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ABSTRACT

In this paper we propose a spatial transformer network where the spatial transforma-
tions are limited to the group of diffeomorphisms. Diffeomorphic transformations
are a kind of homeomorphism, which by definition preserve topology, a compelling
property in certain applications. We apply this diffemorphic spatial transformer
to model the output of a neural network as a topology preserving mapping of a
prior shape. By carefully choosing the prior shape we can enforce properties on the
output of the network without requiring any changes to the loss function, such as
smooth boundaries and a hard constraint on the number of connected components.
The diffeomorphic transformer networks outperform their non-diffeomorphic pre-
cursors when applied to learn data invariances in classification tasks. On a breast
tissue segmentation task, we show that the approach is robust and flexible enough
to deform simple artificial priors, such as Gaussian-shaped prior energies, into
high-quality predictive probability densities. In addition to desirable topological
properties, the segmentation maps have competitive quantitative fidelity compared
to those obtained by direct estimation (i.e. plain U-Net).

1 INTRODUCTION

The success of Convolutional Neural Networks (CNNs) in many modeling tasks is often attributed
to their depth and inductive bias. An important inductive bias in CNNs is spatial symmetry (e.g.
translational equivariance) which are embedded in the architecture through weight-sharing constraints.
Alternatively, spatial transformers constrain networks through predicted spatial affine or thin-plate-
spline transformations. In this work, we investigate a special type of spatial transformer, where the
transformations are limited to flexible diffeomorphisms. Diffeomorphisms belong to the group of
homeomorphisms that preserve topology by design, and thereby guarantee that relations between
structures remain, i.e. connected (sub-)regions to stay connected.

We propose to use such diffeomorphic spatial transformer in a template transformer setting (Lee et al.,
2019), where a prior shape is deformed to the output of the model. Here a neural network is used to
predict the deformation of the shape, rather than the output itself. By introducing a diffeomorphic
mapping of a prior shape, and carefully choosing properties of the prior shape, we can enforce
desirable properties on the output, such as a smooth decision boundary or a constraint on the number
of connected components.

To obtain flexible diffeomorphic transformations, we use a technique known as scaling-and-squaring
which has been successfully applied in the context of image registration in prior work (Dalca et al.,
2018), but has received relatively little attention in other areas in machine learning. In an attempt
to increase flexibility of the flow, we try to approximate a time-dependent parameterisation using
Baker-Campbell-Hausdorff (BCH) formula, rather than a stationary field. Hereby, diffeomorphic
constraints are directly built into the architecture itself, not requiring any changes to the loss function.

Experimentally, we first validate the diffeomorphic spatial transformer to learn data-invariances in
a MNIST handwritten digits classification task, as proposed by (Jaderberg et al., 2015) to evaluate
the original spatial transformer. The results show that better results can be achieved by employing
diffeomorphic transformations. Additionally, we explore the use of diffeomorphic mappings in
a spatial template transformer set-up for 3D medical breast tissue segmentation. We find that the
diffeomorphic spatial transformer is able to deform simple prior shapes, such as a normally distributed
energy, into high-quality predictive probability densities. We are successful in limiting the number of
connected components in the output and achieve competitive performance measured by quantitative
metrics compared to direct estimation of class probabilities.
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2 RELATED WORK

Spatial Transformers were introduced by Jaderberg et al. (2015) as a learnable module that deform an
input image, and can be incorporated into CNNs for various tasks. In Spatial Transformer Networks
(STNs), the module is used to learn data invariances in order to do better in image classification
tasks. The work focuses on simple linear transformations (e.g. translations, rotations, affine) but also
allows for more flexible mappings such as thin plate spline (TPS) transformations. The use of spatial
transformations in template transformer setting was first proposed by Lee et al. (2019), but does not
use diffeomorphisms and requires defining a discrete image as shape prior.

In the field of image registration, diffeomorphisms have been actively studied and have been suc-
cesfully applied in a variety of methods including LDDMM by Beg et al. (2005), Diffeomorphic
Demons by Vercauteren et al. (2009), and SyN by Avants et al. (2008). More recently, efforts have
been made to fuse such diffeomorphic image registration approaches with neural networks (Dalca
et al. (2018), Haskins et al. (2020)). It is well known that although these models mathematically
describe diffeomorphisms, transformations are not always diffeomorphic; in practice and negative
Jacobian determinants can still occur due to approximation errors. To reduce such errors, additional
regularisation is often applied (Bro-Nielsen and Gramkow (1996), Ashburner (2007), Dalca et al.
(2018)), but typically requries careful tuning.

Image registration has also been applied to perform segmentation by deforming a basis template
commonly referred to as an ’atlas’ onto a target image (Rohlfing et al. (2005), Fortunati et al. (2013)),
for instance by combining (e.g. averaging) manually labelled training annotations (Gee et al., 1993).

There have been some studies that investigated how to obtain smoother segmentation boundaries
in neural-based image registration. For instance, Monteiro et al. (2020) proposed to model spatial
correlation by modeling joint distributions over entire label maps, in contrast to pixel-wise estimates.
In other work, post-processing steps have been applied in order to smooth predictions or to enforce
topological constraints (Chlebus et al. (2018), Jafari et al. (2016)).

There have been some studies that try to enforce more consistent topology during training of neural
network, but often use a soft constraint that required alteration of the loss function, such as in Hu
et al. (2019), and GAN-based approaches which in addition require a separately trained discriminator
model Sekuboyina et al. (2018).

Lastly, there have been some studies in which diffeomorphisms in context of spatial transformer
networks were investigated. In Skafte Detlefsen et al. (2018), subsequent layers of spatial transformer
layers with piece-wise affine transformations (PCAB) were used to construct a diffeomorphic neural
network, but requires a tessellation strategy (Freifeld et al. (2015), Freifeld et al. (2017)). In
Deep Diffeomorphic Normalizing Flows (Salman et al. (2018)) a neural network is used to predict
diffeomorphic transformations as normalizing flow but to obtain more expressive posteriors for
variational inference.

3 DIFFEOMORPHIC SPATIAL TRANSFORMERS

The Spatial Transformer is a learnable module which explicitly allows for spatial manipulation of data
within a neural network. The module takes an input feature map U passed through a learnable function
which regresses the transformation parameters θ. A spatial grid G over the output is transformed
to an output grid Tθ(G), which is applied to the input U to produce the output O. In the original
spatial transformer, θ could represent arbitrary parameterised mappings such as a simple rotation,
translation or affine transformation matrices. We propose flexible transformations in the group of
diffeomorphisms Tθ ∈ D, which preserve topology, by continuity and continuity of the inverse.

In Section 4, we will describe how we can use a diffeomorphic spatial transformer to warp a shape
prior, as illustrated in Figure 1, in a template transformer setting illustrated in Figure 2.
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Diffeomorphic Transformation Let us define the diffeomorphic mapping φ = ψ
(1)
v ∈ D using an

ordinary differential equation (ODE):

∂ψ
(t)
v (x)

∂t
= v(ψ(t)

v (x)) (1)

where v is a stationary velocity field, ψ(0)
v = Id is the identity transformation and t is time. By

integrating over unit time we obtain ψ(1)
v , the time 1 flow of the stationary velocity field v.

The most basic way to solve an ordinary differential equation from some initial point x0 is Euler’s
method, in which the trajectory is approximated by taking small discrete steps and adding the
difference to the running approximation in time. The method is straightforward to implement, but
may take many steps to converge to good approximations. In this work, we will use a technique
known as scaling-and-squaring (Moler and Van Loan, 2003), which allows for fast exponentiation of
stationary velocity fields and thus the solution to the ODE defined in Equation 1.

Scaling-and-Squaring To solve the ODE from Equation 1, with a stationary velocity field v and
the solution is the matrix exponential φ = exp(v), we use is the scaling-and-squaring method (Moler
and Van Loan (2003), Arsigny et al. (2006)). The method is very similar to Euler’s method, but is
typically more efficient by exploiting the relation exp(v) = exp(v/2T )2T

with T ∈ N together with
the fact that exp(v) can be well approximated by a Padé or Taylor approximation near the origin (i.e.
for small ||v||). The main idea is to pick a certain step size T such that ||v||/2T < 0.5 and divide the
diagonal values in v by the power integral 2T to obtain the approximation for exp(v/2T ) ≈ Id+v/2T

and then squaring (self-composing) it T times to find obtain approximate solution for exp(v).

Algorithm 1: Approximating φ = exp(v) using scaling-and-squaring
Result: φ = exp(v)
T ← ceil(log2(max(||v||) + 1)
φ0 ← v/2T

for t = 1 to T do
φt ← φt−1 ◦ φt−1

end

The approach can efficiently be implemented in existing numerical differentiation frameworks such
as PyTorch or Tensorflow by element-wise dividing the vector components in velocity field v by 2T

and then self-composing the resulting field 2T times using the linear grid sampling operation defined
in Section 3.1

Spatial Sampling To perform a spatial transformation on the input feature map, a sampler takes a
set of sampling points Tθ(G), along with an input feature map U = I with input image I to produce
output O. In case of template transformer, explained in Section 4, the input feature map would be a
concatenation U = I ◦ S of an input image with some prior shape S.

We follow the general sampling framework described in Jaderberg et al. (2015), defined for arbitrary
sampling kernels of which the (sub)gradients can be computed, and the 3D trilinear interpolation in
particular:

Oci =

H∑
h

W∑
w

D∑
d

Ichwd max(0, 1− |yci − h|) max(0, 1− |xci − w|) max(0, 1− |zci − d|) (2)

This procedure should be differentiable with respect to both the sampling grid coordinates and
the input feature map by using partial (sub)gradients, allowing it to be used in conjunction with
backpropagation.

1For our experiments, we utilized the F.grid_sample function in PyTorch 1.6 to perform grid sampling.
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Prior Shape (S) Output Shape (O) Target Shape (Y )

φ(0) ◦ S = S φ(0.2) ◦ S φ(0.4) ◦ S φ(0.6) ◦ S φ(0.8) ◦ S O = φ(1) ◦ S Y

Figure 1: Illustration of diffeomorphism integrated over in time applied to shape prior. RIGHT: Target
annotation. TOP: Class probabilities over voxel location. BOTTOM: Thresholded class probabilities
(p > 0.5) laid over the input.

Baker–Campbell–Hausdorff formula Instead of parameterising our flow by a single stationary
velocity field, we might also think of a piece-wise time-dependent sequence of vector fields. By pa-
rameterising the deformation as a time-dependent sequence of velocities we hope improve predictive
performance by sequentially modeling larger movements first and detailed refinements thereafter.
Composing multiple diffeomorphic transformations will also yield a diffeomorphic transformation,
as the space of diffeomorphic transformations D is an algebraic group that is closed under the compo-
sition operation. The scaling-and-squaring algorithm offers an efficient way to find diffeomorphic
transformations from a stationary vector field, but can not straightforwardly be applied to such
time-dependent parameterisations. To address this, we can combine two timepoints, now A and B
for simplicity of notation, to form the Lie exponential mapping:

exp(Z) = exp(A) exp(B) (3)
and apply the Baker-Campbell-Hausdorff (BCH) formula up to a certain order to approximate

Z = bch(A,B) =

∞∑
n=1

zn(A,B) = A+B +
1

2
[A,B] +

1

12
[A, [A,B]]− 1

12
[B, [A,B]] + · · · (4)

where [·, ·] is the Lie bracket. We apply the formula to approximate the logarithm of matrix expo-
nentials of two noncommutative velocity fields Z = log(exp(A) exp(B)) and then use scaling-and-
squaring one time to find the exponential exp(Z).

Binary Tree Composition Naive composition of the T diffeomorphic transformations would result
into a long chain of composition operations Φ = ((((((φ1◦φ2)◦φ3)◦φ4)◦φ5) · · · ) · · ·◦φT−1)◦φT ).
To reduce possible interpolation errors in the resampling from growing as a result of such repetitive
composing, we compose the field using a binary tree scheme Φ = (((φ1 ◦ φ2) ◦ (φ3 ◦ φ4)) ◦ (· · · ◦
(φT−1 ◦ φT ))). Treating the composition scheme as a tree structure, the depth now scales in an order
of complexity O(T ) compared to O(log(T )) when using naive composition, reducing the maximum
number of times an BCH approximation is repetitively applied to a single timepoint.

4



Under review as a conference paper at ICLR 2021

Figure 2: Illustration of Diffeomorphic Spatial Template Transformer: a neural network predicts a set
of velocity fields V = f(I, S) from an input image I and prior shape S. The fields are integrated
to a diffeomorphic transformation grid TΦ(G), which transforms the prior shape into an output O,
while preserving topology. The model is trained end-to-end so that output O matches target Y .

4 DIFFEOMORPHIC TEMPLATE TRANSFORMER

Now that we have defined how to obtain a flexible diffeomorphic spatial transformer, we will
investigate its use in a template transformer setting. We define the output of a segmentation model
as diffeomorphic transformation of a prior shape, based on input image and the prior shape. By
carefully choosing the prior shape and its properties, we obtain explicit control over the properties of
the output, such as the number of connected components.

Let the input of the model f be a feature map U ∈ RH×W×D×2C = I ◦ S be a concatenation
of an input image I ∈ RH×W×D×C and an prior shape S ∈ RH×W×D×C along the channel
dimension, with width W , height H , depth D and channels C that outputs a set of T velocity fields
V = f(U) = {vt}Tt=1, where the fields vt ∈ RH×W×D×3 are concatenated along the channel
dimension of the output. Then we compute the diffeomorphic transformation Φ =

∏T
t=1 exp(vt) by

approximating the product of matrix exponentials as discussed in Section 3. Lastly, we subsample
the pixels in the original prior shape S using the diffeomorphic grid to obtain the output of the model
O = TΦ(G)(S) as explained in Section 3. The resulting model is illustrated in Figure 2.

4.1 PRIOR SHAPE

The template transformer can in principle use any prior shape, such as a discrete image by averaging
annotations (or ‘atlas‘ (Gee et al., 1993) (Cabezas et al., 2011)). But, by carefully choosing a prior
shape and by continuity of the diffeomorphic transformation, we can enforce properties such as single
connected component and smooth boundaries on the model output. In this paper we aim to keep the
prior shape a simple more general form to emphasise the expressivity of the diffeomorphism in our
experiments. We choose an analytical shape prior inspired by the generalised multivariate Gaussian,
and define the probability of a voxel at location x belonging to the main class by

p(x;µ,Σ, β) = exp
[
−((x− µ)TΣ−1(x− µ))β · log(2)

]
(5)

where µ, Σ and β directly influence the mean, (co)variances and kurtosis of the prior shape in the
spatial domain, and can be kept fixed or trained as part of the model parameters (see Section 5.4).
The log(2) factor ensures that the decision boundary (p=0.5) is independent from β.

5 EXPERIMENTS AND RESULTS

The diffeomorphic spatial transformer is evaluated on two tasks: a classification task using handwritten
MNIST dataset and a medical 3D breast tissue segmentation problem in the template transformer
setting. In both settings, its performance is compared with its non-diffeomorphic counterparts. For
the segmentation, we additionally analyse the effect of training different shape prior parameters in
Section 5.4.
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Table 1: Quantitative evaluation of diffeomorphic spatial transformer on MNIST classification task
when learning to augment the input with various types of Spatial Transformer Networks (STNs).

Model Type Parameter Count Accuracy % |Jφ| < 0

CNN (baseline) 27100 96.21 ± 0.39 -

CNN + TPS-STN (Jaderberg et al. (2015)) 2× 2-grid 27100 + 26998 96.60 ± 0.46 0.03 ± 0.007
CNN + TPS-STN 3× 3-grid 27100 + 27508 95.92 ± 0.40 0.03 ± 0.003
CNN + TPS-STN 5× 5-grid 27100 + 29140 96.63 ± 0.32 0.04 ± 0.002
CNN + TPS-STN 12× 12-grid 27100 + 41278 96.49 ± 0.29 0.05 ± 0.006
CNN + TPS-STN 16× 16-grid 27100 + 52702 96.12 ± 0.43 0.07 ± 0.010

CNN + Diffeomorphic-STN + ||∇φ||2 penalty (Ours) 28× 28-grid 27100 + 29552 96.45 ± 0.48 0.11 ± 0.009

CNN + Non-diffeomorphic-STN (w/o field integration) 28× 28-grid 27100 + 29552 97.30 ± 0.52 0.28 ± 0.031
CNN + Diffeomorphic-STN (Ours) 28× 28-grid 27100 + 29552 97.34 ± 0.55 0.22 ± 0.038

5.1 IMPLEMENTATION

For the MNIST classification experiments, we adapt an existing spatial transformer network imple-
mentation on Github2 and added transformations using diffeomorphic vector fields. We train for
10 epochs with a batch size of 64 and a learning rate of 0.001 (β1 = 0.9, β2 = 0.999) without any
further learning rate decay.

For the 3D breast tissue experiments, we trained for 40k iterations using Adam (Kingma and Ba,
2014) with a batch size of 1 and a learning rate of 0.0002 (β1 = 0.9, β2 = 0.999) decayed with
cosine annealing (Loshchilov and Hutter, 2016). The input was normalised using 1-99 percentile
normalisation (Patrice et al., 2018) and training samples consist of randomly sampled 128× 128× 64
patches. For the neural network, a 3D U-Net (Ronneberger et al., 2015), 4 times spatial down- and
up-sampling using linear interpolation (Odena et al., 2016), instance normalisation (Ulyanov et al.,
2016) and the Leaky ReLU (slope 0.2) activation functions. Lastly, an hyperbolic tangent scaled with
α = 256 limits the vector components of the vector fields to the range [−α, α]. The network uses a
single input channel and 3× T output channels, with T = 4 and a 2nd order BCH approximation.
We train the model using a standard cross entropy loss.
The prior shape was initialized as a centred Gaussian with diagonal co-variance matrix with diagonal
components set at half the volume size of the corresponding dimension. Aside from trying to optimise
these values as part of the model parameters (see Section 5.4), we did not perform hyper-parameter
tuning on these values. All experiments were performed on a single NVIDIA GeForce RTX 2080 Ti.

5.2 MNIST EXPERIMENTS

In this experiment, analogous to the one described in Jaderberg et al. (2015), we take a simple CNN
classifier with and without an additional spatial transformers added to the beginning of the network
and train it end-to-end. We train and evaluate the model on the well-known MNIST dataset (LeCun
et al., 2010) comprising 60000 training and 10000 testing images with size of 28 × 28 pixels that
contain hand-drawn numbers in the range 0 to 10, with images randomly rotated to an angle α
uniformly sampled from the range [−90, 90] degrees. The idea is that the spatial transformer can
learn invariances in the data (e.g. translation) and thereby aid the classifier. The spatial transformer
networks were designed in such a way that they have approximately the same parameter count, and
the same classifier model was used in all cases. The experiment was repeated 20 times and standard
deviations were reported. For fair comparison, we did not tune hyper-parameters in favor of the
diffeomorphic-STN.

In Table 1, the results between different types of spatial transformers are shown. We find that
our diffeomorphic spatial transformer network results in highest predictive accuracy, compared to
non-diffeomorphic and more course thin-plate-spline (TPS) spatial transformers. The TPS models
generate inherently smoother fields, and are therefore less prone to folding resulting in fewer negative
Jacobian determinants. On the other hand, coarser TPS grids have less flexibility, which would
make them unsuitable for application in complex anatomical segmentation tasks. We do observe that
integration in our diffeomorphic model helps lowering the number of negative Jacobian determinants
when compared to the same model without integration. In addition, we performed an experiment with
an added regularisation term to the loss penalizing the spatial gradient of the field λ||∇φ||2, where
λ = 10 controls the amount of regularisation. We find that this helps to limit the number of negative
Jacobian determinants, but also negatively impacts overall accuracy.

2Used TPS-STN implementation: https://github.com/WarBean/tps_stn_pytorch
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Table 2: Quantitative evaluation of breast tissue segmentation on breast tissue segmentation dataset
for different methods, indicating whether method uses a template, preserves topology by-design,
and comparison of loss, Sørensen–Dice coefficient, Hausdorff distance, ratio of negative Jacobian
determinants and average number of connected components on the validation set.

Model Template Preserves
Topology Dice Score Hausdorff

Distance
% |Jφ| < 0

Connected
Components

U-Net (direct estimation) 0.846 ± 0.24 12.62 ± 15.48 - 51.79

Spatial Template Transformer ((Lee et al., 2019)) + Shape Prior (ours) X 0.877 ± 0.21 12.58 ± 12.91 0.43 ± 0.01 19.68
Diffeomorphic Spatial Template Transformer (ours) + Shape Prior (ours) X X 0.803 ± 0.298 10.10 ± 6.51 0.39 ± 0.009 31.20
Diffeomorphic Spatial Template Transformer (ours) + Trained Shape Prior (ours) X X 0.822 ± 0.249 9.81 ± 7.39 0.15 ± 0.01 4.75

5.3 SEGMENTATION EXPERIMENTS

To assess the applicability of diffeomorphic spatial transformer in a template transformer setting, we
compare our differentiable spatial transformer with and without trained shape prior with direct esti-
mation (i.e. plain U-Net) on a breast tissue segmentation task. We also evaluate a non-diffeomorphic
spatial transformer, as is done in Lee et al. (2019), but applied it in combination with our shape prior
as it was not obvious to us how to create a discrete 3D template from our 2D annotations.

The dataset comprises 20 training volumes and 20 evaluation volumes of dynamic contrast enhance-
ment series of subjects with extremely dense breast tissue (Volpara Density Grade 4). Each series
contains DCE-MRI images (384× 384× 60 voxels with spacing 0.97× 0.97× 3.00 mm resampled
to 2.5mm3) acquired on a 3.0T Achieva or Ingenia Philips system in the axial plane with bilateral
anatomic coverage. A randomly selected axial 2D slice was annotated to be used for training and
evaluation labels. All annotations make up a single connected component.

Performance was measured using the well-known Sørensen–Dice coefficient (F1-score) (Dice (1945),
Sorensen (1948)) and Hausdorff distance (Hausdorff, 1978) metrics. In addition, we measure the
percentage of negative Jacobian determinants of the approximated flow, a well-known metric for
deformation quality in image registration that measures the amount of folding. Lastly, we evaluate
whether the connected components in the thresholded output (p > 0.5) is close to 1, as should be
the case without approximation errors. The HD and CC metrics on this medical imaging tasks are
particularly important indicating high-quality and robust results.

In Table 2, a comparison of a spatial template transformer with fixed shape prior, a diffeomorphic
spatial transformer with fixed shape prior and a diffeomorphic spatial transformer with trained
shape prior (trained mean µ, diagonal covariance diag(Σ) and β) with direct estimation (i.e. plain
U-Net) is shown. We find that all template transformer models perform better in terms of Hausdorff
distance. The diffeomorphic spatial template transformers perform worse in terms of Sørensen–Dice
coefficient, but in combination with a trained shape prior are able to reduce the number of connected
components and Hausdorff distance. Lastly, we observe negative Jacobian determinants as a result of
approximation errors in all template transformers, but to a lower degree in the diffeomorphic models.

5.4 ANALYSIS OF PRIOR SHAPES

In this section we empirically assess the impact of different prior shapes, with fixed or varying µ,
Σ and β parameters. In Table 3, Sørensen–Dice coefficient, Hausdorff distance, ratio of negative
Jacobians % |Jφ| < 0 and average number of connected components are reported for different
combinations of trained prior shape parameters.

Table 3: Ablation study where different parameters for the prior shapes are kept fixed or learnt.

Trained prior shape Dice Score Hausdorff
Distance

% |Jφ| < 0
Connected
Components

Fixed Prior Shape 0.803 ± 0.298 10.10 ± 6.51 0.39 ± 0.009 31.20

Train mean µ 0.820 ± 0.262 11.30 ± 10.65 0.22 ± 0.013 4.38 ± 4.87
Train scale σ2 (Σ = σ2I) 0.807 ± 0.297 9.92 ± 12.17 0.36 ± 0.023 61.16 ± 45.1
Train diag(Σ) 0.821 ± 0.284 8.66 ± 5.57 0.47 ± 0.007 27.47 ± 11.5

Train µ+ σ2 0.821 ± 0.252 10.10 ± 7.84 0.25 ± 0.012 5.23 ± 5.48
Train µ+ diag(Σ) 0.790 ± 0.268 12.58 ± 11.64 0.22 ± 0.020 5.02 ± 5.34

Train µ+ diag(Σ) + β 0.822 ± 0.249 9.81 ± 7.39 0.15 ± 0.012 4.75 ± 4.37
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We find that learning parameters of the shape prior positively contributes to performance and helps to
reduce the number of negative Jacobian determinants, most notably for learnt position µ. The result
suggests that, in case of more complex shape priors such as a segmentation atlas, the model could
benefit from deforming the prior shape with some linear transformations (e.g. translation or affine)
before being warped by the diffeomorphic transformation predicted by the network.

6 DISCUSSION AND CONCLUSION

We have presented a special type of spatial transformer where the spatial transformations are re-
stricted to the group of diffeomorphisms. Diffeomorphic deformations are topology preserving
by continuity and continuity of their inverse, which can be a compelling property when designing
deep learning architectures. We show how expressive diffeomorphic mappings can be obtained by
time-dependent parameterisation of multiple vector fields utilizing the Baker-Campbell-Hausdorff
formula in combination with an efficient integration method known as scaling-and-squaring. By
building these constraints directly into the architecture itself, no changes to the loss function are re-
quired. In addition, we propose to use the diffeomorphic spatial transformer in a template transformer
setting, constraining the output of a neural segmentation model as topology-preserving mapping of an
analytical prior shape. Hereby, we show that the diffeomorphic transform enforces smooth boundaries
and explicit control over the topology of the output such as its number of connected components.

The diffeomorphic spatial transformer outperforms the original spatial transformer network when used
to learn data-invariances on MNIST. In a template transformer set-up, we found that a neural network
predicting a diffeomorphic mapping of a prior shape offers a flexible way to insert knowledge about
the structure of the output without having to alter the loss function or optimisation scheme. We were
able to warp shape priors into high-quality segmentations in a medical 3D breast tissue segmentation
task, resulting in lower number of connected components and obtain higher performance in terms
of Hausdorff distance but lower in terms of Dice Score compared with direct estimation (i.e. plain
U-Net).

To show the effectiveness of the approach, we used a general and simple Gaussian-shaped shape
prior as template. Interestingly, the method is flexible enough to find diffeomorphic mappings from
such simple shapes into high-quality posteriors. We expect that designing shape priors, specifically
tailored to a task (e.g. an atlas or average segmentation) might achieve even better results. It would
be interesting to explore applicability on more complex anatomical structures, such as in coronary
artery tree segmentation (Lee et al. (2019)).

A piece-wise constant time-dependent parameterisation performed slightly better than modeling a
stationary velocity field. This surprised us, because for every diffeomorphic mapping generated by
a piece-wise constant time-dependent field there also exists a single (stationary) vector field that
describes the same diffeomorphism. We hypothesise that directly optimising this stationary velocity
field is harder and that the time-dependent parameterisation aids the optimisation process by allowing
the network to model larger and more detailed deformations separately.

We used the BCH-formula to integrate a piece-wise time-dependent velocity field using the scaling-
and-squaring method. It would be interesting to see how this method relates to other ODE solvers
that are capable of integrating time-dependent velocity fields, such as those proposed in Chen et al.
(2018). However, we were unable to use these solvers under available hardware constraints.

In some cases, negative Jacobian determinants are still present in the obtained flows. This is likely
caused by spatial discretisation and interpolation during resampling operations. Future research could
assess whether the approach could benefit from regularisations of the vector fields (Ashburner, 2007),
inverse consistency (Christensen, 1999) or better interpolation methods.

To conclude, we show that diffeomorphic spatial transformations can successfully be applied to
preserve topology in neural networks, and for template transformer networks in particular. We have
provided several insights on how to incorporate diffeomorphisms in neural network architectures for
classification and segmentation. We expect that these insights can aid in tailoring neural network
architectures to specific structure and geometry in data.
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A BAKER-CAMPBELL-HAUSDORFF FORMULA ORDERS z1 TO z7

If we denote the Baker-Campbell-Hausdorff formula as

Z(X,Y ) = log(exp(X) exp(Y )) =

∞∑
n=1

zn(X,Y )

we can simplify (Van-Brunt and Visser (2016)) the lower order terms z1 to z6 to

z1(X,Y ) = X + Y

z2(X,Y ) =
1

2
(XY − Y X)

z3(X,Y ) =
1

12
(X2Y − 2XYX −XY 2 + Y X2 − 2Y XY + Y 2X)

z4(X,Y ) =
1

24
(X2Y 2 − 2XYXY + 2Y XY X − Y 2X2)

z5(X,Y ) =
1

6!
(−X4 + 6XYXYX + 2XY 3X + 2Y X3Y + 6Y XY XY − Y 4X)

z6(X,Y ) =
1

2 ∗ 6!
(−2X2Y 2XY + 6XYXYXY −XY 4X + Y 4Y )

Higher order z7 and z8 terms were not used in this study, but can be found in the Supplementary
Material of Van-Brunt and Visser (2016).

B TIMING MEASUREMENTS

A comparison of performance in terms of inference time can be found in Table 4. Average inference
time was calculated over 20 full 3d volumes on the breast tissue segmentation task on the U-Net
model baseline, non-diffeomorphic model (without field-integration) and diffeomorphic models with
a stationary and time-dependent vector field parameterisations. Due to integration procedures, the
average inference time on the diffeomorphic template transformer models is slightly slower (≈ 10%)
compared to the U-Net baseline, but well within practical bounds.

Table 4: Average inference time in seconds (s) measured over 20 full 3d volumes on the U-Net
baseline, non-diffeomorphic template transformer, diffeomorphic template transformer with stationary
field and diffeomorphic template transformer with time-dependent field.

Method Average inference time over 20 full 3d volumes

U-Net 1.03 s
U-Net + non-diffeomorphic field 1.06 s
U-Net + stationary diffeomorphic field 1.17 s
U-Net + diffeomorphic field (ours) 1.19 s
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C EXAMPLE VARIATIONS IN SHAPE PRIOR PARAMETERS

To illustrate how variations in the parameters µ, σ, Σ and β spatially change the shape prior, we
plot the probability (white: p = 0 and purple p = 1) for each voxel p(x;µ,Σ/σI, β) with different
parameter values both smooth (top) and thresholded (bottom):

Figure 3: Shape prior under different values for β.

Figure 4: Shape prior under different values for µ.

Figure 5: Shape prior under different values for σ.

Figure 6: Shape prior under different values for Σ.
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