et al., 2019) and CelebA (Liu
et al., 2015). We consider the version of supervised CAUSAL-REP algorithm which adopts a VAE with 64 latent dimensions
as the probabilistic factor model for pinpointing. For representation functions, we consider a two-layer neural network with
20-dimensional outputs. We again evaluate the non-spuriousness of the representations by the OOD predictive accuracy; if
the learned representation captures spurious features, then it will suffer in OOD prediction.

Competing methods. We compare CAUSAL-REP with a baseline representation learning algorithm that fits a neural
network to the labels and extracts its penultimate layer as the representation (Bengio et al., 2013). As we use VAE for
pinpointing in CAUSAL-REP in this study, we also compare with directly adopting the VAE representation for OOD
prediction.

The Colored MNIST study. We focus on the colored MNIST data with the digits ‘3’ and ‘8’ and colors ‘red’ and ‘green’;
see Appendix G.2 for the detailed experimental setup.

Figure 4a presents the OOD predictive accuracy of CAUSAL-REP across different levels of spurious correlations. CAUSAL-
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Figure 4. (a) The supervised CAUSAL-REP learns non-spurious representations in colored MNIST and outperforms baseline representation
learning algorithms (e.g. directly fitting neural networks, or adopting VAE representations)in OOD prediction. (b) The performance of
CAUSAL-REP is robust to the choice of the latent dimensionality of probabilistic factor models. The dashed yellow line indicates the
theoretical maximum of OOD predictive accuracy. (Higher is better.)

REP outperforms other baseline methods in OOD predictive accuracy when the spurious correlation is larger than 0.5. Its
performance remains close to the theoretical maximum (the yellow dashed line) across different levels of the spurious
correlation, suggesting that CAUSAL-REP does not pick up spurious features. In contrast, the OOD performance of
representation learning by directly fitting neural networks quickly degrades as the spurious correlation increases; so does
OOD prediction with the VAE representations.

Figure 4b evaluates the robustness of CAUSAL-REP against the latent dimensionality choice of the pinpointing factor
model, fixing the spurious correlation at 0.9. We find that the performance of CAUSAL-REP does not change much as we
vary the latent dimensionality of pinpointing VAE. The relative performance of CAUSAL-REP and the competing methods
also stay stable.

The CelebA study. We next study CAUSAL-REP on the CelebA dataset (Liu et al., 2015). We create training and test sets,
each containing 5,000 data points, by subsampling the CelebA datasets. We focus on face attributes with a relatively balanced
distribution in the raw CelebA dataset. We designate pairs of target attributes and spurious attributes, and subsample such
that the two are highly correlated in the training set and not as correlated in the test set. We then perform representation
learning and OOD prediction for the target labels, using CAUSAL-REP and other competing methods.

Table 1 presents the results for different pairs of target and spurious face attributes. Though the spurious label and the target
label are highly correlated, CAUSAL-REP can pick up non-spurious features that inform the target label and outperform the
baseline algorithm that directly fits a neural network. In most settings, CAUSAL-REP also outperforms OOD prediction with
VAE representations. The exception is that VAE representations can outperform CAUSAL-REP representations when the
spurious correlations climb up to 0.9, though the performance of CAUSAL-REP is still competitive. The spurious features in
these settings violate the positivity condition: Mustache and goatee exclusively appear on males in the subsampled dataset.

5.3.4. DOES THE SUPERVISED CAUSAL-REP PRODUCE NON-SPURIOUS REPRESENTATIONS FOR TEXT DATA? A
STUDY ON REVIEWS CORPORA AND SENTIMENT ANALYSIS

We next study CAUSAL-REP on text datasets: the Amazon (Wang et al., 2011; 2010), Tripadvisor,6 and Yelp7 reviews
corpora, and the IMDB-L, IMDB-S, and Kindle dataset as is processed in Wang & Culotta (2020; 2021). In these studies,
we convert these corpora into bags of words. We use PPCA as a pinpointing factor model for CAUSAL-REP and consider
representations whose each dimension is a convex combination of words.

The reviews corpora study. We begin with the raw reviews datasets from Amazon, Tripadvisor, and Yelp. We create a

6http://times.cs.uiuc.edu/ wang296/Data/
7https://www.yelp.com/dataset/documentation/main
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spurious
corr.
(train)

spurious
corr.
(test)

CAUSAL-REP Direct NN fit VAE rep.

target spurious

Arched Brows Eye Bags 0.784 -0.797 0.539(0.036) 0.514(0.029) 0.499(0.012)
Arched Brows Earrings 0.799 -0.791 0.521(0.025) 0.504(0.022) 0.494(0.008)
Attractive Necklace 0.793 -0.787 0.537(0.022) 0.505(0.030) 0.485(0.018)
Black Hair Mouth Open 0.791 -0.795 0.594(0.033) 0.566(0.060) 0.505(0.010)
Goatee Male 0.889 0.053 0.728(0.073) 0.566(0.102) 0.867(0.165)
Mustache Black Hair 0.764 -0.778 0.525(0.023) 0.512(0.037) 0.540(0.005)
Mustache Male 0.892 0.088 0.787(0.066) 0.555(0.097) 0.855(0.212)

Table 1. CAUSAL-REP learns non-spurious representations in the CelebA dataset and outperforms baseline representation learning
algorithms in OOD prediction.
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Figure 5. CAUSAL-REP learns non-spurious representations across reviews text copura; its predictive performance is stable across
in-distribution and out-of-distribution test sets.

binary label for each review by converting 4 and 5 stars to a positive label and 1 and 2 stars to a negative label. We then
inject irrelevant words to the training dataset as spurious features by randomly adding in “as”, “also”, “am”, “an” to reviews
with positive labels; the resulting spurious correlation is around 0.9. We create two test datasets: one is in-distribution with
the spurious words present as in the training set; the other is out-of-distribution without the randomly added spurious words.

Figure 5 presents the predictive accuracy of CAUSAL-REP in both test sets. We find that the predictive performance
of CAUSAL-REP is stable across in-distribution and out-of-distribution test sets, suggesting that it learns non-spurious
representations. In contrast, logistic regression predicts well in the in-distribution test set but not in the out-of-distribution
test set, suggesting that it picks up spurious features that only exist in the training set.

Table 3 presents the most informative words of the (positive or negative) ratings, suggested by the CAUSAL-REP represen-
tation and the logistic regression coefficients. Across three reviews corpora, logistic regression returns the spurious words
“as”, “also”, “am”, “an” as the top words. In contrast, CAUSAL-REP extracts words that are more relevant for the ratings.

The sentiment analysis study. We next employ CAUSAL-REP for sentiment classification on the IMDB-L, IMDB-S, and
Kindle datasets (Wang & Culotta, 2020; 2021). We evaluate CAUSAL-REP on their raw observational and counterfactual
test sets, without employing additional data augmentations as in Wang & Culotta (2020; 2021). The observational test sets
are in-distribution test sets, and the counterfactual test sets are out-of-distribution test sets.

Table 2 presents the predictive performance of CAUSAL-REP compared with logistic regression. While logistic regression
outperforms in in-distribution predictive accuracy, CAUSAL-REP outperforms in out-of-distribution prediction. Moreover,
the predictive performance of CAUSAL-REP is similar across in-distribution and out-of-distribution test sets, suggesting
that CAUSAL-REP produces non-spurious representations.
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Observational test set Counterfactual test set
Logistic Regression CAUSAL-REP Logistic Regression CAUSAL-REP

IMDB-L 0.669 0.645 0.591 0.642
IMDB-S 0.836 0.682 0.570 0.621
Kindle 0.850 0.618 0.468 0.572

Table 2. CAUSAL-REP outperforms naive representation learning algorithms in predicting on counterfactual test sets.

5.3.5. HOW WELL DOES UNSUPERVISED CAUSAL-REP PERFORM ON INSTANCE DISCRIMINATION? A STUDY ON
COLORED AND SHIFTED MNIST

Finally, we study CAUSAL-REP in the unsupervised setting. We focus on image datasets in the unsupervised setting
because non-spurious features that distinguish different images are more readily defined in the image domain than in the
text domain. We evaluate the non-spuriousness of the unsupervised CAUSAL-REP again by OOD prediction. Given the
unsupervised CAUSAL-REP representation, we fit a prediction model to the target label and test its predictive performance
on OOD test sets.

Competing methods. We compare CAUSAL-REP with baseline representation learning algorithms that fit a neural network
to the subject ID label in Section 5.3.5. We also compare with contrastive learning (Chen et al., 2020a) and the VAE
representation.

The colored and shifted MNIST study. We construct the colored and shifted MNIST dataset by coloring and shifting
digits in a way that is highly correlated with the digit labels; see Appendix G.4 for details. (Representation learning with the
unsupervised CAUSAL-REP does not make use of the digit labels; these labels are only used in producing a prediction
function from the representations to the labels.)

Figure 3b presents the OOD predictive accuracy of the unsupervised CAUSAL-REP on colored and shifted MNIST.
CAUSAL-REP outperforms baseline representation learning algorithms when the spurious correlation is high, and their
predictive accuracy stays close to the theoretical maximum (the yellow dashed line). Comparing CAUSAL-REP with
contrastive learning with shift augmentation, we find that the OOD predictive accuracy of contrastive learning degrades
when the spurious correlations increase over 0.7. It is because the shift augmentation can not rule out the spurious color
feature; it can only avoid picking up the spurious shift feature. This observation echoes the discussion in Section 5.3.5,
illustrating how the unsupervised CAUSAL-REP relies on a different mechanism to produce non-spurious representations
than contrastive learning and data augmentation.
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Supplementary Materials

A. Proof of Lemma 4
Proof. The proof generalizes the proof of Theorem 9.2.10 in Pearl (2011).

We first notice the following:

P (Y (Z = z) = y) = P (Y (Z = z) = y, Y (Z 6= z) = y) + P (Y (Z = z) = y, Y (Z 6= z) 6= y) (37)

Next denote ε , P (Y (Z = z) 6= y, Y (Z 6= z) = y) ≥ 0. Then we have

P (Y (Z 6= z) = y) = P (Y (Z = z) = y, Y (Z 6= z) = y) + P (Y (Z = z) 6= y, Y (Z 6= z) = y) (38)
= P (Y (Z = z) = y, Y (Z 6= z) = y) + ε. (39)

Substituting Equation (39) into Equation (37) implies that

P (Y (Z = z) = y) = P (Y (Z 6= z) = y) + P (Y (Z = z) = y, Y (Z 6= z) 6= y)− ε, (40)

which implies

P (Y (Z = z) = y, Y (Z 6= z) 6= y) =P (Y (Z = z) = y)− P (Y (Z 6= z) = y) + ε (41)
=P (Y = y |do(Z = z))− P (Y = y |do(Z 6= z)) + ε (42)
≥P (Y = y |do(Z = z))− P (Y = y |do(Z 6= z)). (43)

The inequality becomes equality when ε = 0 under the monotonicity condition in Lemma 4.

B. The definition of functional interventions recovers backdoor adjustment
The definition of functional interventions (Definition 5) recovers the standard backdoor adjustment as special cases when the
function f(X) returnsX or its subset (assuming the causal graph Figure 1).

For example, when f(X) = X , then

P (Y |do(f(X) = z)) = P (Y |do(X = z))

=

∫
P (Y |do(X),C)P (X |C,X = z)P (C) dX dC

=

∫
P (Y |X) · δX=z · P (C) dX dC

= P (Y |X = z),

where the third inequality is due to no unobserved confounding betweenX and Y in Figure 1.

As another special case, suppose the function f(X) returns the subset of X = (X1, . . . , Xm) except X1, i.e., f(X) =
(X2, . . . , Xm). Then Equation (8) recovers backdoor adjustment:

P (Y |do(f(X) = z)) = P (Y |do((X2, . . . , Xm) = z))

=

∫
P (Y |do(X),C)P (X |C, (X2, . . . , Xm) = z)P (C) dX dC

=

∫
P (Y |X) · δ(X2,...,Xm)=z · P (X1 |C)P (C) dX dC

=

∫
P (Y |X1, (X2, . . . , Xm) = z) · P (X1 |C)P (C) dX1 dC
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=

∫
P (Y |X1, (X2, . . . , Xm) = z,C) · P (X1 | (X2, . . . , Xm) = z,C)P (C) dX1 dC

=

∫
P (Y,X1 | (X2, . . . , Xm) = z,C)P (C) dX1 dC

=

∫
P (Y | (X2, . . . , Xm) = z,C)P (C) dC,

where the third inequality is due to no unobserved confounding betweenX and Y in Figure 1, and the fifth inequality is due
to the conditional independence of X1, . . . , Xm given C in Figure 1.

C. Proof of Lemma 6
Proof. We calculate the intervention distribution for functional interventions f(X) = f̃((Xj)j∈S)

P (Y |do(f(X)))

=

∫
P (Y | (Xj)j∈S ,C)P ((Xj)j∈S |C, f(X))P (C) d(Xj)j∈S dC, (44)

=

∫
P (Y | (Xj)j∈S ,C, f(X))P ((Xj)j∈S |C, f(X))P (C) d(Xj)j∈S dC, (45)

=

∫
P (Y |C, f(X))P (C) dC, (46)

=

∫
P (Y | f(X), h(X)) · P (h(X)) dh(X). (47)

The first equation is due to the definition of functional interventions on f(X) (Puli et al., 2020). It is a soft intervention on
X with a stochastic policy conditional on the parents ofX . The stochastic policy is P (X | f(X), PA(X)) where PA(X)
denotes the parents ofX .

The second equation is due to P (Y | (Xj)j∈S ,C, f(X)) = P (Y | (Xj)j∈S ,C).

The third equation is due to the observability and positivity condition. Observability and positivity guarantee that
P ((Xj)j∈S ,C) > 0 for all (Xj)j∈S ,C. Thus we can calculate P (Y | (Xj)j∈S ,C, f(X)) = P (Y | (Xj)j∈S ,C). More-
over, the two conditions imply that P (f(X),C) > 0 for all f(X),C, and hence we can calculate P ((Xj)j∈S |C, f(X)).

The fourth equation is due to the pinpointability condition.

D. Pinpointing the unobserved common cause C
The CAUSAL-REP algorithm begins with a step of pinpointing the unobserved common cause C. In this step, we infer
C from the observational data X , when C is low-dimensional and X is high-dimensional. Operationally, as C renders
X = (X1, . . . , Xm) conditionally independent, we infer C by fitting a probabilistic factor model toX ,

p(xi, ci ; φ) = p(xi1, . . . , xim, ci ; φ) = p(ci)

m∏
j=1

p(xij | ci ; φ). (48)

Specifically, we consider VAE, a flexible probabilistic factor model (Kingma & Welling, 2014),

Ci ∼ p(ci), (49)
Xi |Ci ∼ p(xi | ci ; θ) = EF(xi | fθ(ci) ; λθ), (50)

where EF is an exponential family distribution, θ = (fθ, λθ) are the parameters, and fθ : C → X is a flexible neural
network.
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Next we infer p(ci |xi) using variational approximation p(ci |xi) ≈ qφ∗(ci |xi) where qφ∗(c |x) maximizes the evidence
lower bound (ELBO) objective of VAE (Blei et al., 2017),

qφ∗ = arg max
qφ

n∑
i=1

[log p(xi, ci)− log qφ(ci |xi)] ,

and qφ(· |x) parametrizes a flexible family of distributions with parameters φ. For example, we can have qφ(· |x) =
N (Z1,φ(x), Z2,φ(x) · I) or even more flexible non-Gaussian distributions via normalizing flows.

Finally, we set

Ci = h(Xi) ≈ Eqφ∗ (ci |xi) [Ci |Xi] , i = 1, . . . , n. (51)

Though we use variational approximation for p(ci |xi), Equation (51) can often give a good approximation of Ci when
dim(X)� dim(C), or more precisely when the pinpointability condition holds (Chen et al., 2020b; Wang & Blei, 2019b).

E. Calculating PNS lower bounds with linear models
We calculate the lower bound of the conditional efficiency and non-spuriousness
PNSn(fj(X), Y | f−j(X)) with the linear model (Equation (19)):

PNSn(fj(X), Y | f−j(X))

=

n∏
i=1

∫
[P (Y = yi | fj(X) = fj(xi), f−j(X) = f−j(xi),C)

−P (Y = yi | fj(X) 6= fj(xi), f−j(X) = f−j(xi),C)] · P (C) dC

=

n∏
i=1

∫ N (yi ; β0 + βjfj(xi) +
∑
j′ 6=j

βj′fj′(xi) + γ>C, σ2)

−N (yi ; β0 + βjE [fj(xi)] +
∑
j′ 6=j

βj′fj′(xi) + γ>C, σ2)

 · P (C) dC

=

n∏
i=1

∫ [
exp

(
− (γ>(ci −C) + εi)

2

2σ2

)
− exp

(
− (βj · (fj(xi)− E [fj(xi)]) + γ>(ci −C) + εi)

2

2σ2

)]
· P (C) dC × (2πσ2)−

n
2 (52)

≈
n∏
i=1

∫ [(
1− (γ>(ci −C) + εi)

2

2σ2

)
−
(

1− (βj · (fj(xi)− E [fj(xi)]) + γ>(ci −C) + εi)
2

2σ2

)]
· P (C) dC × (2πσ2)−

n
2 (53)

=

n∏
i=1

∫ (
(βj · (fj(xi)− E [fj(xi)]))

2 + 2 · βj · (fj(xi)− E [fj(xi)]) · (γ>(ci −C) + εi)

2σ2

)
· P (C) dC × (2πσ2)−

n
2 (54)

=

n∏
i=1

(
(βj · (fj(xi)− E [fj(xi)]))

2 + 2 · βj · (fj(xi)− E [fj(xi)]) · (γ>(ci − E [C]) + εi)

2σ2

)
× (2πσ2)−

n
2 (55)

=

n∏
i=1

exp

(
(βj(fj(xi)− E [fj(xi)]))

2 + 2βj(fj(xi)− E [fj(xi)])(γ
>(ci − E [C]) + εi)

2σ2
− 1

)
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Algorithm 3 CAUSAL-REP (Unsupervised)
input :The observational training data (without labels) {xi}ni=1; the probabilistic factor model that generates the training data P (X,C)

output :CAUSAL-REP representation function f̂(·)
Augment the unsupervised training dataset into a supervised one {{xu

i ,y
u
i }Uu=1}ni=1 following Equation (35);

Fit a probabilistic factor model (Equations (17) and (18)) and infer {{p(cui |xu
i )}Uu=1}ni=1;

if Pinpointability holds, i.e. p(cui |xu
i ) is close to a point mass for all i, u then

foreach training datapoint i do
Pinpoint the unobserved common cause C: cui = h(xu

i ) , E [cui |xu
i ] for all u = 1, . . . , U ;

end
Maximize Equation (36) to obtain the CAUSAL-REP representation f̂ ;

end

× (2πσ2)−
n
2 (56)

= exp

(∑n
i=1(βj(fj(xi)− E [fj(xi)]))

2 + 2
∑n
i=1 βj(fj(xi)− E [fj(xi)])(γ

>(ci − E [C]))

2σ2
− n

)
× (2πσ2)−

n
2 , (57)

whereN (·) denotes the Gaussian density, εi = yi−(β0+β>f(xi)+γ>ci) is the residual of the regression in Equation (19).
Equations (53) and (56) make use of Taylor approximation exp(x) ≈ 1 +x. Equation (57) makes use of

∑n
i=1 εi · (fj(xi)−

E [fj(xi)]) ≈ E [ε · (fj(X)− E [fj(X)])] = 0 in the regression model.

Finally, in CAUSAL-REP Algorithms 2 and 3, we often impose an R-squared penalty to encourage the possitivity of fj(X)
given C. In these cases, we often have

∑n
i=1 βj · (fj(xi)− E [fj(xi)]) · (γ>(ci − E [C])) ≈ βjCov(fj(X), γ>C) ≈ 0.

Thus, we can further approximate the PNS by

PNSn(fj(X), Y | f−j(X))

≈ exp

(∑n
i=1(βj · (fj(xi)− E [fj(xi)]))

2

2σ2
− n

)
× (2πσ2)−

n
2 , (58)

and thus,

log PNSn(fj(X), Y | f−j(X)) ≈
(∑n

i=1(βj · (fj(xi)− E [fj(xi)]))
2

2σ2

)
+ constant, (59)

Similarly, we can obtain the lower bound of the (unconditional) efficiency and non-spuriousness, similar to Equation (57),

log PNSn(f(X), Y )

≈

 1

2σ2

n∑
i=1

(

d∑
j=1

βj · (fj(xi)− E [fj(xi)]))
2

+2 ·
d∑
j=1

βj · (fj(xi)− E [fj(xi)]) · γ>(ci − E [C])

+ constant. (60)

F. Details of the unsupervised CAUSAL-REP algorithm
We summarize the unsupervised CAUSAL-REP in Algorithm 3.

G. Details of the empirical studies for CAUSAL-REP and additional empirical results
G.1. Details of Section 5.3.1

Figures 6 and 7 present additional results for Section 5.3.1. As Z1 and Z2 become increasingly correlated, the (lower
bounds of) unconditional POC of Z2 for Y1 also increase. It is also consistent with the intuition: Z2 is an increasingly better
surrogate of Z1 for Y1 give higher correlations between Z1 and Z2.
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G.2. Details of the colored MNIST study

We study CAUSAL-REP on the colored MNIST dataset (Arjovsky et al., 2019). The dataset builds on the original MNIST
data but color the image in a way that is highly correlated with the digits label. We focus on the digits ‘3’ and ‘8’ and colors
‘red’ and ‘green.’

To create a training set, we color the ‘3’ images in red with probability p and in green with probability (1− p). Next, we
color the ‘8’ images in red with probability (1− p) and in green with probability p. When p ∈ [0, 1] is large, then the color
of the image is highly correlated with the digit label in such a training set. We further add noise to the ground truth digit
label by randomly flipping the labels with a probability of 0.25. The best possible predictive accuracy is thus 0.75 (the
yellow dashed line in Figure 4).

The color of the images is a spurious feature in the training set; it has a high correlation with the digit label but does not
causally determine the label. In contrast, the features of the digits themselves are non-spurious features; they are highly
correlated with the digit label and can causally determine the label.

To create a test set, we color the images such that the color and images are correlated oppositely. We color the ‘3’ images in
red with probability (1− p) and the ‘8’ images in red with probability p. As the color-image relationship is very different, a
representation learning algorithm will predict poorly in the test set if it only captures color as a feature in the training set.

G.3. Details of the reviews corpora study

Table 3 presents the most informative words of the (positive or negative) ratings, suggested by the CAUSAL-REP represen-
tation and the logistic regression coefficients. Across three reviews corpora, logistic regression returns the spurious words
“as”, “also”, “am”, “an” as the top words. In contrast, CAUSAL-REP extracts words that are more relevant for the ratings.

G.4. Details of the colored and shifted MNIST study

The colored and shifted MNIST dataset is created similarly as in the colored MNIST. We consider four shifts: (dx, dy) =
(0, 1), (1, 0), (0, 1), (1, 1)—labeled 0,1,2,3—and shift the images such that the shift label is highly correlated with the digit
label in the training set.

We evaluate the non-spuriousness of the representations using a downstream prediction task with domain shift. Given a
labeled training set where the digit features are no longer correlated with the spurious features, we learn a mapping from the
representations to the digit label. A representation can only predict the digit label well if it captured the non-spurious digit
features in unsupervised representation learning.
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Figure 6. Lower bounds of probabilities of causation are consistent with intuitive notions of feature necessity and sufficiency. As Z1 and
Z2 become increasingly highly correlated, (a) the POC of Z1 for Y1 stays high, (b) the POC of Z2 for Y1 starts to increase when the
correlation turns positive, and (c) the POC of Z1&Z2 increases.
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Figure 7. Lower bounds of probabilities of causation are consistent with intuitive notions of feature necessity and sufficiency. As Z1 and
Z2 become increasingly highly correlated, (a) the POC of Z1 for Y2 increases, (b) the POC of Z2 for Y2 increases, and (c) the POC of
Z1&Z2 stays high.
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Amazon CAUSAL-REP Logistic Regression
1 love_this_camera, recommend_this_camera, my_first_digital, great,

best_camera, camera_if_you, this_camera_and, camera_have, excellent_camera,
camera_bought_this;

am, an, also, as,
love_my, the_tracfone,
it_real, which_is, too,
so_much, is_so_much,
which_is_pretty, nokia,
ear, home, is_must,
for_your, faster,
must_for, when_use

2 this_camera, camera, camera_is, pictures, picture, the_camera, digital, cam-
era_for, this_camera_is, digital_camera;

3 really_nice, hold_the, excellent_it, this_one_it, easy_it, is_superb, nice_if, re-
turning, too_low, you_need_more;

4 with_this, aa, took, came, yet, pictures_of, camera_in, computer, pictures_in,
for_those;

5 camera_was, expect, the_photos, by, camera_are, blurry, sony, have_an,
had_some, wife;

Tripadvisor CAUSAL-REP Logistic Regression
1 front_door, typical, lady, room_is, sized, yogurt, of_italian, in_we, was_at,

front_desk_to, was_easy; am, as, an, also,
we_have, consideration,
and_nice, real,
stay_here_again, good

2 lobby, man, directions, door, open, tried, seemed, with_the, by_the, almost;
3 man_at, the_price, is_in, above_and_beyond, we_checked_out, in_central_rome,

colliseum, great_for, covered, place_to_sit;
4 the_front, front, front_desk, desk, the_front_desk, at_the_front, desk_staff,

front_desk_staff, desk_was, front_of;
5 the_people_at, the_people, stayed_nights, people_at, was_very_helpful,

would_not_recommend, lovely_and, great_location, staff_at, of_my, pricey;

Yelp CAUSAL-REP Logistic Regression
1 but_if, looking, what_you, you_go, but_if_you, that_you, to_do, lot, youll, try,

own, do_not;
an, as, am, also,
japanese_food,
because_its, sure_to_get,
ive, ive_been, at_night,
up_for_it

2 even_if, your_place, this_restaurant, for_you, you_should, thank_you, or_if,
thank, lamb, fabulous, is_awesome;

3 want_the, then_you, ahead, hollywood, dont_want, suggest, with, please,
check_this_place, all_that;

4 are, you_like, if_you_like, here_if, are_looking, here, are_in, is_the_place,
you_need, are_looking_for;

5 if_you, if, you, want, you_want, you_are, if_you_are, want_to, if_you_want,
your, you_want_to, you_dont, dont;

Table 3. Across the Amazon, Tripadvisor, and Yelp reviews corpa, CAUSAL-REP learns representation that does not rely on the injected
words that are spuriously correlated with the sentiment. The table shows the top 12 words identified by the five-dimensional representation
from CAUSAL-REP; the five dimensions are not ordered. The representation obtained from logistic regression relies heavily on the
spurious words “am”, “an”, “also”, “as.”
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