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ABSTRACT

This paper aims to deal with the ignored real-world complexities in prior work
on human motion forecasting, emphasizing the social properties of multi-person
motion, the diversity of motion and social interactions, and the complexity of
articulated motion. To this end, we introduce a novel task of stochastic multi-person
3D motion forecasting. We propose a dual-level generative modeling framework
that separately models independent individual motion at the local level and social
interactions at the global level. Notably, this dual-level modeling mechanism
can be achieved within a shared generative model, through introducing learnable
latent codes that represent intents of future motion and switching the codes’ modes
of operation at different levels. Our framework is general; we instantiate it with
different generative models, including generative adversarial networks and diffusion
models, and various multi-person forecasting models. Extensive experiments on
CMU-Mocap, MuPoTS-3D, and SoMoF benchmarks show that our approach
produces diverse and accurate multi-person predictions, significantly outperforming
the state of the art.

1 INTRODUCTION

One of the hallmarks of human intelligence is the ability to predict the evolution of the physical
world over time given historical information. For example, humans naturally anticipate the flow of
people in public areas, react, and plan their own behavior based on social rules, such as avoiding
collisions. Effective forecasting of human motion has thus become a crucial task in computer vision
and robotics, e.g., in autonomous driving (Paden et al., 2016) and robot navigation (Rudenko et al.,
2018). This task, however, is challenging. First, human motion is structured with respect to both body
physics and social norms, and is highly dependent on the surrounding environment and its changes.
Second, human motion is inherently uncertain and multi-modal, especially over long time horizons.

Previous work on human motion forecasting often focuses on simplified scenarios. Perhaps the most
widely adopted setting is on stochastic local motion prediction of a single person (Mao et al., 2021;
Yuan & Kitani, 2020), which ignores human interactions with the environment and other people
in the environment. Another related task is deterministic multi-person motion forecasting (Wang
et al., 2021b; Adeli et al., 2020; 2021; Guo et al., 2022). However, it does not take into account
the diversity of individual movements and social interactions. In addition, stochastic forecasting of
human trajectories in crowds (Alahi et al., 2014) has shown progress in modeling social interactions,
e.g., with the use of attention models (Kosaraju et al., 2019; Vemula et al., 2018; Zhang et al., 2019)
and spatial-temporal graph models (Huang et al., 2019; Ivanovic & Pavone, 2019; Salzmann et al.,
2020; Yu et al., 2020). Nevertheless, this task only considers motion and interactions at the trajectory
level. Modeling articulated 3D poses involves richer human-like social interactions than trajectory
forecasting which only needs to account for trajectory collisions.

To overcome these limitations, we introduce a novel task of stochastic multi-person 3D motion
forecasting, aiming to jointly tackle the aforementioned aspects ignored in the previous work – the
social properties of multi-person motion, the multi-modality of motion and social interactions, and
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Figure 1: Illustration of the multifaceted challenges in the proposed task of stochastic multi-person
3D motion forecasting. (a) Single-person fidelity: for each person, the predicted pose and trajectory
should be realistic and consistent with each other, e.g., to avoid foot floating and skating. (b) Multi-
person fidelity: multi-person motion in a scene inherently involves social interactions, e.g., to avoid
motion collisions. (c) Overall diversity: long-term human motion is uncertain and stochastic; we
address this intrinsic multi-modality, while existing work (Wang et al., 2021b; Adeli et al., 2020;
2021; Guo et al., 2022) simplifies to deterministic prediction.

the complexity of articulated motion. As shown in Figure 1, this task requires the predicted multiple
motion sequences of multi-person to satisfy the following conditions – (a) single-person fidelity:
for example, all single-person motion should be continuous, and the articulated properties should
be preserved under the physical rules; (b) multi-person fidelity: the predicted motion should be
socially-aware, with the consideration of the interactions between predictions from different people;
and (c) overall diversity: the movement of the human body should be as varied as possible, but
within the constraints of conditions (a) and (b).

Due to the substantially increased complexity of our task, it becomes challenging to optimize all
three objectives simultaneously. We observe simply extending existing work such as on deterministic
motion forecasting cannot address the proposed task. This difficulty motivates us to adopt a divide-
and-conquer strategy, together with the observation that single-person fidelity and multi-person
fidelity can be viewed as relatively independent goals, while there is an inherent trade-off between
fidelity and diversity. Therefore, we propose a Dual-level generative modeling framework for
Multi-person Motion Forecasting (DuMMF). At the local level, we model motion for different
people independently under relaxed conditions, thus satisfying single-person fidelity and diversity.
Meanwhile, at the global level, we model social interactions by considering the correlation between all
motion, thereby further improving multi-person fidelity. Notably, this dual-level modeling mechanism
can be achieved within a shared generative model, through simply switching the modes of operation
of the motion intent codes (i.e., latent codes of the generative model) at different levels. By optimizing
these codes with level-specific objectives, we produce diverse and realistic multi-person predictions.

Our contributions can be summarized as follows. (a) To the best of our knowledge, we are the first
to investigate the task of stochastic multi-person 3D motion forecasting. (b) We propose a simple yet
effective dual-level learning framework to address this task. (c) We introduce discrete learnable social
intents at dual levels to improve the realism and diversity of predictions. (d) Our framework is general
and can be operationalized with various generative models, including generative adversarial networks
and diffusion models, and different types of multi-person motion forecasting models. Notably, it can
be generalized to challenging more-person (e.g., 18-person) scenarios that are unseen during training.

2 RELATED WORK

Stochastic Human Motion Forecasting. There have been many advances in stochastic human
motion forecasting, many of which (Walker et al., 2017; Yan et al., 2018; Barsoum et al., 2018) are
based on the adaptation and improvement of deep generative models such as variational autoencoders
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(VAEs) (Kingma & Welling, 2013), generative adversarial networks (GANs) (Goodfellow et al.,
2014), normalizing flows (NFs) (Rezende & Mohamed, 2015), and diffusion models (Sohl-Dickstein
et al., 2015; Song et al., 2020; Ho et al., 2020). Some recent approaches (Bhattacharyya et al., 2018;
Dilokthanakul et al., 2016; Gurumurthy et al., 2017; Yuan & Kitani, 2019; 2020; Zhang et al., 2021;
Mao et al., 2021; Xu et al., 2022b; Petrovich et al., 2022) emphasize on the promotion of diversity.
Mao et al. (2021) sequentially generate the different parts of a pose for better controllability of
diversity. Xu et al. (2022b) introduce learnable anchors in the latent space to guide the samples
with sufficient diversity. Although these methods can predict very diverse human motion sequences,
most of them are limited to local motion and ignore the global trajectory. Some of their produced
motion sequences are actually unrealistic; in particular, incorporating global trajectories may result
in severe foot skating. Predicting human motion under the constraint of scene context (Cao et al.,
2020; Hassan et al., 2021; Zhang & Tang, 2022) has recently been explored, where the effect of
global trajectories and scenes on human motion is considered. Instead of predicting single-person
movement, our work focuses on diverse multi-person movements and social interactions.

Multi-Person Forecasting. So far, research on multi-person forecasting has mainly focused on
global trajectory forecasting (Helbing & Molnar, 1995; Mehran et al., 2009; Pellegrini et al., 2009;
Yamaguchi et al., 2011; Zhou et al., 2012; Alahi et al., 2014; 2016; Lee et al., 2017; Gupta et al.,
2018; Sadeghian et al., 2019; Amirian et al., 2019; Kosaraju et al., 2019; Sun et al., 2020; Mangalam
et al., 2020; Sun et al., 2021; Kothari et al., 2021; Tsao et al., 2022). Gupta et al. (2018) utilize a
winner-takes-all loss (Rupprecht et al., 2017) with a socially-aware GAN. We also adopt these two
loss functions in our dual-level modeling. Kothari et al. (2021) introduce discrete social anchors and
revise the distribution of trajectories by the predefined anchors. Unlike their hand-crafted anchors, our
discrete social intent codes are learnable components obtained through the dual-level optimization.
Some recent attempts address deterministic multi-person 3D motion forecasting. Adeli et al. (2020;
2021) use additional contextual information to aid multi-person forecasting and propose a Social
Motion Forecasting (SoMoF) Benchmark. Guo et al. (2022) utilize cross-attention for two-person
motion forecasting, while Wang et al. (2021b) introduce a multi-range transformer architecture that
can be generalized to more persons. Please refer to Sec. B of the Appendix for additional discussion.

3 METHODOLOGY

In this section, we explain the proposed dual-level generative modeling framework (DuMMF) for our
task. As illustrated in Figure 2, our key insight is to decouple the modeling of independent individual
movements at the local level and social interactions at the global level (Sec. 3.1). Within a shared
forecasting model, we achieve this by (a) introducing learnable latent codes that represent intents of
future movement (Sec. 3.2), (b) switching the codes’ modes of operation at different levels (Sec. 3.1
and Sec. 3.2), and (c) training with level-specific objectives (Sec. 3.3). Our framework is general
and can be operationalized with different types of motion forecasting models, and we summarize the
multi-person motion predictors used in this paper (Sec. 3.4).

Problem Formulation. We denote the input motion sequence of length Th for N persons in a scene as
{Xn}Nn=1, where Xn[t] is the pose of n-th person at time step t. We aim to predict M future motion
sequences of length Tp, denoted as {{Ŷm

n }Nn=1}Mm=1, where Ŷm
n = [Ŷm

n [Th+1], . . . , Ŷm
n [Th+Tp]]

is the m-th predicted motion of n-th person. We use the 3D coordinates to represent the absolute
joint position of V joints, hence ∀n,m, t,Xn[t], Ŷ

m
n [t] ∈ RV×3. We assume to be given the ground

truth motion of N persons as {Yn}Nn=1. Our goal is to forecast multiple realistic yet diverse future
motion sequences, such that (a) all the M predictions represent human-like motion, simultaneously
satisfying single-person fidelity and multi-person fidelity; (b) the predictions are diverse (overall
diversity); and (c) one of the predicted sequences is as close to the ground truth as possible.

3.1 DUAL-LEVEL STOCHASTIC MULTI-PERSON MOTION FORECASTING: OVERVIEW

Basic Generative Modeling Framework. Stochastic multi-person future motion can be modeled as
a joint distribution using deep generative models (Goodfellow et al., 2014). Accordingly, we denote
this joint distribution of the future motion of N persons as p(Y1,Y2, . . . ,YN |X1,X2, . . . ,XN ),
where all future movements {Yn}Nn=1 are conditioned on the past sequences {Xn}Nn=1 of all per-
sons. Typically, we can use a latent code z ∼ p(z) to reparameterize this joint distribution as
p({Yn}Nn=1|{Xn}Nn=1) =

∫
p({Yn}Nn=1|z, {Xn}Nn=1)p(z)dz. Here, the latent code z can be inter-
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Figure 2: Overview of our proposed dual-level generative modeling with motion inputs of three
persons as an illustration. (a) We combine encoded multi-person embeddings with independent intent
codes at the local level of modeling individual motion. (b) Differently, the global level of modeling
social interactions requires all latent codes to be the same. (c) The latent codes comprise both discrete
intent codes, which are learned from the data and represented as a set, and continuous intent codes.
(d) We abstract the encoder of a multi-person predictor as the combination of a local branch that
encodes single-person motion and a global branch that encodes multi-person motions (see Table A of
the Appendix for instantiations).

preted as a social intent that guides the future movements of multiple persons. With this social intent
z sampled from the given distribution p(z), a deterministic neural network Gθ with parameters θ

can map the historical conditions {Xn}Nn=1 to a prediction {Ŷn}Nn=1 under the latent distribution
pθ({Yn}Nn=1|z, {Xn}Nn=1), which is formulated as

z ∼ p(z), {Ŷn}Nn=1 = Gθ(z, {Xn}Nn=1). (1)

Given the complexity of our task, it becomes challenging to simultaneously ensure all objectives
(i.e., the fidelity of a single person, the fidelity of multiple persons, and the overall diversity). To
overcome this difficulty, we introduce a dual-level modeling mechanism that explicitly decomposes
the task objectives into local modeling of independent individual movements and global modeling
of social interactions. Notably, we achieve this by simply switching the modes of operation for the
latent codes z w.r.t. different levels of modeling, without any change to the model architecture G.

Local-Level Modeling: Individual Motion. At this level, the generative model Gθ models all human
bodies as independent of each other, and we aim to improve the overall diversity and the single-person
fidelity, alleviating problems such as predicting unrealistic poses. Here, the joint distribution of
future human motions can be rewritten in the form of all single-person marginal distributions, i.e.,
p({Yn}Nn=1|{Xn}Nn=1) =

∏N
n=1 p(Yn|Xn). To this end, as shown in Figure 2(a), we consider

leveraging N different individual intents z1, z2, . . . , zN independently drawn from p(z) to generate
independent future movements, denoted as

z1, . . . , zn ∼ p(z), {Ŷn}Nn=1 = Gθ({zn}Nn=1, {Xn}Nn=1). (2)

Global-Level Modeling: Social Interactions. Going beyond the local individual level, the generative
model Gθ at the global level takes into account the social behavior of multiple people to model their
joint distribution. The goal is to further improve the multi-person fidelity, e.g., promoting the overall
accuracy. As illustrated in Figure 2(b), to maintain the network architecture G unchanged, we still
use N individual intents as input. However, different from the local level, we constrain these N
individual intents to be the same, representing social intents that stand for correlations between the
intents of multiple persons. Formally, we have

z ∼ p(z), {Ŷn}Nn=1 = Gθ({z}Nn=1, {Xn}Nn=1). (3)
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Note that, without additional constraints, this dual-level modeling scheme by itself is not guaranteed
to enforce the latent codes to behave in the designed manner. To this end, we introduce learnable
latent intent codes z (Sec. 3.2), jointly optimize the codes z and the forecasting model G guided by
the level-specific training objectives (Sec. 3.3).

3.2 DISCRETE LEARNABLE HUMAN INTENT CODES

Intuitively, an arbitrary, albeit identical, individual intent in Eq. 3 may not adequately lead to a valid
social intent. We thus hypothesize that a social intent is formed when all individual intents are the
same and belong within some range of “options.” This can typically be achieved through discrete
choice models (Aguirregabiria & Mira, 2010; Ryan & Gerard, 2003; Bhat et al., 2008; Leonardi,
1984) – an effective tool that predicts choices from a set of available options created by hand-crafted
rules. Here, we formulate the correlation of multiple persons at the global level by using the same
discrete code. However, the intent options for social interactions are more subtle and difficult to define
manually than those in other applications such as for trajectories (Kothari et al., 2021). Therefore, we
use a set of learnable codes zd ∈ {Zm}Mm=1 to represent social intents, inspired by Xu et al. (2022b).
However, we introduce different training strategies that are tailored to this new task (Sec. 3.3). Our
motivations are: (a) Subject to physical constraints and social laws, the intents of future movements
should share some deterministic patterns. For example, all intents should avoid imminent collisions
anticipated from the history, even if these intents refer to different motions. We assume that such
deterministic properties shared by social intents can be represented by a set of shareable codes learned
directly from the data. (b) It will be easier for the predictor to identify and implement different
levels of functionality by jointly optimizing discrete intents and the predictor. To further enhance
the expressiveness of the codes, we retain the original continuous Gaussian noise zc ∼ p(z) of the
generative model Gθ and bundle the discrete intent with the noise to represent the final intent, as
shown in Figure 2(c). Now the global-level modeling of social interactions in Eq. 3 is reformulated as

zc1, . . . , z
c
n ∼ p(z), zd ∈ {Zm}Mm=1, {Ŷn}Nn=1 = Gθ({zcn + zd}Nn=1, {Xn}Nn=1). (4)

And correspondingly, the local-level modeling of individual motion in Eq. 2 becomes

zc1, . . . , z
c
n ∼ p(z), zd1, . . . , z

d
n ∈ {Zm}Mm=1, {Ŷn}Nn=1 = Gθ({zcn + zdn}Nn=1, {Xn}Nn=1). (5)

3.3 TRAINING UNDER THE GUIDANCE OF LEVEL-SPECIFIC OBJECTIVES

Using only the same discrete intent does not naturally and necessarily inherit the multi-person
correlation. Thus, we optimize both the parameters of the predictor and the discrete codes with a
level-specific training strategy. We jointly train both levels of individual movement modeling and
social interaction modeling, but with each level guided by its own objective. In each forward pass, we
explicitly produce different output predictions from different intents of the two levels. And then, in
the backward pass, the discrete intent codes zd are optimized separately at different levels, while the
parameters θ of the forecasting model G are updated based on the fused losses from the two levels.

Local-Level Training. At the local level, we train the model without social interactions. Given
independent multi-person motion data ({Xn}Nn=1, {Yn}Nn=1), we first randomly sample the discrete
intent codes and merge them with independently sampled continuous intent codes into M × N
different latent codes {{zmn }Nn=1}Mm=1. We then use each intent and the past motion of each person
to predict M future motion sequences {{Ŷm

n }Nn=1}Mm=1 for each person {Xn}Nn=1. Local-level
objectives consider single-person fidelity and overall diversity respectively.

Global-Level Training. Meanwhile, training is also conducted at the global level to enable the
modeling of social interactions. The difference from the local setting is that we incorporate the
discrete and continuous codes into only M distinct latent codes {{zm}Nn=1}Mm=1; hence, the discrete
latent codes zmd of all N individuals are the same for a certain m-th prediction. Here, we introduce
learning objectives to facilitate multi-person fidelity and accuracy.

Please refer to Sec. C of the Appendix for more detail on the aforementioned level-specific learning
objectives. Also, Sec. G of the Appendix further demonstrates that these learning objectives are
important, and in some cases critical, to the fidelity and diversity of multi-person motion.

Inference. During inference, we only use the global-level strategy by sampling the same intent
for all individuals present in the scene. Note that the uncertainty of human motion substantially
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Figure 3: Qualitative results of DuMMF with a DDPM. We demonstrate the generalizability of our
method to handle a significantly more complex scenario with 18 persons. Note that our model is
trained only on 3-person data. We visualize the predicted final poses at 2 seconds.

Table 1: Quantitative results of DuMMF with a DDPM. Both the baseline and our models are trained
using SMPL-X representations on AMASS, and we convert them to skeletons for evaluation. Using
the same backbone and generative model, our DuMMF framework significantly provides more
accurate predictions with more intents.

Method, # of Intents @25 frames @50 frames @75 frames

ADE ↓ FDE ↓ ADE ↓ FDE ↓ ADE ↓ FDE ↓

DDPM (Ho et al., 2020), N/A 2.021 4.608 3.766 7.585 5.434 11.111
+ DuMMF (Ours), 1 2.405 4.814 3.992 7.338 5.197 8.610

+ DuMMF (Ours), 3 1.456 3.316 2.700 4.823 3.513 4.880

increases with the time horizons of the forecasting. So instead of predicting a fixed number of diverse
outputs (Mao et al., 2021; Yuan & Kitani, 2020), in our evaluation, the number grows with the
length of the prediction. To this end, we employ autoregressive inference (Wang et al., 2021b) with
progressive diversity. Given the past motion sequence {Xn}Nn=1 and M sampled intent codes, the
model outputs M predictions for each person {{Ŷm

n }Nn=1}Mm=1. And then, given a combination of
history, the previous predictions {{Xn,Y

m
n }Nn=1}Mm=1, and M new intent codes as input, the model

outputs M2 predictions {{Ŷm
n }Nn=1}M

2

m=1, etc.

3.4 NETWORK ARCHITECTURE

Our dual-level modeling framework in conjunction with the discrete learnable intent codes is general
and, in principle, does not rely on specific network architectures or generative models. To demonstrate
this, we combine our framework with various types of deterministic multi-person motion predictors
and different generative models, yielding consistent and significant improvements across all baselines
(see Sec. 4). As shown in Figure 2, we abstract the encoder of the multi-person motion predictor into
two parts: the local part is responsible for encoding single-person motion, while the global part is
responsible for encoding multi-person motion and its interactions. A summary of the multi-person
predictors used in the paper is given in Table A of the Appendix.

4 EXPERIMENTS

Datasets. In the main paper, we show the evaluation on two motion capture datasets, CMU-
Mocap (CMU) and MuPoTS-3D (Mehta et al., 2018). CMU-Mocap consists of movement sequences
with up to two subjects for each scene. It contains 2,235 recordings performed by 144 different
subjects, eight of which include double-person motion. We directly adopt these two-person motions
for comparisons in two-person scenarios. For skeletal representation, we follow Wang et al. (2021b)
for the train/test split and the preprocess to mix single-person and double-person motion together
to synthesize a 3-person motion in each scene. Moreover, we construct an even more challenging
scenario where we mix up to more people per scene. Please refer to Sec. H of the Appendix for the
detail of this generalized setting. For meshes generated from SMPL-X representations (Pavlakos
et al., 2019), we extract the multi-person data in CMU-Mocap from AMASS (Mahmood et al., 2019)
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Start GT MRTDuMMF (Ours)

Figure 4: Qualitative results of DuMMF with a CGAN model. The leftmost column is the ground
truth starting poses, and the second column is the ground truth poses three seconds later. We show
our five sampled 3-second predictions in the middle. Our model produces diverse predictions, with
one closer to the ground truth (highlighted by the red box) compared with MRT (rightmost column).

Table 2: Quantitative comparison between our DuMMF and deterministic forecasting baselines
and their CGAN stochastic variants, using skeletal representations on CMU-Mocap. The number
of intents is set to 5 for stochastic forecasting in 3-person (top) and 2-person (bottom) scenarios.
DuMMF significantly improves multi-person accuracy and diversity across various architectures and
deterministic predictors. Additionally, our discrete and continuous intent codes are complementary to
each other in most cases.
Architecture Predictor Diversifier Variants @t = 1s @t = 2s @t = 3s

FPD ↑ ADE ↓ FDE ↓ FPD ↑ ADE ↓ FDE ↓ FPD ↑ ADE ↓ FDE ↓

RNN SC-MPF (Adeli et al., 2020)

Deterministic N/A N/A 0.767 1.267 N/A 1.274 2.213 N/A 1.779 3.262
CGAN 0.584 0.732 1.206 1.188 1.170 1.887 1.899 1.518 2.411

CGAN+DuMMF (Ours)

w/o Separation 0.618 0.739 1.225 1.309 1.188 1.925 2.131 1.538 2.413
w/o Discrete 0.772 0.735 1.213 1.710 1.170 1.887 3.046 1.513 2.379

w/o Continuous 1.051 0.811 1.368 2.090 1.339 2.226 3.326 1.791 2.966
Full 1.041 0.702 1.133 2.035 1.091 1.692 3.097 1.381 2.082

Transformer

SC-MPF (Adeli et al., 2020)

Deterministic N/A N/A 0.697 1.167 N/A 1.141 1.908 N/A 1.523 2.637
CGAN 0.454 0.681 1.111 1.036 1.059 1.649 1.743 1.346 2.094

CGAN+DuMMF (Ours)

w/o Separation 0.624 0.676 1.099 1.461 1.038 1.592 2.527 1.305 1.954
w/o Discrete 0.526 0.681 1.110 1.219 1.065 1.665 2.118 1.356 2.102

w/o Continuous 0.931 0.666 1.083 2.016 1.029 1.578 3.258 1.298 1.963
Full 0.888 0.671 1.085 1.797 1.027 1.564 2.798 1.285 1.911

MRT (Wang et al., 2021b)

Deterministic N/A N/A 0.681 1.125 N/A 1.082 1.765 N/A 1.427 2.438
CGAN 0.282 0.662 1.086 0.662 1.023 1.567 1.199 1.287 1.968

CGAN+DuMMF (Ours)

w/o Separation 0.291 0.677 1.110 0.676 1.056 1.624 1.166 1.328 2.021
w/o Discrete 0.169 0.669 1.093 0.414 1.049 1.674 0.783 1.353 2.184

w/o Continuous 0.403 0.673 1.094 0.894 1.035 1.584 1.526 1.306 2.004
Full 0.716 0.658 1.053 1.435 0.993 1.472 2.206 1.232 1.823

Transformer

MRT (Wang et al., 2021b)

Deterministic N/A N/A 0.685 1.138 N/A 1.152 2.024 N/A 1.624 3.018
CGAN 0.675 0.688 1.442 1.391 1.094 1.750 2.205 1.443 2.398

CGAN+DuMMF (Ours)

w/o Separation 0.753 0.663 1.069 1.499 1.013 1.533 2.259 1.284 1.970
w/o Discrete 0.149 0.692 1.161 0.334 1.144 1.937 0.559 1.562 2.770

w/o Continuous 0.827 0.623 1.010 1.709 0.971 1.485 2.692 1.226 1.823
Full 1.211 0.656 1.052 2.393 0.992 1.470 3.716 1.238 1.796

XIA (Guo et al., 2022)

Deterministic N/A N/A 0.679 1.136 N/A 1.121 1.910 N/A 1.529 2.727
CGAN 0.578 0.667 1.088 1.208 1.044 1.631 1.882 1.340 2.111

CGAN+DuMMF (Ours)

w/o Separation 0.604 0.657 1.068 1.183 1.018 1.589 1.746 1.311 2.071
w/o Discrete 0.433 0.662 1.080 1.025 1.041 1.663 1.757 1.355 2.183

w/o Continuous 0.234 0.669 1.113 0.458 1.090 1.814 0.720 1.463 2.507
Full 1.143 0.634 1.010 2.264 0.957 1.423 3.477 1.197 1.764

and follow the same strategy to mix single-person and double-person motion together. MuPoTS-3D
consists of more than 8,000 frames with up to three subjects. We convert the data to the same 15-joint
human skeleton and length units as CMU-Mocap, and evaluate the generalization on MuPoTS-3D of a
model trained only on CMU-Mocap. We also report our performance on the SoMoF benchmark (Adeli
et al., 2020; 2021) in Sec. G of the Appendix.

Metrics. For evaluating multi-person motion accuracy and diversity, we adopt the common metrics
used in stochastic forecasting (Mao et al., 2021; Yuan & Kitani, 2020; 2019; Salzmann et al., 2020;
Kothari et al., 2021) as follows. For accuracy measurement, we follow the Best-of-N (BoN) evaluation
and use (a) Average Displacement Error (ADE): the average ℓ2 distance over time between the
ground truth and the prediction closest to the ground truth; (b) Final Displacement Error (FDE): the
ℓ2 distance between the final pose of the ground truth and the last predicted pose closest to the ground
truth. For diversity measurement, we employ (c) Final Pairwise Distance (FPD): the average ℓ2
distance between all predicted final pose pairs. We disentangle the local pose and the global trajectory
of the motion and measure their accuracy and diversity separately by defining the following metrics:
rootADE, rootFDE, poseADE, poseFDE, rootFPD, and poseFPD. To measure three different
aspects including single-person fidelity, multi-person fidelity, and overall diversity comprehensively,
we provide a summary and analysis of all metrics for this novel task in Table F and Sec. F of the
Appendix. We include results on all above metrics in Sec. G of the Appendix.
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Figure 5: Qualitative results of DuMMF with a DDPM model. We visualize the predicted frames for
two different 3-person input motions, which are listed on the left and right respectively. For each
input, we generate four sampled motions, arranged in a single column and listed sequentially in time
at 0, 1, 2, and 3 seconds. Our method effectively produces diverse human-like social interactions.

Baselines. Given that we propose a new task, there is no readily available baseline from existing
work. For comparison purposes, we customize several baselines from deterministic multi-person
motion forecasting which we summarize in Table A, and extend them to stochastic forecasting. (a)
RNN+SC-MPF (Adeli et al., 2020): We use Social Pooling (Alahi et al., 2016) to integrate the
multi-person information. We follow the implementation in Adeli et al. (2020) and reproduce the
results. For the Social Pooling module, we select the maximum pooling for its best performance as
ablated in Adeli et al. (2020). (b) Transformer+SC-MPF: For a fair comparison, we introduce a
transformer-based encoder architecture to combine with the Social Pooling module. (c) XIA (Guo
et al., 2022): We follow their implementation and use Cross Interaction Attention (XIA) to encode
2-person information. (d) MRT (Wang et al., 2021b): We use multi-range transformer (MRT)
as our main architecture for its state-of-the-art performance. We further extend MRT to 2-person
scenarios to compare with XIA. For stochastic forecasting, we formulate a conditional generative
adversarial network (CGAN) (Mirza & Osindero, 2014) and a denoising diffusion probabilistic model
(DDPM) (Ho et al., 2020), with or without dual-level modeling and discrete intents.

Implementation Details. For the skeletal representation, following Wang et al. (2021b), we train
the model to predict a 15-frame sequence of 3 people given the ground truth 15, 30, and 45 past
frames at 15Hz, as the encoder (RNN/Transformer) accepts different input lengths. We use a 6-layer
transformer (or RNNs), where we set the feature dimension to 128. For evaluation, we recursively
predict the next 15 frames 3 times given all past frames generated, as illustrated in Sec. 3.3. Thus,
given the number of intents to be M , the model outputs M , M2, and M3 different predictions in
sequence. For the SMPL representation, we train the model to predict a 25-frame sequence of 3
people given the 10 past frames at 30Hz. We use an 8-layer transformer, where we set the feature
dimension to 512. For evaluation, similarly, we use 10 frames as the past motion and recursively
predict the next 25 frames. Additional implementation details are provided in Sec. E of the Appendix.

Quantitative Results. We compare our method with a pure DDPM in Table 1. Our improvement is
significant. Notably, even in the case of a single intent, where we only evaluate one prediction, our
method outperforms DDPM in long-term generation. As the number of intents increases, our method
provides more accurate results, especially in long-term prediction. In Table 2, we demonstrate that
our DuMMF framework benefits all predictor variants. We observe that the simple combination
of deterministic predictors and CGAN results in very low diversity and accuracy. By contrast, our
full approach significantly outperforms CGAN baselines on both diversity and accuracy across all
backbones. In Table D of the Appendix, we further show that DuMMF achieves the best generalization
results across all predictors on MuPoTS-3D, highlighting its generality and superiority.

Ablation: Effectiveness of Dual-Level Modeling. Tables 2 and 3 show the effectiveness of our
dual-level framework. First, we investigate the settings with only single-person motion modeling or
only social interaction modeling. In Table 3, compared with our full method, modeling independent
multi-person motion (‘w/o Social’) provides higher diversity but leads to inaccurate poses, since
the social restrictions are not considered. With only social interaction modeling, the model (‘w/o
Individual’) cannot output sufficiently diverse predictions, which also makes predictions inaccurate,
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Table 3: Ablation study of our DuMMF with a CGAN and MRT (Wang et al., 2021b) using skeletal
representations on CMU-Mocap and MuPoTS-3D. We report both accuracy and diversity for root and
pose separately. The results show the effectiveness of our dual-level modeling along with discrete
motion intents, and complementariness of local-level and global-level modeling.

Method @t = 3s
CMU-Mocap (CMU) Generalized to MuPoTS-3D (Mehta et al., 2018)

ROOT POSE ROOT POSE

FPD ↑ ADE ↓ FDE ↓ FPD ↑ ADE ↓ FDE ↓ FPD ↑ ADE ↓ FDE ↓ FPD ↑ ADE ↓ FDE ↓

MRT (Wang et al., 2021b) N/A 0.753 0.946 N/A 0.301 0.567 N/A 0.603 0.835 N/A 0.220 0.461
Ours, Deterministic N/A 0.738 0.916 N/A 0.288 0.526 N/A 0.587 0.809 N/A 0.203 0.411

w/o Individual 0.178 0.733 0.896 0.339 0.264 0.453 0.120 0.584 0.797 0.253 0.180 0.331
w/o Social 1.661 0.751 0.909 1.077 0.264 0.413 2.100 0.605 0.818 1.283 0.183 0.318

w/o Separation 0.167 0.747 0.911 0.293 0.271 0.448 0.105 0.596 0.815 0.213 0.202 0.386
Full 0.249 0.734 0.898 0.562 0.243 0.390 0.187 0.588 0.796 0.444 0.170 0.305

w/o Discrete 0.114 0.761 0.949 0.196 0.279 0.490 0.083 0.620 0.857 0.158 0.212 0.411
w/o Continuous 0.208 0.746 0.905 0.381 0.265 0.439 0.159 0.594 0.801 0.328 0.196 0.378

Full 0.249 0.734 0.898 0.562 0.243 0.390 0.187 0.588 0.796 0.444 0.170 0.305

as more varied outputs have a better chance of covering the ground truth. Note that the results of
‘CGAN’ and ‘w/o Separation’ in Table 2 and ‘w/o Separation’ in Table 3 are worse since they simply
use all the learning objectives together without disentangling the two levels of modeling, while ‘w/o
Separation’ is slightly better due to the use of discrete intents. Under our dual-level framework with
level-specific motion intents and learning objectives, the model can more effectively incorporate the
benefits of both levels, thus leading to improved accuracy and diversity. In Sec. G of the Appendix,
we further demonstrate that our dual-level benefits different predictor variants.

Ablation: Effectiveness of Discrete Human Intents. In Tables 2 and 3, we also demonstrate that
discrete human intents are effective and crucial. We observe the best results when using both discrete
and continuous intents, indicating that they are complementary. In the absence of discrete intents
(‘w/o Discrete’), the performance is only comparable with the baseline (‘CGAN’). Importantly, with
the help of discrete intents, the improvement of dual-level modeling (‘Full’) over ‘w/o Separation’
is more pronounced, compared with the improvement of ‘w/o Discrete’ over ‘CGAN.’ Therefore,
discrete learnable intents are essential for effectively integrating the advantages of both levels during
training. The performance without continuous intents (‘w/o Continuous’) is slightly worse than the
full method. Our hypothesis is that relying solely on discrete intents is limiting, because they only
support a finite number of outputs. In Sec. G of the Appendix, we further investigate how the number
of discrete intents impacts stochastic forecasting.

Qualitative Results. Consistent with the quantitative evaluation above, we observe that our method
provides diverse multi-person motion, and produces predictions closer to the ground truth compared
with the deterministic method MRT in Figure 4. In Figure 5, we qualitatively show that our gener-
ated results in meshes reflect real-world diversity of social interactions. Furthermore, we provide
qualitative results for more-person scenarios in Figure 3, and others in Figure A and Figure B of the
Appendix. Please refer to Sec. H of the Appendix for more detail on the more-person setting.

Limitation. Although our dual-level framework has proven effective in producing high-quality
and diverse predictions, we have observed artifacts such as foot skating in some predicted motion
sequences. This is because our model relies solely on loss functions to constrain motion, rather than
explicitly modeling articulated motion. As this is a common issue in learning-based methods, we
plan to exploit a physical simulator to further improve the plausibility of our predicted motion.

5 CONCLUSION

We formulate a novel task called stochastic multi-person 3D motion forecasting, which better reflects
the real-world human motion complexities. To simultaneously achieve single-person fidelity, social
realism, and overall diversity, we propose a dual-level generative modeling framework (DuMMF)
with learnable latent intent codes. Compared with prior work on deterministic or single-person
prediction, our model learns to generate diverse and realistic human motion and interactions. Notably,
our framework is model-agnostic and generalizes to unseen more-person scenarios.
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Ethics Statement. Our proposed technique is useful in many applications, such as self-driving to
avoid crowds. The potential negative societal impacts include: (a) our approach can be used to
synthesize highly realistic human motion, which might lead to the spread of false information; (b)
our approach requires real behavioral information as input, which may raise privacy concerns and
result in the disclosure of sensitive identity information. Nevertheless, our model operates on the
processed human skeleton representation that contains minimal identifying information, unlike raw
data. On the positive side, this can be seen as a privacy-enhancing feature.

Acknowledgement. This work was supported in part by NSF Grant 2106825, NIFA Award 2020-
67021-32799, the Jump ARCHES endowment through the Health Care Engineering Systems Center,
the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-
Champaign through the NCSA Fellows program, the IBM-Illinois Discovery Accelerator Institute,
the Illinois-Insper Partnership, and the Amazon Research Award. This work used NVIDIA GPUs at
NCSA Delta through allocation CIS220014 from the Advanced Cyberinfrastructure Coordination
Ecosystem: Services & Support (ACCESS) program, which is supported by NSF Grants #2138259,
#2138286, #2138307, #2137603, and #2138296.

REFERENCES

CMU graphics lab motion capture database. http://mocap.cs.cmu.edu/. 6, 9, 17, 19, 21

Vida Adeli, Ehsan Adeli, Ian Reid, Juan Carlos Niebles, and Hamid Rezatofighi. Socially and
contextually aware human motion and pose forecasting. RAL, 2020. 1, 2, 3, 7, 8, 14, 15, 17, 18, 19

Vida Adeli, Mahsa Ehsanpour, Ian Reid, Juan Carlos Niebles, Silvio Savarese, Ehsan Adeli, and
Hamid Rezatofighi. TRiPOD: Human trajectory and pose dynamics forecasting in the wild. arXiv
preprint arXiv:2104.04029, 2021. 1, 2, 3, 7, 14, 18, 19

Victor Aguirregabiria and Pedro Mira. Dynamic discrete choice structural models: A survey. Journal
of Econometrics, 2010. 5

Alexandre Alahi, Vignesh Ramanathan, and Li Fei-Fei. Socially-aware large-scale crowd forecasting.
In CVPR, 2014. 1, 3, 14

Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei, and Silvio
Savarese. Social LSTM: Human trajectory prediction in crowded spaces. In CVPR, 2016. 3, 8

Javad Amirian, Jean-Bernard Hayet, and Julien Pettré. Social Ways: Learning multi-modal distribu-
tions of pedestrian trajectories with gans. In CVPRW, 2019. 3

German Barquero, Johnny Núnez, Sergio Escalera, Zhen Xu, Wei-Wei Tu, Isabelle Guyon, and
Cristina Palmero. Didn’t see that coming: a survey on non-verbal social human behavior forecasting.
In Understanding Social Behavior in Dyadic and Small Group Interactions. PMLR, 2022. 14

Emad Barsoum, John R. Kender, and Zicheng Liu. HP-GAN: Probabilistic 3d human motion
prediction via gan. In CVPRW, 2018. 2

Chandra Bhat, Naveen Eluru, and Rachel Copperman. Flexible model structures for discrete choice
analysis. Handbook of Transport Modelling, 2008. 5

Apratim Bhattacharyya, Mario Fritz, and Bernt Schiele. Accurate and diverse sampling of sequences
based on a “best of many” sample objective. In CVPR, 2018. 3

Zhe Cao, Hang Gao, Karttikeya Mangalam, Qi-Zhi Cai, Minh Vo, and Jitendra Malik. Long-term
human motion prediction with scene context. In ECCV, 2020. 3

Nat Dilokthanakul, Pedro A. M. Mediano, Marta Garnelo, M. J. Lee, Hugh Salimbeni, Kai Arulku-
maran, and Murray Shanahan. Deep unsupervised clustering with gaussian mixture variational
autoencoders. arXiv preprint arXiv:1611.02648, 2016. 3

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NeurIPS, 2014. 3

10

http://mocap.cs.cmu.edu/


Published as a conference paper at ICLR 2023

Tianpei Gu, Guangyi Chen, Junlong Li, Chunze Lin, Yongming Rao, Jie Zhou, and Jiwen Lu.
Stochastic trajectory prediction via motion indeterminacy diffusion. In CVPR, 2022. 15

Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, and Francesc Moreno-Noguer. Multi-person extreme
motion prediction. In CVPR, 2022. 1, 2, 3, 7, 8, 14, 15, 17

Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi. Social GAN: Socially
acceptable trajectories with generative adversarial networks. In CVPR, 2018. 3

Swaminathan Gurumurthy, Ravi Kiran Sarvadevabhatla, and R. Venkatesh Babu. DeLiGAN :
Generative adversarial networks for diverse and limited data. In CVPR, 2017. 3

Abner Guzmán-rivera, Dhruv Batra, and Pushmeet Kohli. Multiple choice learning: Learning to
produce multiple structured outputs. In NeurIPS, 2012. 15

Mohamed Hassan, Duygu Ceylan, Ruben Villegas, Jun Saito, Jimei Yang, Yi Zhou, and Michael
Black. Stochastic scene-aware motion prediction. In ICCV, 2021. 3

Dirk Helbing and Peter Molnar. Social force model for pedestrian dynamics. Physical review E,
1995. 3

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS,
2020. 3, 6, 8, 16

Yingfan Huang, Huikun Bi, Zhaoxin Li, Tianlu Mao, and Zhaoqi Wang. STGAT: Modeling spatial-
temporal interactions for human trajectory prediction. In ICCV, 2019. 1

Boris Ivanovic and Marco Pavone. The Trajectron: Probabilistic multi-agent trajectory modeling
with dynamic spatiotemporal graphs. In ICCV, 2019. 1

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2014. 17

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In arXiv preprint
arXiv:1312.6114, 2013. 3

Muhammed Kocabas, Nikos Athanasiou, and Michael J. Black. VIBE: Video inference for human
body pose and shape estimation. In CVPR, 2020. 16

Vineet Kosaraju, Amir Sadeghian, Roberto Martín-Martín, Ian Reid, S Hamid Rezatofighi, and Silvio
Savarese. Social-BiGAT: Multimodal trajectory forecasting using bicycle-gan and graph attention
networks. arXiv preprint arXiv:1907.03395, 2019. 1, 3

Parth Kothari, Sven Kreiss, and Alexandre Alahi. Human trajectory forecasting in crowds: A deep
learning perspective. In arXiv preprint arXiv:2007.03639, 2020. 14, 18

Parth Kothari, Brian Sifringer, and Alexandre Alahi. Interpretable social anchors for human trajectory
forecasting in crowds. In CVPR, 2021. 3, 5, 7, 14

Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B Choy, Philip HS Torr, and Manmohan
Chandraker. Desire: Distant future prediction in dynamic scenes with interacting agents. In CVPR,
2017. 3

Giorgio Leonardi. The stucture of random utility models in the light of the asymptotic theory of
extremes. In Theory and decision, 1984. 5

Jiachen Li, Fan Yang, Masayoshi Tomizuka, and Chiho Choi. EvolveGraph: Multi-agent trajectory
prediction with dynamic relational reasoning. In NeurIPS, 2020. 14

Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll, and Michael J. Black.
AMASS: Archive of motion capture as surface shapes. In ICCV, 2019. 6

Karttikeya Mangalam, Harshayu Girase, Shreyas Agarwal, Kuan-Hui Lee, Ehsan Adeli, Jitendra
Malik, and Adrien Gaidon. It is not the journey but the destination: Endpoint conditioned trajectory
prediction. In ECCV, 2020. 3

11



Published as a conference paper at ICLR 2023

Wei Mao, Miaomiao Liu, and Mathieu Salzmann. Generating smooth pose sequences for diverse
human motion prediction. In CVPR, 2021. 1, 3, 6, 7, 15, 18

Ramin Mehran, Alexis Oyama, and Mubarak Shah. Abnormal crowd behavior detection using social
force model. In CVPR, 2009. 3

Dushyant Mehta, Oleksandr Sotnychenko, Franziska Mueller, Weipeng Xu, Srinath Sridhar, Gerard
Pons-Moll, and Christian Theobalt. Single-shot multi-person 3D pose estimation from monocular
RGB. In 3DV, 2018. 6, 9, 17, 19

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014. 8, 16

Brian Paden, Michal Cáp, Sze Zheng Yong, Dmitry S. Yershov, and Emilio Frazzoli. A survey of
motion planning and control techniques for self-driving urban vehicles. IEEE Transactions on
Intelligent Vehicles, 2016. 1

Behnam Parsaeifard, Saeed Saadatnejad, Yuejiang Liu, Taylor Mordan, and Alexandre Alahi. Learn-
ing decoupled representations for human pose forecasting. In ICCV, 2021. 14

Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed A. A. Osman, Dimitrios
Tzionas, and Michael J. Black. Expressive body capture: 3d hands, face, and body from a single
image. In CVPR, 2019. 6

Stefano Pellegrini, Andreas Ess, Konrad Schindler, and Luc Van Gool. You’ll never walk alone:
Modeling social behavior for multi-target tracking. In ICCV, 2009. 3

Mathis Petrovich, Michael J. Black, and Gül Varol. TEMOS: Generating diverse human motions
from textual descriptions. In ECCV, 2022. 3

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
ICLR, 2015. 3

Andrey Rudenko, Luigi Palmieri, and Kai Oliver Arras. Joint long-term prediction of human motion
using a planning-based social force approach. In ICRA, 2018. 1

Christian Rupprecht, Iro Laina, Robert DiPietro, Maximilian Baust, Federico Tombari, Nassir Navab,
and Gregory D Hager. Learning in an uncertain world: Representing ambiguity through multiple
hypotheses. In ICCV, 2017. 3

Mandy Ryan and Karen Gerard. Using discrete choice experiments to value health care programmes:
current practice and future research reflections. Applied health economics and health policy, 2003.
5

Armin Saadat, Nima Fathi, and Saeed Saadatnejad. Towards human pose prediction using the
encoder-decoder LSTM. In ICCVW, 2021. 14

Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki Hirose, Hamid Rezatofighi, and Silvio
Savarese. Sophie: An attentive gan for predicting paths compliant to social and physical constraints.
In CVPR, 2019. 3

Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and Marco Pavone. Trajectron++: Dynamically-
feasible trajectory forecasting with heterogeneous data. In ECCV, 2020. 1, 7, 14

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In ICML, 2015. 3

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020. 3

Jianhua Sun, Qinhong Jiang, and Cewu Lu. Recursive social behavior graph for trajectory prediction.
In CVPR, 2020. 3

Jianhua Sun, Yuxuan Li, Hao-Shu Fang, and Cewu Lu. Three steps to multimodal trajectory prediction:
Modality clustering, classification and synthesis. arXiv preprint arXiv:2103.07854, 2021. 3

12



Published as a conference paper at ICLR 2023

Li-Wu Tsao, Yan-Kai Wang, Hao-Siang Lin, Shuai Hong-Han, Lai-Kuan Wong, and Wen-Huang
Cheng. Social-SSL: Self-supervised cross-sequence representation learning based on transformers
for multi-agent trajectory prediction. In ECCV, 2022. 3

Anirudh Vemula, Katharina Muelling, and Jean Oh. Social Attention: Modeling attention in human
crowds. In ICRA, 2018. 1

Timo von Marcard, Roberto Henschel, Michael Black, Bodo Rosenhahn, and Gerard Pons-Moll.
Recovering accurate 3d human pose in the wild using imus and a moving camera. In ECCV, 2018.
19

Jacob Walker, Kenneth Marino, Abhinav Gupta, and Martial Hebert. The pose knows: Video
forecasting by generating pose futures. In ICCV, 2017. 2

Chenxi Wang, Yunfeng Wang, Zixuan Huang, and Zhiwen Chen. Simple baseline for single human
motion forecasting. In ICCV, 2021a. 14

Jiashun Wang, Huazhe Xu, Medhini Narasimhan, and Xiaolong Wang. Multi-person 3d motion
prediction with multi-range transformers. In NeurIPS, 2021b. 1, 2, 3, 6, 7, 8, 9, 14, 15, 17, 18, 19,
20

Chenxin Xu, Maosen Li, Zhenyang Ni, Ya Zhang, and Siheng Chen. GroupNet: Multiscale hy-
pergraph neural networks for trajectory prediction with relational reasoning. In CVPR, 2022a.
15

Sirui Xu, Yu-Xiong Wang, and Liang-Yan Gui. Diverse human motion prediction guided by multi-
level spatial-temporal anchors. In ECCV, 2022b. 3, 5

Yi Xu, Dongchun Ren, Mingxia Li, Yuehai Chen, Mingyu Fan, and Huaxia Xia. Tra2Tra: Trajectory-
to-trajectory prediction with a global social spatial-temporal attentive neural network. IEEE
Robotics and Automation Letters, 2021. 14

Yi Xu, Lichen Wang, Yizhou Wang, and Yun Fu. Adaptive trajectory prediction via transferable gnn.
In CVPR, 2022c. 15

Kota Yamaguchi, Alexander C Berg, Luis E Ortiz, and Tamara L Berg. Who are you with and where
are you going? In CVPR, 2011. 3

Xinchen Yan, Akash Rastogi, Ruben Villegas, Kalyan Sunkavalli, Eli Shechtman, Sunil Hadap, Ersin
Yumer, and Honglak Lee. MT-VAE: Learning motion transformations to generate multimodal
human dynamics. In ECCV, 2018. 2

Cunjun Yu, Xiao Ma, Jiawei Ren, Haiyu Zhao, and Shuai Yi. Spatio-temporal graph transformer
networks for pedestrian trajectory prediction. In ECCV, 2020. 1

Ye Yuan and Kris Kitani. Diverse trajectory forecasting with determinantal point processes. arXiv
preprint arXiv:1907.04967, 2019. 3, 7, 18

Ye Yuan and Kris Kitani. DLow: Diversifying latent flows for diverse human motion prediction. In
ECCV, 2020. 1, 3, 6, 7, 15, 18

Pu Zhang, Wanli Ouyang, Pengfei Zhang, Jianru Xue, and Nanning Zheng. SR-LSTM: State
refinement for lstm towards pedestrian trajectory prediction. In CVPR, 2019. 1

Yan Zhang and Siyu Tang. The wanderings of odysseus in 3d scenes. In CVPR, 2022. 3

Yan Zhang, Michael J Black, and Siyu Tang. We are more than our joints: Predicting how 3d bodies
move. In CVPR, 2021. 3, 18

Bolei Zhou, Xiaogang Wang, and Xiaoou Tang. Understanding collective crowd behaviors: Learning
a mixture model of dynamic pedestrian-agents. In CVPR, 2012. 3

13



Published as a conference paper at ICLR 2023

In this Appendix, we include additional method details and experimental results that are not included
in the main paper due to limited space as follows. 1) We provide a visualization video as additional
qualitative results, and the details are explained in Sec. A. 2) We include a further discussion on related
work in Sec. B. 3) We explain different generative models incorporated in our proposed dual-level
modeling framework in Sec. D; 4) We provide additional details of the experimental implementation
in Sec. E and the summary of evaluation metrics in Sec. F. 5) To elaborate the effectiveness of our
method, we provide additional ablation experiments with qualitative and quantitative analysis in
Sec. G, and we evaluate our approach in more challenging scenarios with a significantly increased
number of people in Sec. H.

A VISUALIZATION VIDEO

In addition to Figure 4 and Figure 5 in the main paper and more qualitative results in this Appendix
(Figures A and B), we provide a video to demonstrate more comprehensive visualizations of multi-
person 3D motion forecasting at https://sirui-xu.github.io/DuMMF/images/demo.
mp4. In this video, we illustrate that our method DuMMF generates diverse multi-person motion and
social interactions, as well as taking into account both single-person and multi-person fidelity. We
also show that our model is scalable and provide effective predictions in more challenging scenarios
with a significantly increased number of people and associated more complex interactions. We also
highlight the impact and effectiveness of our dual-level modeling framework.

B ADDITIONAL DISCUSSION ON RELATED WORK

As we demonstrate in the main paper, our proposed stochastic multi-person motion forecasting
needs to simultaneously take into account single-person pose fidelity, consistency of pose and
trajectory, social interactions between poses, and overall diversity of motion, while prior work
including stochastic multi-person trajectory forecasting (Alahi et al., 2014; Kothari et al., 2020;
2021) and deterministic multi-person motion forecasting (Adeli et al., 2020; 2021; Guo et al., 2022;
Wang et al., 2021b) focuses on simplified scenarios. A survey (Barquero et al., 2022) summarizes
the progress in this area. Our problem reveals real-world complexity with substantially increased,
multi-faced challenges which have not been, and cannot be, jointly tackled by any of the prior
literature. In particular, in our stochastic scenario, the fidelity and interactions need to be both
satisfied and diversified for all the predictions, which is very challenging and cannot be addressed by
a simple extension of existing work on stochastic multi-person trajectory forecasting and deterministic
multi-person motion forecasting as shown in Sec. G.

For deterministic multi-person motion forecasting, in Sec. 2 of the main paper, we have highlighted
our key difference with Adeli et al. (2020; 2021); Guo et al. (2022), and here we discuss in more
detail. Adeli et al. (2020) introduce a social pooling module to integrate social information. Adeli
et al. (2021) propose a graph attentional network to jointly model human-human and human-object
interactions. Both methods utilize additional contextual information to aid deterministic prediction
with their proposed Social Motion Forecasting (SoMoF) benchmark (Adeli et al., 2020; 2021). Guo
et al. (2022) propose a cross-interaction attention mechanism to predict cross dependencies between
two pose sequences, making it applicable only to 2-person scenarios.

There are many methods achieving strong performance with simple and non-transformer-based
frameworks on the SoMoF leaderboard. Specifically, futuremotion_ICCV21 (Wang et al., 2021a)
develops a simple but effective framework based on a combination of graph convolutional networks
and multiple motion optimization techniques. DViTA (Parsaeifard et al., 2021) decouples the human
pose into a trajectory and local pose and employs a VAE to learn a representation of the local
pose dynamics. LSTMV_LAST (Saadat et al., 2021) proposes a sequence-to-sequence LSTM via
keypoint-based representation.

Complementing Sec. 2 of the main paper, we here discuss in more depth the trajectory-level
multi-person forecasting. Trajectron++ (Salzmann et al., 2020) constructs a spatio-temporal scene
graph where nodes represent individuals and edges represent their interactions, and global and local
modeling is embedded in this graph structure. EvolveGraph (Li et al., 2020) introduces an effective
dynamic mechanism to evolve interaction graphs, which can flexibly model dynamically changing
interactions. Tra2tra (Xu et al., 2021) introduces a global social spatio-temporal attention neural
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Table A: Summary of methods for encoding and integrating multi-person motions and interactions.
We follow to abstract the encoder into local and global part as Figure 2(d). As we use the same
decoder for baselines (Sec. 4 of the main paper), we only discuss encoders of three predictors in this
paper. Note that XIA (Guo et al., 2022) can only be applied to two-person scenarios.

Method Local Encoder Global Encoder

SC-MPF (Adeli et al., 2020) GRU(Xi) MaxPool({GRU(Xn)}N
n=1)

MRT (Wang et al., 2021b) MultiHead(Xi,Xi,Xi) MultiHead({Xn}N
n=1, {Xn}N

n=1, {Xn}N
n=1)

XIA (Guo et al., 2022) N/A {MultiHead(X1,X2,X2, MultiHead(X2,X1,X1)}

network to encode both spatial interactions and temporal features. GroupNet (Xu et al., 2022a)
employs a multi-scale hypergraph neural network that models group-based interactions and facilitates
more comprehensive relational reasoning. T-GNN (Xu et al., 2022c) introduces a transferable graph
neural network that allows not only trajectory prediction but also domain alignment of potential
distribution differences. MID (Gu et al., 2022) employs a diffusion model to model the variation of
indeterminacy for trajectory prediction.

C ADDITIONAL DETAILS OF LEVEL-SPECIFIC OBJECTIVES

We use ∆ to represent the residual of the motion sequence. For example, ∆Ŷj
i = [Ŷj

i [Th + 1] −
Xi[Th], Ŷ

j
i [Th + 2]− Ŷj

i [Th + 1], . . . , Ŷj
i [Th + Tp]− Ŷj

i [Th + Tp − 1]].

Local-Level Objectives. We adopt the multiple output loss (Guzmán-rivera et al., 2012) and extend
it to the local reconstruction loss of multiple people LlR, which is used to optimize the most accurate
prediction of each person while maintaining diversity. We highlight the structure of the human
skeleton by introducing the limb loss (Mao et al., 2021) LL. Specifically,

LlR =
1

N

N∑
n=1

min
m=1,...,M

∥∆Ŷm
n −∆Yn∥22, (6)

LL =
1

N ∗M

N∑
n=1

M∑
m=1

∥L̂m
n − Ln∥22, (7)

where the vector Ln represents the ground truth distance between all pairs of joints that are physically
connected in the n-th human body and L̂m

n includes the limb length for all the Tp poses in Ŷm
n .

We further develop a multimodal reconstruction loss LmmR to provide additional supervision for all
outputs {{∆Ŷm

n }Nn=1}Mm=1. We first construct pseudo future motion {Ỹp
i }Pp=1 for each historical

sequence Xi. Different from (Yuan & Kitani, 2020; Mao et al., 2021), we additionally consider
translation T ∈ R3 and rotation R ∈ R3×3 of the pose. Specifically, given a threshold ϵ, we cluster
future motion with a similar start pose and train the model with their residuals as

{Ỹp
i }

P
p=1 = {Ỹp

i |min
R,T

∥R(X̃p
i [Th]−T)−Xi[Th]∥2 ≤ ϵ}, (8)

LmmR =
1

N ∗ P

N∑
n=1

P∑
p=1

min
m=1,...,M

∥∆Ŷm
n −∆Yp

n∥22. (9)

To explicitly encourage diversity, we adopt a diversity-promoting loss (Yuan & Kitani, 2020), which
directly promotes the pairwise distance between the predictions of a single person. We decompose
this loss into two parts, promoting the diversity of local pose and the global root separately. Supposing
that Ŷm

n (l) and Ŷm
n (g) are the local pose and the global root joint extracted from the global pose

Ŷm
n , respectively, and α and β are two hyperparameters, this diversity-promoting loss is denoted as

LD =
1

N ∗M(M − 1)

N∑
n=1

M∑
m=1

M∑
k=m+1

[exp(
∥Ŷm

n (g)− Ŷk
n(g)∥22

α
) + exp(

∥Ŷm
n (l)− Ŷk

n(l)∥22
β

)].

(10)
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Table B: Summary of the complementary evaluation metrics in the multi-person 3D motion forecasting
task, with each focusing on evaluating different aspects of predicted motion. Here for simplicity,
we show the metrics without alignment. We also provide ADE, FDE, and FPD with alignment to
evaluate the pose and trajectory separately, as explained in Sec. 4 of the main paper.

Type Metrics Definition

Single-Person Fidelity

Local Average Displacement Error (lADE) 1
NTp

∑N
n=1 minm ∥Ŷm

n − Yn∥2

Local Final Displacement Error (lFDE) 1
N

∑N
n=1 minm ∥Ŷm

n [Tp]−Yn[Tp]∥2

Foot Skating Ratio (FSR) average ratio of frames where both foot joints are close to the
ground (≤ 5cm) and fast (≥ 75mm/s)

Multi-Person Fidelity

(Global) Average Displacement Error (ADE) minm
1

NTp

∑N
n=1 ∥Ŷm

n − Yn∥2

(Global) Final Displacement Error (FDE) minm
1
N

∑N
n=1 ∥Ŷm

n [Tp]− Yn[Tp]∥2

Trajectory Collision Ratio (TCR) average ratio of frames where there is a collision between any
two trajectories

Average Human Displacement (AHD) 1
NM

∑N
n=1

∑M
m=1 ∥Ŷm

n [Tp] − Ŷm
n [1]∥2

Overall Diversity Final Pairwise Distance (FPD) 1
NM(M−1)

∑N
n=1

∑M
m=1

∑M
k=m+1 ∥Ŷm

n [Tp] −
Ŷk

n[Tp]∥2

For CGAN, a GAN loss (Kocabas et al., 2020) is leveraged to train the model and the local discrimi-
nator Dl for individual body realism. Suppose {Y∗

n}Nn=1 is the set of real motion clips sampled from
the data, we have the following.

LlGAN =
1

N ∗M

N∑
n=1

M∑
m=1

∥Dl(Ŷ
m
n )∥22 +

1

N

N∑
n=1

∥Dl(Y
∗
n)− 1∥22. (11)

Global-Level Objectives. Since in this setting we treat N individuals as a whole, the reconstruction
loss is reformulated as

LgR = min
m=1,...,M

1

N

N∑
n=1

∥∆Ŷm
n −∆Yn∥22. (12)

For CGAN, a global GAN loss is further leveraged to promote the realism of social motion, where
the global discriminator Dg takes the motion of all N people as input. Suppose {Y∗∗

n }Nn=1 is the
multi-person motion clip sampled from the data, and we have

LgGAN =
1

M

M∑
m=1

∥Dg({Ŷm
n }Nn=1)∥22 + ∥Dg({Y∗∗

n }Nn=1)− 1∥22. (13)

Table C: Quantitative results (w/ error bar) of our DuMMF on single-person accuracy.

Method, # of Intents @t = 1s @t = 2s @t = 3s

lADE ↓ lFDE ↓ lADE ↓ lFDE ↓ lADE ↓ lFDE ↓

DuMMF (Ours), 2 0.663± 0.007 1.088± 0.019 1.029± 0.019 1.612± 0.043 1.308± 0.031 2.014± 0.086

DuMMF (Ours), 3 0.656± 0.007 1.056± 0.007 0.996± 0.009 1.503± 0.032 1.244± 0.021 1.883± 0.076

DuMMF (Ours), 5 0.648± 0.011 1.033± 0.022 0.963± 0.020 1.400± 0.035 1.176± 0.025 1.672± 0.052

D ADDITIONAL DETAILS OF GENERATIVE MODELS

In this paper, we mainly evaluate the generalizability of our method by incorporating it with a
CGAN (Mirza & Osindero, 2014) or a DDPM (Ho et al., 2020) model. For CGAN, we introduce
local discriminator and global discriminator for objectives at local and global levels, respectively. For
the model incorporated with DDPM, we disregard these two GAN losses.
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Local Discriminator. To ensure the fidelity of the motion, especially to address the problem of foot
skating, where the feet appear to slide in the ground plane, we concatenate the predicted motion
of each person Yj

i with the feet velocities ∆Fj
i as input to a local discriminator Dl. The local

discriminator uses a local-range transformer encoder adopted from Wang et al. (2021b).

Global Discriminator. To ensure the realism of social interactions and avoid motion collisions,
we propose a global discriminator Dg that encodes all motion of N people {Yj

n}Nn=1 at the same
time and outputs a fidelity score. The global discriminator uses a global-range transformer encoder
adopted from Wang et al. (2021b).

E ADDITIONAL IMPLEMENTATION DETAILS

Here, we provide more details on the implementation of our method DuMMF. The two hyperpa-
rameters (α, β) in diversity promoting loss (Sec. C) are set to (50, 100). The model is trained using
a batch size of 32 for 50 epoch, with 6000 training examples per epoch. We use ADAM (Kingma
& Ba, 2014) to train the model. The code is based on PyTorch. On one NVIDIA GeForce GTX
TITAN X GPU, training an epoch takes approximately 5 minutes. For license, CMU-Mocap (CMU)
is free for all users; MuPoTS-3D (Mehta et al., 2018) is for noncommercial purposes. Part of our
code is based on AMCParser (MIT license), attention-is-all-you-need-pytorch (MIT license), and
MRT (Wang et al., 2021b) (not specified), and XIA (Guo et al., 2022) (GPL license).

Table D: Quantitative comparison on MuPoTS-3D between our DuMMF and deterministic forecasting
baselines and their CGAN variants. All models are trained only using skeletal representations
on CMU-Mocap and we compare their generalizations on MuPoTS-3D here. The number of
intents is set to 5 for stochastic forecasting on 3-person (top) and 2-person (bottom) scenarios.
DuMMF significantly improves multi-person accuracy and diversity across various architectures and
deterministic predictors.
Architecture Predictor Diversifier Variants @t = 1s @t = 2s @t = 3s

FPD ↑ ADE ↓ FDE ↓ FPD ↑ ADE ↓ FDE ↓ FPD ↑ ADE ↓ FDE ↓

RNN SC-MPF (Adeli et al., 2020)

Deterministic N/A N/A 0.514 0.880 N/A 0.902 1.632 N/A 1.319 2.594
CGAN 0.467 0.473 0.786 0.846 0.753 1.207 1.215 0.967 1.518

CGAN+DuMMF (Ours)

w/o Separation 0.511 0.481 0.801 0.987 0.772 1.252 1.471 1.001 1.600
w/o Discrete 0.697 0.478 0.793 1.534 0.770 1.258 2.800 1.008 1.618

w/o Continuous 0.736 0.627 1.092 1.412 1.074 1.860 2.262 1.476 2.588
Full 0.747 0.455 0.744 1.441 0.707 1.103 2.200 0.893 1.364

Transformer

SC-MPF (Adeli et al., 2020)

Deterministic N/A N/A 0.430 0.731 N/A 0.723 1.258 N/A 0.995 1.781
CGAN 0.504 0.403 0.690 1.099 0.659 1.077 1.834 0.857 1.371

CGAN+DuMMF (Ours)

w/o Separation 0.787 0.407 0.701 1.791 0.667 1.080 3.047 0.865 1.363
w/o Discrete 0.557 0.403 0.693 1.202 0.657 1.075 1.975 0.857 1.382

w/o Continuous 0.917 0.406 0.707 2.124 0.685 1.163 3.535 0.924 1.573
Full 0.865 0.402 0.691 1.816 0.656 1.071 2.902 0.852 1.352

MRT (Wang et al., 2021b)

Deterministic N/A N/A 0.427 0.747 N/A 0.747 1.354 N/A 1.071 2.043
CGAN 0.176 0.421 0.741 0.452 0.729 1.288 0.878 1.017 1.846

CGAN+DuMMF (Ours)

w/o Separation 0.194 0.423 0.743 0.456 0.731 1.267 0.855 1.000 1.754
w/o Discrete 0.133 0.421 0.743 0.335 0.732 1.286 0.627 1.012 1.805

w/o Continuous 0.308 0.418 0.730 0.732 0.716 1.242 1.304 0.982 1.734
Full 0.510 0.408 0.711 1.075 0.683 1.135 1.740 0.905 1.491

Transformer

MRT (Wang et al., 2021b)

Deterministic N/A N/A 0.475 0.822 N/A 0.853 1.605 N/A 1.268 2.539
CGAN 0.556 0.457 0.791 1.123 0.770 1.300 1.778 1.041 1.784

CGAN+DuMMF (Ours)

w/o Separation 0.669 0.441 0.752 1.292 0.713 1.146 1.939 0.922 1.469
w/o Discrete 0.100 0.475 0.846 0.231 0.843 1.523 0.402 1.192 2.207

w/o Continuous 0.691 0.413 0.710 1.462 0.674 1.109 2.338 0.885 1.433
Full 1.133 0.432 0.734 2.283 0.694 1.104 3.575 0.891 1.384

XIA (Guo et al., 2022)

Deterministic N/A N/A 0.478 0.840 N/A 0.848 1.555 N/A 1.223 2.338
CGAN 0.489 0.434 0.743 1.022 0.706 1.145 1.611 0.918 1.474

CGAN+DuMMF (Ours)

w/o Separation 0.479 0.435 0.741 0.902 0.705 1.140 1.310 0.913 1.464
w/o Discrete 0.451 0.428 0.742 1.065 0.710 1.192 1.804 0.947 1.586

w/o Continuous 0.215 0.447 0.784 0.440 0.768 1.335 0.693 1.052 1.853
Full 0.895 0.431 0.731 1.902 0.690 1.092 3.057 0.879 1.333

F SUMMARY OF EVALUATION METRICS

In the main paper, we mainly focused on evaluating the fidelity and diversity of the predicted multi-
person motion based on Average Displacement Error (ADE), Final Displacement Error (FDE),
and Final Pairwise Distance (FPD), and briefly discussed other metrics. Here, we explain these and
additional metrics in detail and also provide a systematic summary in Table B for better understanding.
Additional comparisons based on these metrics are shown in the following sections.

As summarized in Table B, we group the metrics into thee types, with each type evaluating different
aspects of predicted motion (discussed in Sec. 4 of the main paper) – single-person fidelity, multi-
person fidelity, and overall diversity.
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Table E: Quantitative comparison on SoMoF Benchmark. Here, we only show the deterministic
forecasting results. Our method with MRT predictor significantly outperform two deterministic
baselines. We use VIM (Adeli et al., 2020) as the metric. * means we directly report the results from
the benchmark leaderboard.

Method, # of Intents Prediction Time

100 ms 240 ms 500 ms 640 ms 900 ms

SC-MPF* (Adeli et al., 2020), N/A 46.28 73.88 130.23 160.83 208.44
TRiPOD* (Adeli et al., 2021), N/A 30.26 51.84 85.08 104.78 146.33

MRT (Wang et al., 2021b), N/A 22.93 42.35 79.41 99.02 137.93

Table F: Quantitative comparisons between our DuMMF and deterministic forecasting baselines
and their CGAN variants on SoMoF benchmark. The number of intents is set to 5 for stochastic
forecasting. Our DuMMF significantly improves multi-person accuracy and diversity.

Architecture Predictor Diversifier Variants @t = 1s
FPD ↑ ADE ↓ FDE ↓

Transformer MRT (Wang et al., 2021b)

Deterministic N/A N/A 0.575 0.961
CGAN 0.501 0.582 0.983

CGAN+DuMMF (Ours)

w/o Separation 0.864 0.590 0.969
w/o Discrete 1.075 0.567 0.957

w/o Continuous 1.063 0.587 1.018
Full 0.969 0.564 0.935

Specifically, Local Average Displacement Error (lADE) and Local Final Displacement Error
(lFDE) are proposed to further evaluate the single-person fidelity. They compute the average distance
between the individual ground truth and the individual prediction closest to the individual ground
truth. Note that ADE (or lADE) and FDE (or lFDE) only measure the best predictions in all outputs.
While we can average ADE (or lADE) and FDE (or lFDE) by computing the distance between
multiple predictions and a single ground truth, this way of assessing the overall prediction quality
cannot reflect motion realism. For example, a very realistic but diverse set of outputs may have poor
average ADE and FDE. Therefore, we do not use such metrics for our evaluation.

For diversity evaluation, a common metric is Average Pairwise Distance (APD) (Mao et al., 2021;
Yuan & Kitani, 2020; 2019) that is the average ℓ2 distance between all predicted motion pairs. In
this paper, we formulate diverse forecasting as producing more forecasts over time (see Sec. 3.3).
This progressive generation is actually closer to reality because the multi-modality of motion should
be more pronounced after further time. However, in this case, APD cannot reflect the diversity
well, since many predictions will share the same previous segment. Therefore, we only examine the
diversity of the last pose (FPD), as the last pose should not be the same.

Moreover, we introduce three tailored metrics to evaluate specific aspects of predicted motion,
which correspond to the unique challenges in multi-person motion forecasting as discussed in the
main paper. (a) Foot Skating Ratio (Zhang et al., 2021): the average ratio of frames with foot
skating. (b) Trajectory Collision Ratio: the average ratio of predictions that is considered to have
collision (Kothari et al., 2020) between any two trajectories in the scene. (c) Average Human
Displacement: Average displacement of the predicted human body between the last frame and the
first frame, reflecting the properties of the predicted motion distribution.

G ADDITIONAL EXPERIMENTAL RESULTS

Additional Quantitative Results. We compare our method with MRT (Wang et al., 2021b) in
Table G. We show that the improvement is significant by performing each experiment five times with
different random seeds and reporting error bars. When the number of intents is one, equivalent to a
deterministic setting, our method marginally outperforms MRT for all metrics on CMU-Mocap and
also generalizes better on MuPoTS-3D. This suggests the generality of our approach, which is also
advantageous for deterministic processes.

In Table C, we use lADE and lFDE to compare single-person fidelity, and we observe that our model
also significantly outperforms the baseline.
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Table G: Quantitative results (w/ error bar) of DuMMF with a CGAN and the baseline MRT (Wang
et al., 2021b). The baseline and our models are trained only on CMU-Mocap, and are tested on
CMU-Mocap (top) and MuPoTS-3D (bottom). With the same backbone, our DuMMF framework
significantly outperforms MRT on the deterministic prediction, and provides more accurate and
diverse predictions with more intents and predictions.

Method, # of Intents @t = 1s @t = 2s @t = 3s

FPD ↑ ADE ↓ FDE ↓ FPD ↑ ADE ↓ FDE ↓ FPD ↑ ADE ↓ FDE ↓

MRT (Wang et al., 2021b), N/A N/A 0.682± 0.005 1.127± 0.006 N/A 1.082± 0.006 1.765± 0.021 N/A 1.435± 0.014 2.449± 0.057
+ DuMMF (Ours), 1 N/A 0.670± 0.005 1.117± 0.014 N/A 1.061± 0.009 1.709± 0.028 N/A 1.380± 0.017 2.293± 0.062

+ DuMMF (Ours), 2 0.435± 0.045 0.668± 0.008 1.098± 0.018 0.831± 0.097 1.044± 0.019 1.645± 0.045 1.717± 0.139 1.342± 0.033 2.117± 0.085
+ DuMMF (Ours), 3 0.569± 0.050 0.664± 0.007 1.077± 0.009 1.106± 0.101 1.019± 0.009 1.566± 0.029 1.717± 0.170 1.286± 0.020 1.999± 0.073
+ DuMMF (Ours), 5 0.633± 0.042 0.658± 0.011 1.060± 0.020 1.316± 0.111 0.992± 0.020 1.475± 0.033 2.112± 0.274 1.226± 0.025 1.809± 0.049

MRT (Wang et al., 2021b), N/A N/A 0.427± 0.008 0.749± 0.012 N/A 0.750± 0.011 1.377± 0.033 N/A 1.082± 0.020 2.059± 0.062
+ DuMMF (Ours), 1 N/A 0.411± 0.008 0.727± 0.014 N/A 0.713± 0.012 1.270± 0.035 N/A 0.996± 0.027 1.820± 0.069

+ DuMMF (Ours), 2 0.334± 0.110 0.416± 0.003 0.729± 0.011 0.639± 0.233 0.715± 0.015 1.253± 0.049 1.000± 0.377 0.990± 0.036 1.783± 0.104
+ DuMMF (Ours), 3 0.472± 0.055 0.410± 0.007 0.712± 0.013 0.986± 0.121 0.694± 0.019 1.175± 0.068 1.623± 0.185 0.938± 0.041 1.586± 0.143
+ DuMMF (Ours), 5 0.513± 0.061 0.405± 0.007 0.703± 0.014 1.122± 0.150 0.678± 0.018 1.139± 0.046 1.887± 0.277 0.905± 0.034 1.509± 0.083

0s 0.33s 0.67s 1s 1.33s 1.67s
2s 2.33s 2.67s 3s 3.33s 3.67s

Start End Poses, DuMMF (Ours)

Figure A: Qualitative results on CMU-Mocap. We evaluate the generalizability and scalability of our
model to predict 3-second motion on the constructed 6-person motion test data. The top row is the
historical pose, and the five end poses predicted by our model; and we show the sequence of one of
the predictions in the bottom two rows (highlighted by the blue dashed box).

Additional Comparisons on SoMoF Benchmark. We investigate the performance of our framework
on the Social Movement Prediction Challenge (SoMoF) (Adeli et al., 2020; 2021). We specifically use
the 3DPW dataset (von Marcard et al., 2018), where we use labeled trajectories and poses (13-joint
human skeleton), but we do not use videos of given scenes as input. We discard the multi-modal
reconstruction loss since the 3DPW provided by SoMoF benchmark is relatively small. In Table E,
we provide results on our implemented deterministic prediction and compare with baselines directly
reported from the leaderboard on the SoMoF benchmark. In Table F, we use SoMoF benchmark for
stochastic multi-person forecasting. Note that ADE and FDE require access to ground truth data,
which is not publicly available from SoMoF benchmark. Thus, we report the results on validation set.
We observe a similar performance as on CMU-Mocap (CMU) and MuPoTS-3D (Mehta et al., 2018),
specifically, using DuMMF, the model has significantly better accuracy and diversity in stochastic
multi-person forecasting.

Additional Comparison with Single-Person Forecasting Methods. In Table H, we provide a
comparison by applying a stochastic single-person forecasting baseline. For a fair comparison,
we formulate this single-person forecasting architecture (named SRT) with a transformer encoder-
decoder adapted from MRT (Wang et al., 2021b), where we modified the encoder and decoder to be
individually independent. Table H illustrates that (1) the modeling of social interactions is crucial,
since the single-person forecasting baseline has much worse performance; (2) the improvement from
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0s 0.33s 0.67s 1s 1.33s 1.67s
2s 2.33s 2.67s 3s 3.33s 3.67s

Start End Poses, DuMMF (Ours)

Figure B: Qualitative results on CMU-Mocap. We evaluate the generalizability and scalability of our
model to predict 3-second motion on the constructed 9-person motion test data. The top row is the
historical pose, and the five end poses predicted by our model; and we show the sequence of one of
the predictions in the bottom two rows (highlighted by the blue dashed box).

Table H: Quantitative comparison on CMU-Mocap between our DuMMF based on MRT (Wang et al.,
2021b) and a single-person forecasting baseline adapted from MRT. The number of intents is set to 5
for stochastic forecasting on 3-person. For DuMMF with SRT, we use the variant of “w/o Separation”
to skip the social interaction modeling in DuMMF, making it a full single-person prediction baseline.
Architecture Predictor Diversifier Variants @t = 1s @t = 2s @t = 3s

FPD ↑ ADE ↓ FDE ↓ FPD ↑ ADE ↓ FDE ↓ FPD ↑ ADE ↓ FDE ↓

Transformer

SRT CGAN N/A N/A 0.681 1.125 N/A 1.082 1.765 N/A 1.427 2.438
MRT (Wang et al., 2021b) 0.282 0.662 1.086 0.662 1.023 1.567 1.199 1.287 1.968

SRT CGAN+DuMMF (Ours) w/o Separation 0.291 0.677 1.110 0.676 1.056 1.624 1.166 1.328 2.021
MRT (Wang et al., 2021b) Full 0.716 0.658 1.053 1.435 0.993 1.472 2.206 1.232 1.823

our DuMMF for the multi-person forecasting model is much higher than that for the single-person
forecasting model.

Additional Ablation on Impact of Learning Objectives. In Table I, we evaluate the impact of each
loss term within the dual-level framework. In general, using all loss functions yields the best results,
since its results are either the best or the second best. We observe that local and global discriminators
not only make predictions more accurate, but also more diverse. Note that the reconstruction losses
LlR and LgR optimize only the most accurate prediction of all the outputs. It is important to provide
supervision for other predictions that are not the best. We observe that limb loss LL is crucial, as it is
the only loss function that provides supervision for all outputs. The multi-modal reconstruction loss
also has a large performance impact, since it provides supervision for more than one output.

Additional Analysis of the Number of Discrete Latent Codes. Note that the number of discrete
latent codes is not restricted to the same number as the number of predictions per second. We chose

Table I: Ablation study of our DuMMF model on CMU-Mocap using skeletal representations. We
report the accuracy and diversity with error bar for root and pose respectively. The results show the
impact of different learning objectives. Best results are bolded, and next best results are underlined.
LlR LL LlGAN LmmR LD LgGAN rootFPD ↑ poseFPD ↑ rootADE ↓ rootFDE ↓ poseADE ↓ poseFDE ↓

✓ ✓ ✓ ✓ ✓ 0.251± 0.025 0.541± 0.047 0.748± 0.010 0.919± 0.017 0.247± 0.007 0.401± 0.013
✓ ✓ ✓ ✓ ✓ 0.242± 0.069 0.437± 0.146 0.784± 0.029 0.983± 0.075 0.274± 0.015 0.459± 0.030
✓ ✓ ✓ ✓ ✓ 0.241± 0.026 0.536± 0.055 0.735± 0.005 0.897± 0.005 0.250± 0.004 0.407± 0.014
✓ ✓ ✓ ✓ ✓ 0.218± 0.074 0.468± 0.186 0.749± 0.011 0.920± 0.017 0.254± 0.012 0.418± 0.038
✓ ✓ ✓ ✓ ✓ 0.240± 0.032 0.537± 0.067 0.738± 0.008 0.900± 0.010 0.241± 0.010 0.393± 0.021
✓ ✓ ✓ ✓ ✓ 0.232± 0.058 0.506± 0.111 0.740± 0.004 0.905± 0.012 0.247± 0.008 0.402± 0.028
✓ ✓ ✓ ✓ ✓ ✓ 0.254± 0.037 0.538± 0.071 0.738± 0.007 0.897± 0.010 0.245± 0.008 0.391± 0.015
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Table J: Ablation study of the number of discrete latent codes on CMU-Mocap using skeletal
representations. For producing 5 predictions per second, we observe that both the accuracy and
diversity of predictions decrease significantly as the number of discrete intents increases.

# of Intents @t = 1s @t = 2s @t = 3s

FPD ↑ ADE ↓ FDE ↓ FPD ↑ ADE ↓ FDE ↓ FPD ↑ ADE ↓ FDE ↓

5 0.716 0.658 1.053 1.435 0.993 1.472 2.206 1.232 1.823
6 0.498 0.667 1.087 1.086 1.033 1.578 1.814 1.300 1.971
7 0.465 0.671 1.093 0.960 1.032 1.582 1.502 1.298 1.986
9 0.263 0.669 1.087 0.565 1.027 1.578 0.941 1.295 2.028

15 0.231 0.678 1.127 0.532 1.076 1.704 0.966 1.384 2.209

them to be the same for simplicity and a better trade-off between prediction performance and training
efficiency. We find that this setup also achieved the best performance. To ensure that all predictions
come from different discrete codes, the number of discrete latent codes should not be less than the
number of predictions. In Table J, we provide an ablation study when the number of predictions
per second is 5. If the number of discrete intents is greater than 5, we randomly select a discrete
code without replacement (excluding any of the previously selected intents) to generate a prediction.
We observe that both the accuracy and diversity of the predictions decrease as the number of intents
increases. An explanation of such behavior could be: When the number of discrete latent codes is
the same as the number of predictions, each code is explicitly and fully optimized for a particular
prediction, leading to the best prediction accuracy and diversity; whereas, when the number of intents
increases, the random selection strategy may hurt performance, as the probability of selecting the
best five discrete codes decreases. We hypothesize that a better training and selection strategy might
improve performance with more discrete codes.

H GENERALIZABILITY AND SCALABILITY: EVALUATION ON MORE-PERSON
SCENARIOS

Datasets with More People per Scene. In the main paper, we constructed multi-person motion
data with 3 people per scene. Here, we construct more challenging datasets with a significantly
increased number of people; this also increases the complexity of social interactions. Specifically, we
first sample 2-person and 1-person motion data from CMU-Mocap (CMU), and then compose them
together. We use handcraft rules to filter out scenes with trajectory collisions. Instead of retraining
the model in the novel setting with more people per scene, we directly evaluate the model trained on
3-person motion data, and test if our model is able to scale to scenarios with more people.

Qualitative Results. Similar to Figure 3 of the main paper, we provide visualizations for 6-person
and 9-person scenarios in Figure A and Figure B of the end poses of predictions of 3 second. We
randomly select a prediction and visualize the corresponding full motion sequence as well. Note that
our model is trained on only 3-person data without any fine-tuning on more-person data, but it still
performs well on more-person data, suggesting the generalizability and scalability of our approach.
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