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Abstract

Graph Neural Networks (GNNs) have emerged as powerful tools to encode graph-
structured data. Due to their broad applications, there is an increasing need to
develop tools to explain how GNNs make decisions given graph-structured data.
Existing learning-based GNN explanation approaches are task-specific in training
and hence suffer from crucial drawbacks. Specifically, they are incapable of
producing explanations for a multitask prediction model with a single explainer.
They are also unable to provide explanations in cases where the GNN is trained
in a self-supervised manner, and the resulting representations are used in future
downstream tasks. To address these limitations, we propose a Task-Agnostic
GNN Explainer (TAGE) that is independent of downstream models and trained
under self-supervision with no knowledge of downstream tasks. TAGE enables the
explanation of GNN embedding models with unseen downstream tasks and allows
efficient explanation of multitask models. Our extensive experiments show that
TAGE can significantly speed up the explanation efficiency by using the same model
to explain predictions for multiple downstream tasks while achieving explanation
quality as good as or even better than current state-of-the-art GNN explanation
approaches. Our code is publicly available as part of the DIG librar

1 Introduction

Graph neural networks (GNNGs) [[11} 125} 132] have achieved remarkable success in learning from real-
world graph-structured data due to their unique ability to capture both feature-wise and topological
information. Extending their success, GNNs are widely applied in various research fields and
industrial applications including quantum chemistry [3} 26], drug discovery [16} 28, [29], large-scale
social networks [30,135]], and recommender systems [1} 33]]. While multiple approaches have been
proposed and studied to improve GNN performance, GNN explainability is an emerging area and
has a smaller body of research behind it. Recently, explainability has gained more attention due to
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Figure 1: A comparison between typical end-to-end task-specific GNN explainers and the proposed
task-agnostic explanation pipeline. To explain a multitask model, typical explanation pipelines
need to optimize multiple explainers, whereas the two-stage explanation pipeline only learns one
embedding explainer that can cooperate with multiple lightweight downstream explainers.

an increasing desire for GNNs with more security, fairness, and reliability. Being able to provide a
good explanation to a GNN prediction increases model reliability and reduces the risk of incorrect
predictions, which is crucial in fields such as molecular biology, chemistry, fraud detection, etc.

Existing methods adapting the explanation methods for convolutional neural networks (CNNs) or
specifically designed for GNNs have shown promising explanations on multiple types of graph data.
A recent survey [37]] categorizes existing explanation methods into gradient-based, perturbation,
decomposition, and surrogate methods. In particular, perturbation methods involve learning or
optimization [12, 13} 115134, 36] and, while bearing higher computational costs, generally achieve
state-of-the-art performance in terms of explanation quality. These methods train post-hoc explanation
models on top of the prediction model to be explained. Earlier approaches like GNNExplainer [34]
require training or optimizing an individual explainer for each data instance, i.e., a graph or a node
to be explained. In contrast, PGExplainer [[15] performs inductive learning, i.e., it only requires a
one-time training, and the explainer can be generalized to explain all data instances without individual
optimization. Compared to other optimization-based explanation methods, PGExplainer significantly
improves efficiency in terms of time cost without performance loss by learning. Following a similar
inductive learning paradigm, more recent work ReFine [27] and GSAT [17]] aim to provide multi-
grained explanations and jointly learned explanations with GNNss, respectively.

However, even state-of-the-art explanation methods like PGExplainer are still task-specific at training
and hence suffer from two crucial drawbacks. First, current methods are inefficient in explaining
multitask prediction for graph-structured data. For example, one may need to predict multiple
chemical properties in drug discovery for a molecular graph. In particular, ToxCast from MoleculeNet
has 167 prediction tasks. In these cases, it is common to apply a single GNN model with multiple
output dimensions to make predictions for all tasks. However, one is unable to employ a single
explainer to explain the above model, since current explainers are trained specifically to explain one
prediction task. As a result, in the case of ToxCast, one must train 167 explainers to explain the GNN
model. Second, in industry settings, it is common to train GNN models in a two-stage fashion due to
scaling, latency, and label sparsity issues. The first stage trains a GNN-based embedding model with
a massive amount of unlabeled data in an unsupervised manner to learn embeddings for nodes or
graphs. The second stage trains lightweight models such as multilayer perceptrons (MLPs) using
the frozen embeddings as input to predict the downstream tasks. In the first stage, the downstream
tasks are usually unknown or undefined, and existing task-specific explainers cannot be applied. Also,
there can be tens to hundreds of downstream tasks trained on these GNN embeddings, and training a
separate explainer for each task is undesirable and downright impossible.

To address the above limitations, we present a new task-agnostic explanation pipeline, where the
learned explainer is independent from downstream tasks and can take downstream models as input
conditions, as shown in Figure [I. Specifically, we decompose a prediction model into a GNN
embedding model and a downstream model, designing separate explainers for each component.
We design the downstream explainers to cooperate with the embedding explainer. The embedding
explainer is trained using a self-supervised training framework, which we dub Task-Agnostic GNN
Explainer (TAGE), with no knowledge of downstream tasks, models, or labels. In contrast to existing
explainers, the learning objective for TAGE is computed at the graph or node embeddings without
involving task-related predictions. In addition to eliminating the need for downstream tasks in



Table 1: Comparisons on properties of common GNN explainers. Inductivity and task-agnosticism
are inapplicable for gradient/rule-based methods as they do not require learning. In the last column,
we show the number of required explainers for a dataset with N samples and M tasks.

Learning Inductive Task-agnostic  # explainers required

Gradient- & Rule-based No - - 1
GNNExplainer [34] Yes No No M x N
SubgraphX [36] Yes No No M« N
PGExplainer [15]] Yes Yes No M
Task-agnostic explainers Yes Yes Yes 1

TAGE, we argue that the self-supervision performed on the embeddings can bring an additional
performance boost in terms of the explanation quality compared to existing task-specific baselines
such as GNNExplainer and PGExplainer.

We summarize our contributions as follows: 1) We introduce the task-agnostic explanation problem
and propose a two-stage explanation pipeline involving an embedding explainer and a downstream
explainer. This enables the explanation of multiple downstream tasks with a single embedding
explainer. 2) We propose a self-supervised training framework TAGE, which is based on conditioned
contrastive learning to train the embedding explainer. The training of TAGE requires no knowledge
of downstream tasks. 3) We perform experiments on real-world datasets and observe that TAGE
outperforms existing learning-based explanation baselines in terms of explanation quality, universal
explanation ability, and the time required for training and inference.

Relations with Prior Work Our work studies a novel explanation problem under the two-stage
and multi-task settings. The settings are important in both industrial and academic scenarios but
have not been studied by prior work. Whereas existing studies focus on designing optimization
approaches [34} 36]] and explainer architectures [15] under the typical task-specific setting, our work
focuses on an orthogonal problem to enable task-agnostic explanations with the proposed framework
including the universal embedding explainer and conditioned learning objectives.

2 Task-Agnostic Explanations

2.1 Notations and Learning-based GNN explanation

Our study considers the attributed graph G with node set V' and edge set £. We formulate the
attributed graph as a tuple of matrices (A, X), where A € {0, 1}/V/*IVl denotes the adjacency
matrix and X € RIV!X4s denotes the feature matrix with feature dimension of d;. We assume
that the prediction model F' that is to be explained operates on graph-structured data through two
components: a GNN-based embedding model and lighter downstream models. Denoting the input
space by G, a node-level embedding model &, : G — R!V*¢ takes a graph as input and computes
embeddings of dimension d for all nodes in the graph, whereas a graph-level embedding model
Eg:G — R'*¢ computes an embedding for the input graph. Subsequently, the downstream model
D : R? — R computes predictions for the downstream task based on the embeddings.

Typical GNN explainers consider a task-specific GNN-based model as a complete unit, i.e., F' := Dof.
Given a graph G and the GNN-based model F' to be explained , our goal is to identify the subgraph
G syp that contributes the most to the final prediction made by F. In other words, we claim that a
given prediction is made because F' captures crucial information provided by some subgraph G-
The learning-based (or optimization-based) GNN explanation employs a parametric explainer 7
associated with the GNN model /' to compute the subgraph G, of the given graph data. Concretely,
the explainer 79 computes the importance score for each node or edge, denoted as w; or w;;, or
masks for node attributes denoted as m. It then selects the subgraph G, induced by important
nodes and edges, i.e., whose scores exceed a threshold ¢, and by masking the unimportant attributes.
In our study, we follow [[15], focusing on the importance of edges to provide explanations to GNNs.
Formally, we have Ggp := (V, Esup) = To(G), where Egp = {(vs,v5) : (vs,v5) € E,w;; >t}



2.2 Task-Agnostic Explanations

As introduced in Section ] all existing learning-based or optimization-based explanation approaches
are task-specific and hence suffer from infeasibility or inefficiency in many real-application scenarios.
In particular, they are of limited use when downstream tasks are unknown or undefined, and fail to
employ a single explainer to explain a multitask prediction model.

To enable the explanation of GNNs in two-stage training and multitask scenarios, we introduce a new
explanation paradigm called the task-agnostic explanation. The task-agnostic explanation considers a
whole prediction model as an embedding model followed by any number of downstream models. It
focuses on explaining the embedding model regardless of the number or the existence of downstream

models. In particular, the task-agnostic explanation trains only one explainer 7;(“19 ) to explain the
embedding model £, which should satisfy the following features. First, given an input graph G, the

explainer T;mg ) should be able to provide different explanations according to specific downstream
tasks being studied. Table 1 compares the properties of common GNN explanation methods and the

desired task-agnostic explainers in multitask scenarios. Second, the explainer 7;,(”9 ) can be trained
when only the embedding model is available, e.g., at the first stage of a two-stage training paradigm,
regardless of the presence of downstream tasks. When downstream tasks and models are unknown,

7'9(mg ) can still identify which components of the input graph are important for certain embedding
dimensions of interest.

3 The TAGE Framework

Our explanation framework TAGE follows the typical scheme of GNN explanation introduced in
the previous section. It provides explanations by identifying important edges in a given graph and
removing the edges that lead to significant changes in the final prediction. Specifically, the goal of
the TAGE is to predict the importance score for each edge in a given graph. Different from existing
methods, the proposed TAGE breaks down typical end-to-end GNN explainers into two components.
We now provide general descriptions and detailed formulations to the proposed framework.

3.1 Task-Agnostic Explanation Pipeline

Following the principle of the desired task-agnostic explanations, we introduce the task-agnostic
explanation pipeline, where a typical explanation procedure is performed in two steps. In particular,
we decompose the typical end-to-end learning-based GNN explainer into two parts: the embedding
explainer 7¢ and the downstream explainer 7y, corresponding to the two components in the
two-stage training and prediction procedure. We compare the typical explanation pipeline and the
two-stage explanation pipeline in Figure[I] The embedding explainer and downstream explainers can
be trained or constructed independently from each other. In addition, the embedding explainer can
cooperate with any downstream explainers to perform end-to-end explanations on input graphs.

The downstream explainer aims to explain task-specific downstream models. As downstream models
are usually lightweight MLPs, we simply adopt gradient-based explainers for downstream explainers
without training. The downstream explainer takes a downstream model and the graph or node
embedding vector as inputs and computes the importance score of each dimension on the embedding
vector. The importance scores then serve as a condition vector input to the embedding explainer.
Given the condition vector, the embedding explainer explains the GNN-based embedding model
by identifying an important subgraph from the input graph data. In other words, given different
condition vectors associated with different downstream tasks or models, the embedding explainer
can provide corresponding explanations for the same embedding model. Formally, we denote the
downstream explainer for models from 2 by Tgown : 2 x R4 — R?, which maps input models and
embeddings into importance scores m for all embedding dimensions. We denote the embedding
explainer associated with the embedding model £ by T¢ : R¢ x G — G, which maps a given graph
into a subgraph of higher importance, conditioned on the embedding dimension importance m € R<.

The training procedures of the embedding explainer are independent of downstream tasks or down-
stream explainers. In particular, the downstream explainer is obtained from the downstream model
only, and the training of the embedding explainer only requires the embedding model and the input
graphs. As downstream models are usually constructed as stacked fully connected (FC) layers and the
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Figure 2: Overviews of the self-supervised training framework for the embedding model (right) and
the architecture of the parametric explainers (left). During training, we generate random condition
vectors p as an input to the embedding explainer and mask the embeddings. The learning objective
seeks to maximize the mutual information between two embeddings on certain dimensions.

explanation of FC layers has been well studied, our study mainly focuses on the non-trivial training
procedure and design of the embedding explainer.

3.2 Training embedding explainer under Self-supervision

A straightforward idea of explaining an embedding model with no knowledge of downstream
tasks is to employ existing explainers and perform explanation on the pretext task, such as graph
reconstruction [[10] or context prediction [6]], used during the pre-training of GNNs. However, such
explanations cannot be generalized to future downstream tasks as there are limited dependencies
between the pretext task and downstream tasks. Therefore, training an embedding explainer without
downstream models or labels is challenging, and it is desirable to develop a generalizable training
approach for the embedding explainer. To this end, we propose a self-supervised learning framework
for the embedding explainer.

The learning objective of the proposed framework seeks to maximize restricted mutual information
(MI) between two embeddings, i.e., one of the given graph and one of the corresponding subgraph
of high importance induced by the explainer, in a conditioned subspace. We introduce a masking
vector p € R? as the condition to indicate specific dimensions of embeddings on which to maximize
the MI. During the explanation, we obtain the masking vector from the importance vector computed
by any downstream explainer 7jo.n. As no downstream importance vector is available at training,
we sample the masking vector p from a multivariate Laplace distribution due to the sparse gradient,
i.e., only a few dimensions are of high importance, assuming embeddings from well-trained models
are informative with low dimension redundancy. Empirically, the Laplacian assumption holds on
all datasets we work with as we observe that gradients follow a Laplace distribution, as shown in
Appendix [B] Formally, the learning objective based on the restricted MI is

max E,[MI(p @ £(G), p® E(To(p, @)))]; (1)

where MI(-, -) computes the mutual information between two random vectors, p denotes the random
masking vector sampled from a certain distribution, 7 (p, G) computes the subgraph of high impor-
tance, and ® denotes the element-wise multiplication, which applies masking to the embeddings
&(-). Figure E outlines the training framework and objective. Intuitively, given an input graph and
the desired embedding dimensions to be explained, the explainer 7y predicts the subgraph whose
embedding shares the maximum mutual information with the original embedding on the desired
dimensions.

Practically, the mutual information is intractable and is hence hard to directly compute. A common
approach to achieving efficient computation and optimization is to adopt the upper bound estimations
of mutual information [31]], namely, the Jenson-Shannon Estimator (JSE) [18] and the InfoNCE [4].
These upper bound estimations are also referred to as contrastive loss and are widely applied in
self-supervised representation learning [5, 23| 24] for both images and graphs. Adopting these
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for JSE and InfoNCE, respectively, where N denotes the number of samples in a mini-batch, o
denotes Sigmoid function, z; and z; ¢ are embeddings of the original graph G; and its subgraph
To(G,), or target nodes of the two graphs. Our objective involves condition vectors as masks on
the embeddings, which differs from typical contrastive loss used in self-supervised representation
learning. We hence call the proposed objective the conditioned contrastive loss.

To restrict the size of subgraphs given by the explainer, we follow previous studies [15] to add a size
regularization term R, computed as the averaged importance score, to the above objectives. In the
case where edge importance scores w;; € [0, 1] are computed, the regularization term is computed as

R(G) = Z )\S\wij| — )\e [wij 10g wij — (1 — wij) IOg(]. — ww)] s (4)
(vi,vj)€EE

where A\; and ). are hyper-parameters controlling the size and the entropy of edge importance scores,
respectively. We provide detailed descriptions of the objectives in Appendix

3.3 Explainer Architectures

Embedding explainers. To be consistent with PGExplainer, we adopt the multilayer perceptron
(MLP) as the base architecture to predict the importance score w;; for each edge (u;,u;) € E, on
top of learned embeddings z; and z; of the two nodes connected by the edge. Edges with scores
higher than a threshold are considered important edges that remain in the selected subgraph. In order
for the embedding explainer to cooperate with different downstream explainers and provide diverse
explanations for different tasks, it additionally requires a condition vector as input indicating the
specific downstream task to be explained. Formally, the graph-level embedding explainer takes the
embeddings, z; and z;, and the condition vector p as inputs and computes the importance score by

w;; = MLPy ([2;; 2;] ® o(f,(p))), (5)

where [-; -] denotes the concatenation along the feature dimension, ® denotes the element-wise
multiplication, o denotes the activation function, and f, : R¢ — R?? is a linear projection. The
node-level embedding explainer takes an additional node embedding as its input, as the explainers
are expected to predict different scores for the same edge when explaining different target nodes. The
formulation of computing the importance score is as follows,

Wiy = MLPn([zi;zj;ztarget] ® O(fn(p)))a (6)

where f; : R? — R34 is a linear projection, and 2;4,4¢¢ denotes the embedding of the target node
whose prediction is to be explained.

Downstream explainers. We use the following gradient-based explainer to compute condition
vectors for different downstream models. Formally, given an input embedding z and its prediction
probabilities D(z) € [0, 1] among all C classes, we compute the gradient of the maximal probability
w.r.t. the input embedding:
g dmascc DE _ piea
0z

where D(z)[c] denotes the probability for class ¢. To convert the gradient into the condition vector,
we further perform normalization and only take positive values reflecting only positive influence to
the predicted class probability, i.e., p = ReLU(norm(g?)).




0.7

! ]
05 0.6 -
0.5 =@— TAGExplainer
2 04 =#— PGExplainer
%03 ’ —#— GNNExplainer
i 0.3 == DeepLIFT
0.2 GradCam
ro.
0.1 01 = <<
095 09 08 08 0.9 08 0.7 095 09 08 08 075
PPI (Task 0) PPI (Task 1) PPI (Task 2)
bt

05 " +\+ 0.4 / 0.6 .4’

0.4 +/ o 0.5 / —@— TAGExplainer
Z — 103 4 —#— PGExplainer
g 03 x'.‘f'.*. il —p 04 - —#— GNNExplainer
Lo ’,}T/ 02 -7')17‘/ ' 0.3 etV AN —4— DeepLIFT

= e A + — ] GradCAM
0.1 7" 0.2 N
' -~ 0.1
v T 01| &

09 08 07 06 095 085 075 065 095 085 075 065

Sparsity Sparsity Sparsity
Figure 3: Quantitative performance comparisons on six tasks from MoleculeNet (top row) and PPI
(bottom row). The curves are obtained by varying the threshold for selecting important edges.

4 Experimental Studies

We conduct two groups of quantitative studies evaluating the explanation quality and the universal
explanation ability, i.e., training a single explainer to explain all downstream tasks, of TAGE. We
then compare the efficiency of multiple learning-based GNN explainers in terms of training and
explanation time costs. We further provide visualizations to demonstrate the explanation quality as
well as the ability to explain GNN models without downstream tasks.

4.1 Datasets

To demonstrate the effectiveness of the proposed TAGE on both node-level and graph-level tasks, we
evaluate TAGE on three groups of real-world datasets that contain potentially multiple tasks. The
datasets are described as follows and their statistics are summarized in Appendix [A]

MoleculeNet. The MoleculeNet [29] library provides a collection of molecular graph datasets for
the prediction of different molecule properties. In a molecular graph, each atom in the molecule is
considered a node, and each bond is considered an edge. The prediction of molecule properties is
a graph-level task. We include three graph classification tasks from MoleculeNet to evaluate the
explanation of graph-level tasks: HIV, SIDER, and BACE.

Protein-Protein Interaction. The Protein-Protein Interaction (PPI) [39] dataset documents the
physical interactions between proteins in 24 different human tissues. In PPI graphs, each protein is
considered as a node with its motif and immunological features, and there is an edge between two
proteins if they interact with each other. Each node in the graphs has 121 binary labels associated
with different protein functions. As different protein functions are not exclusive to each other,
the prediction of each protein function is considered an individual task instead of a multi-class
classification. And hence typical approaches require individual explainers for the 121 tasks. We
utilize the first five out of 121 tasks to evaluate the explanation of node-level tasks.

E-commerce Product Network. The E-commerce Product Network (EPN is constructed with
subsampled, anonymized logs from an e-commerce store, where entities including buyers, products,
merchants, and reviews are considered as nodes, and interactions between entities are considered as
edges. We subsample the data for the sake of experimental evaluations and the dataset characteristics
do not mirror actual production traffic. We study the explanation of the classification of fraudulent
entities (nodes), where the predictions for different types of entities are considered individual tasks.
We evaluate our framework specifically on classifications of the buyer, merchant, and review nodes.

3Proprietary dataset



4.2 Experiment Settings and Evaluation Metrics

For each real-world dataset, we evaluate explainers on multiple downstream tasks that share a single
embedding model. For consistency with industrial use cases, we perform the two-stage training
paradigm to obtain GNN models to be explained. In particular, we first use unlabeled graphs to train
the GNN-based embedding model in an unsupervised fashion. We then freeze the embedding model
and use the learned embeddings to train individual downstream models structured as 2-layer MLPs.
Specifically, for graph-level classification tasks in MoleculeNet, we employ the GNN pretraining
strategy context prediction [6] to train a 5-layer GIN [32] as the embedding model on ZINC-2M [22]
containing 2 million unlabeled molecules. For the node-level classification on PPI, we employ the
self-supervised training method GRACE [38]] to train a 2-layer GCN [L1] on all 21 graphs from PPI
without using labels. For the larger-scale node-level classification on EPN, we use graph autoencoder
(GAE) [10] to train the embedding model on sampled subgraphs of EPN. More implementation
details are provided in Appendix B}

As the involved real-world datasets do not have ground truth for explanations, we follow previous
studies [20, 37, 136]] to adopt a fidelity score and a sparsity score to quantitatively evaluate the
explanations. Intuitively, the fidelity score measures the level of change in the probability of the
predicted class when removing important nodes or edges, whereas the sparsity score measures the
relative amount of important nodes or nodes associated with important edges. A formulation of the
scores is provided in Appendix B. Note that compared to explanation evaluation with ground truths,
the fidelity score is considered more faithful to the model, especially when the model makes incorrect
predictions, in which case the explanation ground truths become inconsistent with the evidence of
making the wrong predictions. In practice, one needs to trade-off between the fidelity score and the
sparsity score by selecting the proper threshold for the importance.

Table 2: Fidelity scores with controlled sparsity on graph-level molecule property prediction tasks.
Each column corresponds to an explainer model trained on (or without) a specific downstream task.
Underlines highlight the best explanation quality in terms of fidelity, on the same level of sparsity.

PGExplainer (trained on) TAGE
Eval on BACE HIV BBBP SIDER w/o downstream
BACE 0.252 £0.340  0.007 £0.251  0.026 £0.022  -0.151 £0.330 0.378 +0.293
HIV -0.001 £0.197  0.473 £0.404 0.013 £0.029  -0.060 +£0.356 0.595 +0.321
BBBP 0.001 £0.237  -0.056 £0.226  0.182 +0.169  -0.252 +0.440 0.193 +0.161
SIDER | 0.012£0.219 -0.009 £0.212  0.003 £0.029  0.444 +0.391 0.521 +0.278

4.3 Quantitative Studies

We conduct two groups of quantitatively experimental comparisons. We first demonstrate the
explanation quality of individual tasks in terms of the fidelity score and the sparsity score. We do
this by comparing TAGE with multiple baseline methods including non-learning-based methods
GradCAM [20] and DeepLIFT [21]], as well as learning-based methods GNNExplainer [34] and
PGExplainer [[15)]. We do not include other optimization or search-based methods such as Monte-
Carlo tree search [9] due to the significant time cost on real-world datasets. Note that to show the
effectiveness of universal explanations over different downstream tasks, we only train one embedding
explainer for all tasks in a dataset, on top of which a gradient-based downstream explainer is applied
to explain multiple downstream tasks. In contrast, for existing learning-based methods, we need
to train multiple explainers to explain downstream tasks individually. For all methods, we vary the

Table 3: Fidelity scores with controlled sparsity on the node-level classification dataset PPI. Each
column corresponds to an explainer model trained on (or without) a specific downstream task.
Underlines highlight the best explanation quality in terms of fidelity, on the same level of sparsity.

PGExplainer (trained on) TAGE
Eval on Task 0 Task 1 Task 2 Task 3 Task 4 w/o downstream
Task O | 0.184 £0.3443 -0.005 £0.268 0.033 +0.335 0.034 £0.310 0.018 £0.194 | 0.271 +0.385
Task 1 | 0.046 £0.447 0.197 £0.380 0.043 £0.314 0.008 £0.297 0.021 £0.183 | 0.300 +0.415
Task 2 | 0.028 £0.434 0.001 £0.283  0.345 +0.458 0.024 £0.320 0.097 £0.320 | 0.499 +0.480
Task 3 | 0.075 £0.364 -0.015 £0.219 0.036 £0.317 0.262 +£0.418 0.040 £0.221 | 0.289 +0.427
Task 4 | 0.035+0.413 -0.021 £0.238 0.223 £0.438 0.075 £0.374 0.242 +0.373 | 0.330 +0.442




Table 4: Fidelity scores with controlled sparsity on the E-commerce product dataset. Each column
corresponds to one explainer model trained on different tasks or without downstream tasks. Underlines
highlight the best explanation quality in terms of fidelity, on the same level of sparsity.

PGExplainer (trained on) TAGE
Eval on Buyers Sellers Reviews w/o downstream

Buyers | 0.2009 £0.2233 0.1731 £0.3774  0.1740 £0.4463 | 0.2713 +0.1834
Sellers | 0.5465 +£0.4773  0.3246 £0.4026 0.1128 +0.3019 | 0.6515 +0.3426
Reviews | 0.4178 £0.3683  0.1258 £0.3492  0.2310 +0.4178 | 0.5692 +0.4214

Table 5: Comparison of computational time cost among three learning-based GNN explainers on
the PPI dataset. The left two columns record time cost breakdown for 7' downstream tasks. The
fourth column estimates the total time cost for explaining all 121 tasks of PPI. The last row shows the
speedup times compared to GNNExplainer and PGExplainer, respectively.

Time cost Training (s) Inference (s)  Total time (T=1) (s)  Est. total for 121 tasks
GNNExplainer 20040.1*T - 20040.1 28d
PGExplainer 7117.0%T 427.2%T 7604.2 10.7d
TAGE 1405.3 582.7*%T 1988.0 0.83d
Speedup 14.3*T' X / 5.1*T X -/0.73x 10.1x /3.8% 33.7x /12.9x%

threshold for selecting important nodes or edges and compare how fidelity scores change over sparsity
scores on each task and dataset. The results are shown in Figure[3] In particular, TAGE outperforms
other learning-based explainers on BACE, SIDER, and PPI (tasks 0 and 1). For HIV and PPI (task 2),
TAGE is more effective at higher sparsity levels, i.e., when fewer nodes are considered important and
masked.

To justify the necessity of task-agnostic explanation and demonstrate the universal explanation
ability of TAGE, we include PGExplainer as our baseline and compare the explanation quality when
adopting a single explainer to explain multiple downstream tasks. For PGExplainer, we train multiple
explainers on different downstream tasks and evaluate each explainer on different downstream tasks.
For TAGE, we train one explainer without downstream tasks and evaluate it on different downstream
tasks. Results shown in Table 2 (MoleculeNet), Table [3] (PPI), and Table 4 (EPN) indicate that
task-specific explainers fail to generalize to different downstream tasks and hence are unable to
provide universal explanations. On the other hand, the task-agnostic explainer, although trained
without downstream tasks, can provide explanations with even higher quality for downstream tasks.

GNNE«xplainer and PGExplainer should generally outperform task-agnostic explainers, as they are
specific to data examples or tasks. This should especially be true when TAGE and PGExplainer
have the same level of parameters. However, we find that TAGE outperforms the learning-based
baselines. We believe that the underperformance of baselines is due to the non-injective characteristic
of the downstream MLPs, where different embeddings can produce similar downstream prediction
results. In other words, a similar downstream prediction are not necessarily produced by embeddings
that share high mutual information. Due to this characteristic, the learning objective of TAGE
computed between embeddings brings stronger supervision than the objective computed between
final predictions, as the latter objective does not guarantee consistency between embeddings or
between input graphs and subgraphs.

Multitask Explanation Efficiency A major advantage of the task-agnostic explanation is that it
removes the need for training individual explainers, which consumes the majority of the total time
cost to explain a model on a dataset. We hence evaluate the efficiency of TAGE in terms of time cost
for explanation and compare it to the two learning-based explainer baselines. We record the time
cost for the training and inference of different explanation methods on the same dataset and device,
shown in Table[5] All results are obtained from running the explanation on the PPI dataset with 121
node classification tasks with a single Nvidia Tesla V100 GPU. Although the inference time cost of
TAGE is slightly higher than that of PGExplainer, the results show TAGE costs significantly less time
than GNNExplainer and PGExplainer, especially in the multitask cases (I" > 1). TAGE allows the
explanation of many downstream tasks within a reasonable time duration.
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Figure 4: Visualizations on explanations to the GNN model for the BACE task. The top 10%
important edges are highlighted with red shadow. The numbers below molecules are fidelity scores
when masking out the top 10% important edges. The right two columns are explanations for two
certain embedding dimensions without downstream tasks. Fidelity scores in the right two columns
explaining two embedding dimensions are still computed for the BACE task but are just for reference.

4.4 Visualization of Explanations

We visualize the explanations of the three learning-based explanation methods on the BACE task,
which aims to predict the inhibitor effect of molecules on human [3-secretase 1 (BACE-1) [29].
Additional visualizations on HIV and SIDER are also provided in Appendix [El The visualization
results are shown in Figure [AI Each molecule visualization shows the top 10% important edges
(bonds) predicted by an explainer marked in red, together with the fidelity score on the molecule. The
left three columns are explanation results with the BACE downstream task. The right columns are
explanations by TAGE to two specific graph embedding dimensions, without downstream models.
Embedding dimensions with greater values among all are selected in the visualizations. To obtain
explanations of certain embedding dimensions, we input the one-hot vectors to the embedding
explainer as condition vectors. The visualization results indicate that while baseline methods select
scattered edges as important, TAGE tends to select edges that form a connected substructure, which is
more reasonable when explaining molecule property predictions where a certain functional group is
important for the property. While there are no ground-truth explanations for the BACE, the validity
of results produced by TAGE can be evidenced by multiple domain researches [7, [8]. We discuss
them in Appendix [E. In addition, the right three columns indicate that dimensions in the embedding
correspond to different substructures and TAGE is able to provide explanations to the dimensions
without downstream tasks.

5 Conclusions

Existing task-specific learning-based explainers become inapplicable under real scenarios when
downstream tasks or models are unavailable and suffer from inefficiency when explaining real-world
graph datasets with multiple downstream tasks. We introduced TAGE, including the task-agnostic
GNN explanation pipeline and the self-supervised training framework to train the embedding explainer
without knowing downstream tasks or models. Our experiments demonstrate that the TAGE generally
achieves higher explanation quality in terms of fidelity and sparsity with a significantly reduced
explanation time cost. We discuss potential limitations and their solutions in Appendix [G!
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