
Few-Shot Semantic Parsing with Language Models Trained On Code

Anonymous ACL submission

Abstract

Large language models can perform semantic001
parsing with little training data, when prompted002
with in-context examples. It has been shown003
that this can be improved by formulating the004
problem as paraphrasing into canonical utter-005
ances, which casts the underlying meaning rep-006
resentation into a controlled natural language-007
like representation. Intuitively, such models008
can more easily output canonical utterances as009
they are closer to the natural language used010
for pre-training. More recently, models also011
pre-trained on code, like OpenAI Codex, have012
risen in prominence. Since semantic parsing013
requires translating natural language into code,014
such models may prove more adept at it. In015
this paper, we test this hypothesis and find that016
Codex performs better at semantic parsing than017
equivalent GPT-3 models. We find that un-018
like GPT-3, Codex performs similarly when019
targeting meaning representations directly, per-020
haps because meaning representations used in021
semantic parsing are structured similar to code.022

1 Introduction023

Semantic parsing is the task of mapping natural024

language to a target meaning representation. Many025

approaches have been explored by the community,026

including a recent focus on the use of large au-027

toregressive language models (LMs). Such pre-028

trained LMs can achieve surprising levels of ac-029

curacy with relatively small numbers of examples.030

Further gains have come from constraining a de-031

coder to only consider syntactically valid outputs.032

Historically, language models have been con-033

structed using a large collection of natural lan-034

guage. And yet, the term “language” clearly applies035

to non-natural languages as well. Very large mod-036

els have been trained on mixed corpora, explicitly037

curated to include code (programming language)038

as well as natural language. Examples include039

GPT-J (Wang and Komatsuzaki, 2021), MT-NLG040

(Kharya and Alvi, 2021), and Gopher (Rae et al.,041

2021), with OpenAI Codex (Chen et al., 2021) and 042

Austin et al. (2021) particularly focused on code. 043

We revisit few-shot semantic parsing experi- 044

ments from Shin et al. (2021), which used GPT-3 045

with constrained decoding into a controlled sublan- 046

guage of English (canonical utterances) then trans- 047

lated the canonical utterance output into the mean- 048

ing representation using a synchronous context-free 049

grammar (SCFG). In this work, we perform similar 050

experiments on the Overnight (Wang et al., 2015) 051

and SMCalFlow (Andreas et al., 2020) datasets,1 052

but using OpenAI Codex instead. As Codex has 053

been trained on code, including natural language 054

comments that explain its intent, we hypothesize 055

that Codex will be more adept at semantic parsing 056

for meaning representations resembling code. 057

In this work, we find that: 058

• Codex significantly narrows the gap in accuracy 059

between predicting meaning representations di- 060

rectly versus canonical utterances, thus obviat- 061

ing the need to define canonical utterances, even 062

though the meaning representations use bespoke 063

languages rather than common ones like Python. 064

• Surprisingly, Codex also generates canonical 065

utterances more accurately than GPT-3, even 066

though those look more like English than code. 067

• Even with Codex, constrained decoding with a 068

CFG and a non-greedy search procedure are still 069

valuable in providing improved accuracy. 070

• Speculative constrained decoding, an adaptation 071

of Anonymous (2022, Appendix F), gives com- 072

parable accuracy as beam search but with greater 073

efficiency, on the language model APIs provided 074

by OpenAI. 075

2 Preliminaries 076

2.1 Constrained language model parsing 077

In semantic parsing, our goal is to convert an ut- 078

terance u into the meaning representation m. We 079

1Both are in English and available under CC BY-SA 4.0.

1

use the same approach as Shin et al. (2021): (1)080

priming the underlying language model with dy-081

namically created prompts, (2) constrained decoder,082

and (3) optionally using a canonical utterance c as083

the target output instead of m.084

Since GPT-3 and Codex can perform in-context085

few-shot learning (Brown et al., 2020), we retrieve086

20 (ui,mi) pairs most similar2 to u from the train-087

ing set, then translate mi into ci if using canonical088

utterances, to form the prompt p which looks like:089

Let's translate what a human user says090
into what a computer might say.091

092
Human: when is the standup ← u1093
Computer: start time of "standup" ← c1094
Human: what date is the standup ← u2095
Computer: date of "standup" ← c2096
[...]097
Human: how long is the daily standup ← u098
Computer:099

where italics are annotations for exposition in this100

paper, and not included verbatim in the prompt.101

We then generate a completion for p using the102

language model. We assume the existence of103

a function nextTokens(s) = {wi} which re-104

turns the set of subsequent tokens allowed by105

the grammar, for a given prefix s, For example,106

nextTokens(start time) would contain of,107

but not EOS or in. We use nextTokens to filter108

candidates from the language model such that it109

only generates grammatical outputs.110

2.2 OpenAI language models111

OpenAI operates a service offering GPT-3 (Brown112

et al., 2020) through a networked API. The API113

includes multiple variants of GPT-3, named Ada,114

Babbage, Curie, and Davinci, with the model size115

increasing in that order. Two Codex (Chen et al.,116

2021) models, which had code from GitHub in-117

cluded in their training data, are also offered. They118

are named Cushman Codex and Davinci Codex.119

The primary use case for the API is generating120

completions from a prefix, by sequentially sam-121

pling from p(wn|w1w2 · · ·wn−1) until some limit122

is reached. The API provides for specifying a soft-123

max temperature to modify this distribution, for124

example enabling greedy argmax sampling with a125

temperature of 0.0. The API also allows for directly126

querying p(wn|w1w2 · · ·wn−1), but only returns127

probabilities for up to 100 most likely tokens; we128

use this capability for constrained beam search.129

2We use GPT-3 itself for this, following Shin et al. (2021).
The similarity function is identical for all our experiments,
regardless of whether we use GPT-3 or Codex for decoding.

2.3 Experimental setup 130

We used two of the datasets from Shin et al. (2021) 131

for our experiments. We build on their released 132

code and use the same subsets of the training data. 133

We briefly describe some of the details below. 134

Overnight. This dataset from Wang et al. (2015) 135

contains 13,682 examples across eight different 136

domains, curated to exhibit a variety of linguis- 137

tic phenomena and semantic structures. We used 138

200 randomly-sampled training examples for each 139

domain, and evaluate on the domains separately. 140

SMCalFlow. Introduced in Andreas et al. (2020), 141

this task-oriented dialogue dataset consists of con- 142

versations about calendars, weather, places, and 143

people. Each utterance u is annotated with dataflow 144

programs m containing function composition, com- 145

plex constraints, and references to computations 146

from previous turns. Of the 133,821 (ui,mi) pairs 147

in training, we use a stratified sample of 300 for 148

our experiments, following Shin et al. (2021). 149

Test set sampling. As usage of GPT-3 and Codex 150

requires significant resources, we conduct our ini- 151

tial experiments on smaller subsets of the evalua- 152

tion sets. For Overnight, we used 100 uniformly 153

sampled examples from test set for the calendar 154

domain. For SMCalFlow, we used 200 uniformly 155

sampled examples from the validation set. 156

3 Experiments 157

3.1 Comparing GPT-3 and Codex 158

Accuracy
Model Overnight Cal. SMCalFlow

Davinci 0.81 0.340
Curie 0.66 0.260
Davinci Codex 0.86 0.355
Cushman Codex 0.87 0.320

Table 1: Comparing various OpenAI models using con-
strained decoding to generate canonical utterances, with
beam search having beam size 5. These results are on
100 sampled test examples. The larger Davinci models
do better, the Codex models show better performance.

Table 1 summarizes our initial comparison of 159

the GPT-3 and Codex models when applied to se- 160

mantic parsing. Davinci Codex performs better 161

than Davinci on both Overnight Calendar and SM- 162

CalFlow when using identical settings. More inter- 163

estingly, Cushman Codex, which is one step down 164

from Davinci Codex, performs significantly better 165

2

than Curie, which is one step down from Davinci.166

These results support our hypothesis that language167

models trained on code can perform better at se-168

mantic parsing.169

3.2 Targeting canonical utterances versus170

meaning representations171

Accuracy
Model Canonical Meaning C −M

Davinci 0.81 0.68 0.13
Davinci Codex 0.86 0.86 0.00

(a) Overnight Calendar

Accuracy
Model Canonical Meaning C −M

Davinci 0.340 0.245 0.095
Davinci Codex 0.355 0.345 0.010

(b) SMCalFlow

Table 2: Differences in accuracy when using canonical
utterances versus directly using meaning representations.
Davinci Codex performs better on canonical utterances,
but the gap is much smaller than with Davinci. Results
using constrained decoding with beam size 5.

Shin et al. (2021) demonstrated that as language172

models have (conventionally) been trained to gen-173

erate natural language, we would benefit by for-174

mulating semantic parsing as paraphrasing into a175

controlled sublanguage of English. In Table 2, we176

investigate whether that still holds true when us-177

ing Codex. We observe that when using GPT-3178

(Davinci), targeting meaning representations can179

result in more than a 25% relative drop in accuracy.180

In contrast, Davinci Codex exhibits no or a very181

small drop in accuracy when targeting meaning182

representations.183

Notably, the meaning representations used for184

Overnight and SMCalFlow are in Lisp-like lan-185

guages, rather than in programming languages com-186

mon on GitHub. Our experiments indicate that187

Codex can nevertheless pick up on the semantics188

with only a few examples in the prompt.189

Having canonical utterances as the target output190

still performs better than meaning representations.191

However, designing a suitable system of canonical192

utterances is a non-trivial effort. The smaller per-193

formance gap we observe with Codex changes the194

cost/benefit calculations on authoring SCFGs.195

3.3 Value of constraints and beam search196

As mentioned in Section 2.2, the primary capability197

of OpenAI’s API is generating completions from a198

prefix using sequential sampling. Their documen- 199

tation3 suggests using it that way to generate code 200

from comments, a similar task to semantic pars- 201

ing. Nevertheless, we see in Table 3 that the use 202

of constraints and beam search lead to benefits in 203

accuracy. Even with constrained decoding, greedy 204

argmax sampling (equivalent to a beam size of 1) 205

performs worse than using beam search. 206

Accuracy
Decoding Beam Overnight Cal. SMCalFlow

Constrained 5 0.86 0.345
Constrained 1 0.75 0.300
Unconstrained 5 0.80 0.315
Unconstrained 1 0.73 0.280

Table 3: Results comparing constrained with uncon-
strained decoding and multiple beam sizes, when gen-
erating meaning representations. Even when using
Davinci Codex, trained specifically on code, constrained
decoding and beam search lead to higher accuracy.

3.4 Speculative constrained decoding 207

While constrained decoding and beam search im- 208

prove accuracy, they are slow to perform with Ope- 209

nAI’s API. Extending a partial hypothesis requires 210

one network round-trip per token. The API lacks 211

state and so each request includes the prompt and 212

all previously generated tokens. In the worst case, 213

the statelessness implies decoding will take O(n3) 214

complexity rather than the typical O(n2) of trans- 215

formers due to needing to re-encode the prefix each 216

time. Even if the hidden states for previous tokens 217

were cached, their retrieval and transfer to GPUs 218

or other accelerators takes overhead. 219

As such, we adapt a method from Synchromesh 220

(Anonymous, 2022, Appendix F) to obtain the ben- 221

efits of beam search and constrained decoding with 222

greater efficiency. We extend Synchromesh’s ap- 223

proach with a width parameter W , which functions 224

similar to the beam size. We call it speculative 225

constrained decoding. 226

To expand a partial hypothesis in the search, we 227

query the API to create W completions with soft- 228

max temperature T . The API samples from the 229

model, without reference to any grammars, until 230

EOS is sampled or a length limit is reached. Using 231

the nextTokens function, we check each of the 232

W completions left-to-right until we encounter an 233

invalid token, and truncate there so that we only 234

3https://beta.openai.com/docs/guides/
completion/working-with-code

3

https://beta.openai.com/docs/guides/completion/working-with-code
https://beta.openai.com/docs/guides/completion/working-with-code

Overnight Calendar SMCalFlow
Accuracy Items/second Accuracy Items/second

Width Temperature Canonical Meaning Canonical Meaning Canonical Meaning Canonical Meaning

1 0.0 0.86 0.76 0.520 0.246 0.300 0.320 0.193 0.184
1 BS 0.84 0.75 0.237 0.059 0.305 0.300 0.116 0.040
5 0.5 0.87 0.80 0.380 0.155 0.335 0.315 0.076 0.140
5 1.0 0.87 0.85 0.260 0.145 0.325 0.330 0.076 0.034
5 BS 0.86 0.86 0.133 0.030 0.355 0.345 0.065 0.008

10 0.5 0.87 0.86 0.355 0.150 0.345 0.345 0.038 0.085
10 1.0 0.87 0.85 0.193 0.068 0.370 0.335 0.028 0.014

Table 4: Comparing various settings on speculative constrained decoding with beam search. “BS” indicates use of
beam search. Speculative constrained decoding gets similar accuracy as beam search, but at higher speed.

have valid tokens; we return the truncated comple-235

tions as new hypotheses. If no completion contains236

any valid tokens, then we query the API for the237

W best tokens and return those as new hypothe-238

ses. As done in beam search, we start with a single239

empty hypothesis, and keep the W best expansions240

at each step. We stop after 16 steps if W com-241

plete hypotheses were not generated by then. More242

details are in Appendix D.243

Table 4 shows the results from trying various244

values for W and T , along with beam search for245

W = 1 and W = 5. When W = 1 and T = 0,246

which is equivalent to Synchromesh’s approach, we247

obtain very similar results to constrained greedy248

decoding (beam size 1). However, speculative con-249

strained decoding is significantly faster.250

In order to obtain results comparable to beam251

search with beam size 5, we require W = 5 or 10.252

In comparison, Synchromesh only supports W =253

1. We again see significant speedups compared to254

beam search, but obtain comparable accuracy.255

3.5 Putting everything together256

Accuracy
Model Overnight Avg. SMCalFlow

Shin et al. (2021),
Constrained Canonical 0.765 0.32

Shin et al. (2021),
Constrained Meaning 0.657* 0.25*

Ours, Canonical 0.785 0.342
Ours, Meaning 0.750 0.330

Table 5: Comparison to Shin et al. (2021). Results are on
the entire test set for Overnight and the entire dev set for
SMCalFlow. For Overnight, we took a simple average
of the accuracy for each of the 8 domains. Results
marked with * are on subsampled evaluation sets. We
used speculative constrained decoding with a width of
10 and a temperature of 0.5.

As explained in Section 2.3, earlier results in this257

article are based on smaller subsets of the evalua- 258

tion sets due to resource limitations. In Table 5, we 259

evaluate on the full evaluation sets using lessons 260

learned from our previous experiments. We achieve 261

better accuracies than when Shin et al. (2021) used 262

GPT-3. We re-confirm Section 3.2 that Codex per- 263

forms nearly as well at meaning representations as 264

canonical utterances. 265

4 Related Work 266

Chen et al. (2020) observed that for low- 267

resource semantic parsing, fine-tuning a pretrained 268

sequence-to-sequence model improved over the use 269

of a pretrained encoder only. Scholak et al. (2021), 270

Wu et al. (2021), and Shin et al. (2021) each pro- 271

posed the use of constrained decoding for semantic 272

parsing with LMs. The latter two works argued 273

that language models were best used to parse lan- 274

guage into controlled natural language, rather than 275

directly to a code-like representation. Here we con- 276

sider whether that conclusion changes based on 277

new LMs that are trained with code. 278

Pasupat et al. (2021) proposed a retrieval- 279

augmented solution to semantic parsing, which 280

relates to the dynamic prompt selection of Shin 281

et al. (2021), and which we followed here without 282

alteration. Future work may consider the impact of 283

more advanced prompt selection techniques. 284

5 Conclusion 285

We investigate the use of OpenAI Codex, a large 286

language model trained on code, for few-shot se- 287

mantic parsing. We find that it performs better 288

than GPT-3 for our tasks. While constrained de- 289

coding and a non-greedy decoding procedure still 290

non-trivially improve accuracy, mapping to canoni- 291

cal natural language is no longer as important with 292

Codex, thereby lightening the burden on develop- 293

ing few shot semantic parsers based on large LMs. 294

4

6 Ethical Considerations295

Our work heavily relies on OpenAI’s GPT-3 and296

Codex models, which are large language models297

trained on big datasets. Such language models may298

reflect biases present in their training data (Brown299

et al., 2020; Bender et al., 2021). However, our use300

of constrained decoding significantly mitigates the301

risks from such bias as we only allow the model to302

generate outputs allowed by a small grammar. Fur-303

thermore, the outputs are interpreted by machines304

rather than directly shown to humans. The potential305

for harm may increase when the grammars used in306

constrained decoding allow for a wider variety of307

outputs (such as including unconstrained free-text308

fields), and if semantic parsing is used for particu-309

larly sensitive domains.310

References311

Jacob Andreas, John Bufe, David Burkett, Charles312
Chen, Josh Clausman, Jean Crawford, Kate Crim,313
Jordan DeLoach, Leah Dorner, Jason Eisner, Hao314
Fang, Alan Guo, David Hall, Kristin Hayes, Kellie315
Hill, Diana Ho, Wendy Iwaszuk, Smriti Jha, Dan316
Klein, Jayant Krishnamurthy, Theo Lanman, Percy317
Liang, Christopher H. Lin, Ilya Lintsbakh, Andy Mc-318
Govern, Aleksandr Nisnevich, Adam Pauls, Dmitrij319
Petters, Brent Read, Dan Roth, Subhro Roy, Jesse320
Rusak, Beth Short, Div Slomin, Ben Snyder, Stephon321
Striplin, Yu Su, Zachary Tellman, Sam Thomson, An-322
drei Vorobev, Izabela Witoszko, Jason Wolfe, Abby323
Wray, Yuchen Zhang, and Alexander Zotov. 2020.324
Task-oriented dialogue as dataflow synthesis. Trans-325
actions of the Association for Computational Linguis-326
tics, 8:556–571.327

Anonymous. 2022. Synchromesh: Reliable code gener-328
ation from pre-trained language models. In Submit-329
ted to The Tenth International Conference on Learn-330
ing Representations. Under review.331

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten332
Bosma, Henryk Michalewski, David Dohan, Ellen333
Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and334
Charles Sutton. 2021. Program synthesis with large335
language models. CoRR, abs/2108.07732.336

Emily M. Bender, Timnit Gebru, Angelina McMillan-337
Major, and Shmargaret Shmitchell. 2021. On the338
dangers of stochastic parrots: Can language mod-339
els be too big? In Proceedings of the 2021 ACM340
Conference on Fairness, Accountability, and Trans-341
parency, FAccT ’21, page 610623, New York, NY,342
USA. Association for Computing Machinery.343

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie344
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind345
Neelakantan, Pranav Shyam, Girish Sastry, Amanda346
Askell, Sandhini Agarwal, Ariel Herbert-Voss,347

Gretchen Krueger, Tom Henighan, Rewon Child, 348
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 349
Clemens Winter, Christopher Hesse, Mark Chen, Eric 350
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, 351
Jack Clark, Christopher Berner, Sam McCandlish, 352
Alec Radford, Ilya Sutskever, and Dario Amodei. 353
2020. Language models are few-shot learners. 354

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 355
Henrique Ponde de Oliveira Pinto, Jared Kaplan, 356
Harrison Edwards, Yuri Burda, Nicholas Joseph, 357
Greg Brockman, Alex Ray, Raul Puri, Gretchen 358
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 359
try, Pamela Mishkin, Brooke Chan, Scott Gray, 360
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 361
Kaiser, Mohammad Bavarian, Clemens Winter, 362
Philippe Tillet, Felipe Petroski Such, Dave Cum- 363
mings, Matthias Plappert, Fotios Chantzis, Eliza- 364
beth Barnes, Ariel Herbert-Voss, William Hebgen 365
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 366
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 367
William Saunders, Christopher Hesse, Andrew N. 368
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan 369
Morikawa, Alec Radford, Matthew Knight, Miles 370
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 371
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 372
Sutskever, and Wojciech Zaremba. 2021. Evaluat- 373
ing large language models trained on code. CoRR, 374
abs/2107.03374. 375

Xilun Chen, Asish Ghoshal, Yashar Mehdad, Luke 376
Zettlemoyer, and Sonal Gupta. 2020. Low-resource 377
domain adaptation for compositional task-oriented 378
semantic parsing. In Proceedings of the 2020 Con- 379
ference on Empirical Methods in Natural Language 380
Processing (EMNLP), pages 5090–5100, Online. As- 381
sociation for Computational Linguistics. 382

Paresh Kharya and Ali Alvi. 2021. Using DeepSpeed 383
and Megatron to Train Megatron-Turing NLG 530B, 384
the Worlds Largest and Most Powerful Generative 385
Language Model. https://developer.nvid 386
ia.com/blog/using-deepspeed-and-me 387
gatron-to-train-megatron-turing-nl 388
g-530b-the-worlds-largest-and-most 389
-powerful-generative-language-mode 390
l. 391

Panupong Pasupat, Yuan Zhang, and Kelvin Guu. 2021. 392
Controllable semantic parsing via retrieval augmen- 393
tation. In Proceedings of the 2021 Conference on 394
Empirical Methods in Natural Language Processing, 395
pages 7683–7698, Online and Punta Cana, Domini- 396
can Republic. Association for Computational Lin- 397
guistics. 398

Jack Rae, Sebastian Borgeaud, Trevor Cai, Katie Milli- 399
can, Jordan Hoffmann, Francis Song, John Aslanides, 400
Sarah Henderson, Roman Ring, Susannah Young, 401
Eliza Rutherford, Tom Hennigan, Jacob Menick, 402
Albin Cassirer, Richard Powell, George van den 403
Driessche, Lisa Anne Hendricks, Maribeth Rauh, 404
Po-Sen Huang, Amelia Glaese, Johannes Welbl, 405
Sumanth Dathathri, Saffron Huang, Jonathan Ue- 406
sato, John Mellor, Irina Higgins, Antonia Creswell, 407

5

https://doi.org/10.1162/tacl_a_00333
https://openreview.net/forum?id=KmtVD97J43e
https://openreview.net/forum?id=KmtVD97J43e
https://openreview.net/forum?id=KmtVD97J43e
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.18653/v1/2020.emnlp-main.413
https://doi.org/10.18653/v1/2020.emnlp-main.413
https://doi.org/10.18653/v1/2020.emnlp-main.413
https://doi.org/10.18653/v1/2020.emnlp-main.413
https://doi.org/10.18653/v1/2020.emnlp-main.413
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model
https://aclanthology.org/2021.emnlp-main.607
https://aclanthology.org/2021.emnlp-main.607
https://aclanthology.org/2021.emnlp-main.607

Nat McAleese, Amy Wu, Erich Elsen, Siddhant408
Jayakumar, Elena Buchatskaya, David Budden, Esme409
Sutherland, Karen Simonyan, Michela Paganini,410
Laurent Sifre, Lena Martens, Xiang Lorraine Li,411
Adhiguna Kuncoro, Aida Nematzadeh, Elena Gri-412
bovskaya, Domenic Donato, Angeliki Lazaridou,413
Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsim-414
poukelli, Nikolai Grigorev, Doug Fritz, Thibault Sot-415
tiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong,416
Daniel Toyama, Cyprien de Masson dAutume, Yu-417
jia Li, Tayfun Terzi, Igor Babuschkin, Aidan Clark,418
Diego de Las Casas, Aurelia Guy, James Bradbury,419
Matthew Johnson, Laura Weidinger, Iason Gabriel,420
William Isaac, Ed Lockhart, Simon Osindero, Laura421
Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub,422
Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Ko-423
ray Kavukcuoglu, and Geoffrey Irving. 2021. Scaling424
language models: Methods, analysis & insights from425
training Gopher. arXiv submission.426

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-427
danau. 2021. PICARD: Parsing incrementally for428
constrained auto-regressive decoding from language429
models. In Proceedings of the 2021 Conference on430
Empirical Methods in Natural Language Processing,431
pages 9895–9901, Online and Punta Cana, Domini-432
can Republic. Association for Computational Lin-433
guistics.434

Richard Shin, Christopher Lin, Sam Thomson, Charles435
Chen, Subhro Roy, Emmanouil Antonios Platanios,436
Adam Pauls, Dan Klein, Jason Eisner, and Benjamin437
Van Durme. 2021. Constrained language models438
yield few-shot semantic parsers. In Proceedings of439
the 2021 Conference on Empirical Methods in Natu-440
ral Language Processing, pages 7699–7715, Online441
and Punta Cana, Dominican Republic. Association442
for Computational Linguistics.443

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-6B: A444
6 Billion Parameter Autoregressive Language Model.445
https://github.com/kingoflolz/mesh446
-transformer-jax.447

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.448
Building a semantic parser overnight. In Proceedings449
of the 53rd Annual Meeting of the Association for450
Computational Linguistics and the 7th International451
Joint Conference on Natural Language Processing452
(Volume 1: Long Papers), pages 1332–1342, Beijing,453
China. Association for Computational Linguistics.454

Shan Wu, Bo Chen, Chunlei Xin, Xianpei Han, Le Sun,455
Weipeng Zhang, Jiansong Chen, Fan Yang, and Xun-456
liang Cai. 2021. From paraphrasing to semantic pars-457
ing: Unsupervised semantic parsing via synchronous458
semantic decoding. In Proceedings of the 59th An-459
nual Meeting of the Association for Computational460
Linguistics and the 11th International Joint Confer-461
ence on Natural Language Processing (Volume 1:462
Long Papers), pages 5110–5121, Online. Association463
for Computational Linguistics.464

A Measuring performance of beam 465

search and speculative constrained 466

decoding 467

For measuring the items/second of beam search and 468

speculative constrained decoding in Table 4 and Ta- 469

ble 7, we used the first 10 items of the evaluation 470

sets. As we only had access to shared instances of 471

GPT-3 and Codex, we were unable to guarantee 472

lack of interference from other users. While the 473

numbers are not precise, we believe they are gener- 474

ally indicative of the expected performance of the 475

two methods. 476

B Prompt for Codex when using meaning 477

representations 478

Instead of the prompt in Section 2.1, we used the 479

prompt depicted below: 480
481

;;; Translate questions into Lisp 482
expressions 483

484
; [utterance from training example] 485
[meaning representation from example] 486
; [utterance from training example] 487
[meaning representation from example] 488
[...] 489
; [test utterance] 490491

The text in square brackets are for exposition 492

and not included verbatim in the prompt. 493

C Supplementary results 494

Table 6 contains all results from using beam search, 495

used to construct Tables 1, 2, and 3. Table 7 is a 496

version of Table 4 with more rows. 497

D Speculative constrained decoding 498

algorithm 499

To further expand on the description in Section 3.4, 500

we express the speculative constrained decoding 501

method in Python-like pseudocode in Listing 1. 502

6

https://aclanthology.org/2021.emnlp-main.779
https://aclanthology.org/2021.emnlp-main.779
https://aclanthology.org/2021.emnlp-main.779
https://aclanthology.org/2021.emnlp-main.779
https://aclanthology.org/2021.emnlp-main.779
https://aclanthology.org/2021.emnlp-main.608
https://aclanthology.org/2021.emnlp-main.608
https://aclanthology.org/2021.emnlp-main.608
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.3115/v1/P15-1129
https://doi.org/10.18653/v1/2021.acl-long.397
https://doi.org/10.18653/v1/2021.acl-long.397
https://doi.org/10.18653/v1/2021.acl-long.397
https://doi.org/10.18653/v1/2021.acl-long.397
https://doi.org/10.18653/v1/2021.acl-long.397

Accuracy
Model Output Decoding Beam size Overnight Cal. SMCalFlow

Davinci Canonical Constrained 5 0.81 0.340
Davinci Canonical Constrained 1 0.76 0.290
Davinci Canonical Unconstrained 5 0.72 0.295
Davinci Canonical Unconstrained 1 0.72 0.255
Davinci Meaning Constrained 5 0.68 0.245
Davinci Meaning Constrained 1 0.62 0.210
Davinci Meaning Unconstrained 5 0.53 0.230
Davinci Meaning Unconstrained 1 0.48 0.190
Curie Canonical Constrained 5 0.66 0.260
Curie Canonical Constrained 1 0.58 0.210
Curie Canonical Unconstrained 5 0.50 0.225
Curie Canonical Unconstrained 1 0.47 0.210
Curie Meaning Constrained 5 0.44 0.200
Curie Meaning Constrained 1 0.39 0.165
Curie Meaning Unconstrained 5 0.38 0.185
Curie Meaning Unconstrained 1 0.31 0.160
Davinci Codex Canonical Constrained 5 0.86 0.355
Davinci Codex Canonical Constrained 1 0.84 0.305
Davinci Codex Canonical Unconstrained 5 0.79 0.310
Davinci Codex Canonical Unconstrained 1 0.77 0.295
Davinci Codex Meaning Constrained 5 0.86 0.345
Davinci Codex Meaning Constrained 1 0.75 0.300
Davinci Codex Meaning Unconstrained 5 0.80 0.315
Davinci Codex Meaning Unconstrained 1 0.73 0.280
Cushman Codex Canonical Constrained 5 0.87 0.320
Cushman Codex Canonical Constrained 1 0.80 0.290
Cushman Codex Canonical Unconstrained 5 0.83 0.300
Cushman Codex Canonical Unconstrained 1 0.77 0.285
Cushman Codex Meaning Constrained 5 0.80 0.340
Cushman Codex Meaning Constrained 1 0.73 0.280
Cushman Codex Meaning Unconstrained 5 0.72 0.305
Cushman Codex Meaning Unconstrained 1 0.70 0.250

Table 6: All results on Overnight Calendar and SMCalFlow using beam search.

Overnight Calendar SMCalFlow
Accuracy Items/second Accuracy Items/second

Width Temperature Canonical Meaning Canonical Meaning Canonical Meaning Canonical Meaning

1 0.0 0.86 0.76 0.520 0.246 0.300 0.320 0.193 0.184
1 BS 0.840 0.750 0.237 0.059 0.305 0.300 0.116 0.040
5 0.25 0.86 0.79 0.553 0.208 0.330 0.325 0.071 0.050
5 0.5 0.87 0.80 0.380 0.155 0.335 0.315 0.076 0.140
5 0.75 0.86 0.84 0.344 0.129 0.320 0.340 0.076 0.081
5 1.0 0.87 0.85 0.260 0.145 0.325 0.330 0.076 0.034
5 BS 0.860 0.860 0.133 0.030 0.355 0.345 0.065 0.008

10 0.25 0.88 0.81 0.537 0.213 0.345 0.310 0.020 0.040
10 0.5 0.87 0.86 0.355 0.150 0.345 0.345 0.038 0.085
10 0.75 0.87 0.82 0.266 0.103 0.350 0.355 0.039 0.034
10 1.0 0.87 0.85 0.193 0.068 0.370 0.335 0.028 0.014

Table 7: Comparing various settings on speculative decoding with beam search. “BS” for temperature indicates use
of beam search. This table is an expanded version of Table 4

7

Parameters:
- W = width of the search
- T = softmax temepature
- MAX_STEPS = How many times we invoke the model. We set this to 16.
#
Helper functions:
- nextTokens: as defined in Section 2.1
- model_completions: ask the model to generate completions with the given
prefix. Returns a list of token sequences sampled after the prefix.
- length_normalized_logprob: compute the log probability of a token sequence,
where longer sequences receive a bonus.
- is_finished: check if a token sequence is finished according to the grammar.
#
`search` is invoked with tokens for the prompt p for a given example.

def expand(tokens):
samples = model_completions(tokens, temperature=T, num_completions=W)

results = []
for sample in samples:

valid_prefix = tokens
for token in sample:

if token not in nextTokens(prefix):
break

valid_prefix += [token]
results += [valid_prefix]

return results

def search(prompt):
We start with one hypothesis containing tokens from the prompt.
beam = [prompt]
finished = []

for _ in range(MAX_STEPS):
candidates = []
for state in beam:

candidates += expand(state)
candidates.sort(key=length_normalized_logprob, reverse=True)

new_beam = []
for cand in candidates:

if is_finished(cand):
finished.append(cand)

else:
new_beam.append(cand)

if len(finished) + len(new_beam) == W:
break

if len(new_beam) == 0:
break

else:
beam = new_beam

return finished

Listing 1: Pseudocode for speculative constrained decoding

8

