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Abstract
In this paper, we explore the concept of con-001
versational grounding in human-machine dia-002
logues, emphasizing its importance for effec-003
tive communication, especially in spoken di-004
alogues. Conversational grounding, vital for005
building dependable dialog systems, involves006
ensuring a mutual understanding of shared in-007
formation. Despite its importance, there has008
been limited research on this aspect of conversa-009
tion in recent years, especially after the advent010
of Large Language Models (LLMs). Previous011
studies, like those by Benotti and Blackburn012
(Benotti and Blackburn, 2021), highlighted the013
shortcomings of language models in conver-014
sational grounding but lacked a standardized015
benchmark for comparison. This gap in re-016
search becomes more significant considering re-017
cent advances in language models, which have018
led to new ’emergent’ capabilities. Our study019
aims to evaluate the performance of Large Lan-020
guage Models (LLMs) in various aspects of021
conversational grounding, analyze why some022
models perform better than others, and propose023
ways to enhance the capabilities of the models024
that lag behind.025

1 Introduction026

The concept of "common ground" in linguistics,027

introduced by Clark and Brennan (Clark and Bren-028

nan, 1991), refers to the collective knowledge029

and assumptions that conversation participants030

build together. This shared understanding is not031

solely formed through words; it also incorporates032

other modalities, as highlighted by Nakano et al.033

(Nakano et al., 2003), such as gestures, nods, and034

eye contact. These non-verbal cues are crucial035

in creating and maintaining this common ground036

in face-to-face dialogues. Conversational Ground-037

ing is this process of building common grounds038

and involves continuous navigation, negotiation,039

and resolution of uncertainties. These uncertainties040

are often addressed by either providing additional041

context - for example, specifying the object "the042

small gate next to the bakery" or through the lis- 043

tener seeking clarifications, like asking, "You mean 044

the white gate?". Since these agreements are not 045

always explicitly expressed, participants must be 046

adept at recognizing subtle cues of understanding 047

from their interlocutors. 048

The field of conversational systems has seen var- 049

ious efforts aimed at addressing the challenges of 050

grounding, particularly in the context of rule-based 051

modular dialog systems. The pioneering work orig- 052

inated with (Traum and Allen, 1994), which in- 053

troduced the concept of Grounding Acts (GAs). 054

These acts serve to break down the broad process 055

of grounding into discrete units. Although this con- 056

cept offers a solid foundation for understanding and 057

modeling conversational grounding, its application 058

has been limited in the context of contemporary 059

Large Language Models (LLMs). The complexity 060

of grounding stems from the dynamic characteris- 061

tics of spontaneous dialogs, which go beyond mere 062

sequences of grammatically correct text. 063

In dialog systems, an effective grounding mech- 064

anism is vital for reducing ambiguities by func- 065

tioning in two ways: the system can act as a 066

speaker, adding more information if it senses con- 067

fusion from the listener, or as a listener, asking for 068

clarifications when necessary. A lack of ground- 069

ing mechanism is particularly pronounced in di- 070

alogue systems that are increasingly integrating 071

Language Models for tasks like Natural Language 072

Understanding(NLU) and Natural Language Gen- 073

eration(NLG). Benotti and Blackburn (Benotti and 074

Blackburn, 2021) had previously shown that state- 075

of-the-art Language Models pre-trained on large 076

amounts of conversational data like BlenderBot 077

(Roller et al., 2020) frequently fall short in main- 078

taining, understanding and ensuring that informa- 079

tion has been adequately grounded by the listener 080

during conversations. While they identified these 081

deficiencies, their work didn’t provide a compre- 082

hensive framework for evaluating different models 083
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on their grounding capabilities. Their findings were084

primarily based on limited interactions with models085

like BlenderBot, which are less sophisticated than086

the more recent and advanced LLMs like Llama087

(Touvron et al., 2023) and GPT4 (OpenAI, 2023).088

While Conversational Grounding can be a mul-089

timodal phenomenon, in this paper, we start by090

evaluating the performance of state-of-the-art Lan-091

guage Models on texts since the current dialog092

systems convert the speech to text before sending093

them as inputs to these Language Models for NLU,094

NLG, and in some cases the dialog management095

itself. The outputs are later converted into speech096

and gestures using separate modules. We aim to097

assess and enhance pre-trained LLMs’ capabilities098

in various facets of conversational grounding due099

to their growing significance within the field of100

language models. This will lay the groundwork101

for more advanced modular spoken dialog systems102

with multimodal input and output in the future.103

To this end, we have devised a series of tests to104

evaluate LLMs. Our approach involves analyzing105

the model perplexity(per token) of two potential106

hand-crafted responses for a given context: one107

being contextually appropriate and the other decep-108

tively fitting but contextually incorrect. By compar-109

ing the perplexities of these responses, we gauge110

the model’s proficiency in specific grounding sce-111

narios. Our findings indicate a correlation between112

model performance and its size in terms of param-113

eters. Consequently, we conduct novel tests to114

explore the reasons behind the underperformance115

of smaller models, focusing specifically on their116

embedding vectors. The insights gained from these117

investigations are then utilized to explore methods118

for enhancing the performance of these smaller119

models in conversational grounding tasks.120

2 Related Works121

In the field of linguistics, (Clark and Brennan,122

1991) explored the inherent uncertainty present in123

dialogues, which interlocutors negotiate and re-124

solve during the grounding process. Clark identi-125

fied four distinct states of uncertainty: 1) B didn’t126

notice that A uttered any utterance u. 2) B noticed127

that A uttered some u. 3) B correctly heard u. 4) B128

understood what A meant by u.129

While the initial two states require work on the130

multimodal input and output modules of the dialog131

system, we focus more on the third and fourth states132

of uncertainty which is ensured by the LLMs in133

current dialog systems.134

In the realm of grounding phenomena, (Traum 135

and Allen, 1994) introduced the concept of Ground- 136

ing Acts, which serves as a framework for breaking 137

down the grounding process into its fundamental 138

units. Within this framework, they define the fol- 139

lowing categories of GAs for every utterance: 140

1. Initiate: An initial utterance component of a 141

grounding unit which proposes information to 142

be grounded; 143

2. Continue: Continuation of the previous act 144

from the same speaker; 145

3. Acknowledge: An acknowledgment of the 146

proposed information from the interlocutor; 147

4. Repair: Correction of previously uttered ma- 148

terial or addition of omitted material that 149

will change the listener’s interpretation of the 150

speaker’s intention. 151

5. Request Repair: Often distinguished from 152

acknowledgment using intonation where the 153

interlocutor asks for further clarification; 154

6. Request Acknowledge: Attempt to make the 155

listener acknowledge the previous utterance; 156

7. Cancel: Closes off the current information 157

without adding them to the common ground. 158

Subsequent theories, such as Centering Theory 159

(Grosz et al., 1983; Barbara Grosz and Weinstein, 160

1986) and Domain Reference theory (Denis, 2010), 161

introduced techniques for representing and manag- 162

ing grounded information. Nonetheless, their ap- 163

plicability was largely confined to closed domains, 164

primarily owing to their extensive reliance on rule- 165

based approaches for grounding. Therefore, the 166

pursuit of more versatile models capable of catego- 167

rizing utterances into diverse grounding units, re- 168

gardless of the domain, holds considerable promise 169

for advancing the field. 170

Similarly, other recent works have tried to focus 171

on reference-centric multimodal Models by lever- 172

aging the success of artificial neural networks in 173

recent times. (Fried et al., 2021) tries to solve the 174

onecommon dataset (Udagawa and Aizawa, 2019) 175

using an end-to-end neural network based model. 176

However, these models look specifically at multi- 177

modal references rather than grounding. 178

Recent research on generative agents has high- 179

lighted the potential of Large Language Models 180

(LLM) in interactive settings. Park et al.’s study 181
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(Park et al., 2023) involved the creation of multi-182

ple agents, each assigned an initial identity. These183

agents were equipped with a memory module and184

relied on LLMs to assess the significance of vari-185

ous memories. The study demonstrated their ability186

to plan relevant events and execute them through187

human-like interactions. However, it’s important188

to note that this research was conducted in a virtual189

environment with artificial agents, which does not190

fully replicate all human dialogue behaviors, es-191

pecially conversational grounding. This limitation192

arises from the absence of real-time overlapping ex-193

change of information. While this work sheds light194

on the potential capabilities of LLMs contrary to195

the results of previous work like (Benotti and Black-196

burn, 2021), further investigation is warranted in197

assessing their effectiveness in handling various198

grounding phenomena in natural conversations.199

3 Dataset200

Several datasets have been curated to support re-201

search on conversational grounding. Talk The Walk202

(de Vries et al., 2018) created a virtual 2D grid203

environment, while the HCRC Maptask (Thomp-204

son et al., 1993) had participants discuss maps and205

replicate routes by exchanging and negotiating their206

information. These conversations helped in the de-207

velopment of early theories and models for ground-208

ing. After assessing the existing datasets, we opted209

to employ the Meetup dataset (Ilinykh et al., 2019)210

to generate our test cases. This choice was made211

due to the dataset’s specific design, which encour-212

ages participants to incorporate multiple instances213

of grounding within their conversations.214

The Meetup dataset was introduced, featuring215

a scenario wherein two participants are placed on216

a 2D grid, with each vertex representing a room.217

The objective for the participants is to converge218

in the same room, despite only having visibility219

of their respective rooms. Navigational actions220

(east, west, north, or south) move participants to221

new rooms, unveiling the image of the newly en-222

tered room to them. Achieving the common goal223

necessitates the articulation of room descriptions,224

formulation and communication of a converging225

strategy, retention of room descriptions shared by226

the counterpart, and mental modeling of the other227

participant’s room configurations. Although the228

dataset is text-based, it serves as a great resource229

for exploring and developing grounding models.230

Unlike many tasks that designate a leading role to231

one participant, this task creates an egalitarian dy-232

namic where both participants can assume initiator 233

or responder roles interchangeably. Consequently, 234

we plan to use this dataset extensively for our ex- 235

periments. The dataset contains 430 dialogs from 236

the Meetup dataset containing 5131 utterances. 237

4 Models 238

We looked at LLMs of varying sizes and decided 239

to test T5-Large (Raffel et al., 2020), Godel-Large 240

(Peng et al., 2022), Llama(7 Billion)(Touvron et al., 241

2023), GPT 3.5(OpenAI, 2022) and GPT 4 (Ope- 242

nAI, 2023). T5 is an encoder-decoder-based trans- 243

former model, while Godel, developed by Mi- 244

crosoft, builds upon T5 with additional fine-tuning 245

for conversational applications; both models pos- 246

sess 770 million parameters. Llama and the GPT 247

models, in contrast, are decoder-based transformer 248

models. For T5, Godel, and Llama-7B, access to 249

the models allowed for additional fine-tuning us- 250

ing next utterance prediction on the entire Meetup 251

dataset. This enabled testing of both the original 252

(vanilla) and fine-tuned versions of these models. 253

It is important to note that the fine-tuned models 254

were not exposed to the answers of the modified 255

dialog test cases beforehand, ensuring an unbiased 256

evaluation of their performance. Look at appendix 257

for the finetuning training setup. 258

5 Perplexity Testing 259

Perplexity(PPL) is a measure of how well a lan- 260

guage model predicts a sample. It quantifies the 261

model’s uncertainty in predicting a sequence of 262

words as is given by the equation - 263

PPL(W ) = e
− 1

N

∑N

i=1
loge P (wi|w1,...,wi−1) (1) 264

265
Here, W represents the sequence of words 266

w1, w2, . . . , wN , N is the length of the word se- 267

quence, and P (wi|w1, . . . , wi−1) is the probability 268

of each word. A lower perplexity indicated a higher 269

chance of the model generating the sequence. 270

In this study, we conducted an assessment of the 271

model perplexity of candidates for the next utter- 272

ances within the three conversational acts - Repair, 273

Cancel, and Request-Repair. We separately looked 274

at Request-Repairs that are of the Yes-No question 275

type where the models tend to make contextual 276

mistakes. Additionally, we examined instances of 277

complex anaphoric references and ambiguity in 278

references. To evaluate each phenomenon, we em- 279

ployed instances from the Meetup dataset by anno- 280

tating the different phenomena in the dataset. Then 281

we picked 20 instances of each phenomenon and 282

introduced slight modifications to help us create 283

3



Instructions : Here is a conversation between two par-
ticipants ........ to both participants.
Following is the dialog history along with image de-

scriptions:
<Image A> The image showcases an oven ............. is
located near the table.
[00:00:25] A: I’m in a kitchen
[00:00:43] B: In a dining room with 4 brown toys
[00:00:48] A: let me go north
<Image A> There are 4 chairs and a dining table .............
with a photo hanging on the wall.
[00:00:54] A: I see a dining room, but not your one

Figure 1: Example of input context provided to the
models with the instructions, image descriptions and
dialog history. Look at appendix for more complete
instructions and image descriptions.

<Initial instructions + Image description>
[00:00:43] B: I am now in a dining room
[00:00:49] A: I see a library
[00:00:52] A: I’ll move
[00:00:58] B: ok
[00:01:09] B: with silver latch to it
[correct] A: sorry what has a silver latch?
[wrong] A: Yes I am searching for them

Figure 2: Example of test case for a Reference Ambigu-
ity instance for testing the perplexity

test cases. We then created a correct and a wrong284

response for the context and analyzed the model285

perplexity for them, as illustrated in Figure 2. Ide-286

ally, the perplexity of the correct response should287

be lower than the incorrect response.288

Each input in our evaluation encompassed prior289

information, including instructions about the par-290

ticipants’ situation, game rules, dialog history, and291

descriptions of images that the participants were292

viewing during the experiment as can be seen in293

Figure 1. These image descriptions were also in-294

terspersed within utterances during room changes.295

The image descriptions were initially automatically296

generated using the Llava model (Liu et al., 2023)297

and subsequently refined manually to ensure the298

inclusion of all pertinent information. It’s worth299

noting that due to the unavailability of GPT3.5 and300

GPT4 models for direct perplexity calculation at301

the time of the study, we employed these models to302

select between the two response options as prompt303

as an alternative evaluation approach.304

Here we provide a detailed discussion of the test305

case creation process for each category -306

1. Reference Ambiguity: In case of reference307

ambiguity, we remove some utterances from308

the original dialogs to make the dialog am-309

biguous. Later, we test if the model is able to310

ask for clarifications in such cases of uncer-311

tainty as seen in Figure 2. 312

2. Anaphora Reference: We test if the model 313

can link the anaphoric reference to the cor- 314

rect referent when the listener asks for clari- 315

fications. The correct response mentions the 316

correct referent, unlike the wrong response. 317

3. Repair: In repair, we check if the model 318

acting as a listener can correctly take the re- 319

pair from the speaker into account. The cor- 320

rect response contains the repaired informa- 321

tion from the interlocutor while the wrong 322

response doesn’t contain them. 323

4. Cancellation: We take dialogs where the 324

speaker cancels the grounded information and 325

check if the model acting as the listener can 326

make the corrections to the grounded informa- 327

tion. The correct response has the amended 328

information while the wrong response doesn’t. 329

330

5. Request Repair: We test if the model acting 331

as a speaker can provide better repairs using 332

the dialog context when the listener requests 333

for a repair. The correct response provides a 334

contextually correct repair, while the wrong 335

response doesn’t. 336

6. Request Repair (Yes/No): For cases where 337

the listener asks for an acknowledgment of 338

what they have found, the questions are yes- 339

no type. Hence, we check if the model acting 340

as the speaker can provide the correct repair 341

instead of a generic yes/no answer. 342

As can be seen from the above descriptions, we 343

test the model in both cases where it acts as a 344

speaker and where it acts as a listener to get a com- 345

prehensive idea of it’s performance. Note - Look 346

at appendix for examples of test cases for every 347

category. 348

To evaluate the accuracy of our test cases, a hu- 349

man evaluation was conducted via Amazon Me- 350

chanical Turk. We chose the evaluators based on 351

their past record and their location(native English 352

speakers). We randomly selected 20% of our test 353

cases and asked them to select the best option from 354

the correct and wrong responses. We also provided 355

two other options where they considered both op- 356

tions to be valid and neither of them to be valid. 357

Table 1 shows that humans preferred the correct 358

response in more than 90% of the cases. Given that 359

each test case was independently assessed by five 360

different individuals, the unanimous approval from 361

this sample of our test cases affirms their validity. 362
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Table 1: Human Evaluation of Perplexity test cases

Options % of times it
was chosen

Correct Option 90.65
Wrong Option 1.52
Both options are valid 6.25
None of the options are valid 1.52

D1 with repair
User A: It is overlooking the garden, with yellow seat
User B: yellow seat?
User A: sorry yellow table
User A: Do you want me to find you or you to find me?
User B: I’ll look for you

D2 (paraphrased from D1 without Repair)
User A: It is overlooking the garden, with yellow table
User A: Do you want me to find you or you to find me?
User B: I’ll look for you

D3 (paraphrased from D2)
User A: With a garden view, there is a yellow table
User A: Do you want me to search for you or for you
to search for me?
User B: I will search for you.

D4 (with wrong information)
User A: It is overlooking the garden, with yellow seat
User A: Do you want me to search for you or for you
to search for me?
User B: I will search for you.

Figure 3: Example of test case for a repair instance for
understanding the hidden representations of models

6 Results - Perplexity363

Table 2 reveals that smaller models like T5, Godel,364

and Llama(7 Billion) struggled to achieve lower365

perplexity for correct utterances compared to in-366

correct ones, indicating their limited proficiency367

in conversational grounding. GPT 4 on the other368

hand performed exceedingly well. In Table 3, the369

perplexity values for vanilla T5 reached as high370

as 10^15 showing their inability to generate the371

correct utterances. Contrastingly, finetuned mod-372

els demonstrated significantly improved perplexity,373

close to 1, suggesting that finetuning aids in pat-374

tern recognition within dialogues. However, across375

all the categories, the smaller T5 and godel mod-376

els were equally likely to generate the correct and377

wrong utterances as the ratio hovered around 0.5 in378

Table 2. Optimal model performance would have a379

ratio of lower perplexity for correct response close380

to 1 with a lower mean perplexity for correct ut-381

terances indicating that the model will actually re-382

spond with such utterances, but none of the smaller383

models achieved this. While Llama models per-384

formed well in asking for clarifications in case of385

Reference ambiguities, they were unable to ground386

the modified information in cases of repair and 387

cancel and were also unable to provide repairs in 388

cases of Request-Repair. Thus, while finetuning 389

smaller and medium-sized models increased the 390

likelihood of generating utterances similar to those 391

in the dataset(like the correct and wrong responses), 392

it does not necessarily improve the model’s under- 393

standing of dialog pragmatics leading to a lack of 394

ability to ground the conversation. In contrast, the 395

outcomes of this experiment highlight the potential 396

of directly employing larger models for establish- 397

ing conversational grounding within our dialogue 398

systems. the utilization of these large models may 399

not be optimal for every dialogue system, given 400

their increased power usage and higher cost per 401

inference. Consequently, this prompted an inves- 402

tigation into the reasons behind the less effective 403

performance of smaller and medium-sized models 404

compared to the larger models. 405

7 Embedding Study 406

To gain deeper insights, we developed a novel 407

method to analyze how these models process utter- 408

ances at the embedding level. For this purpose, four 409

instances of the same dialogue were generated. 410

1. The First instance (D1) is the original instance 411

of a group of utterances containing the correct 412

response of the PPL test cases of the specific 413

phenomenon. 414

2. Second instance (D2) is a paraphrase of D1 415

without the particular phenomenon that we 416

are testing. This is manually created keeping 417

in mind that the overall meaning of the dialog 418

doesn’t change. A human evaluation shows 419

that humans didn’t find any difference in the 420

meaning of the D1 and D2 as seen in Table 421

4. The evaluation was done similar to our pre- 422

vious evaluation in amazon mechanical turk 423

where we asked them to rank the similarity 424

between D1 and D2 on the likert scale of 1-5. 425

3. Third instance (D3) is a paraphrased instance 426

of D2 where we paraphrase it utterance by 427

utterance using GPT 4(since we are not testing 428

GPT 4 in this test). 429

4. Fourth instance (D4) contains incorrect infor- 430

mation taken from the wrong response of the 431

PPL test cases and added to D2. 432

Figure 3 illustrates a test case encompassing D1, 433

D2, D3, and D4. This test specifically examined the 434

three GAs of Cancel, Request-Repair and Repair. 435

Concurrently, the methodology used provided an 436
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Table 2: Ratio of test cases where correct utterance had lower perplexity

Model Repair Cancel Req-Repair(Yes/No) Req-Repair Anaphora Reference
Ambiguity

T5 0.45 0.55 0.65 0.50 0.45 0.35
Godel 0.40 0.65 0.45 0.50 0.35 0.40
T5 - Finetuned 0.45 0.50 0.40 0.45 0.30 0.45
Godel - Finetuned 0.35 0.50 0.45 0.45 0.40 0.45
Llama-7B 0.55 0.55 0.55 0.45 0.65 0.80
Llama-7B Finetuned 0.50 0.55 0.55 0.45 0.70 0.80
GPT 3.5 0.80 0.55 0.55 0.85 0.80 0.70
GPT 4 0.85 0.95 1.00 0.95 0.95 0.85

Table 3: Mean value of perplexity for correct utterances of each model

Model Repair Cancel Request-Repair
(Yes/No) Request-Repair Anaphora Reference

Ambiguity
T5 3.02e+15 3.46e+15 3.30e+15 2.81e+15 8.49e+14 2.00e+10
Godel 4233.29 4221.50 44379.42 44488.40 21724.60 25769.90
T5 - Finetuned 1.19 1.21 1.19 1.19 2.41 2.04
Godel - Finetuned 1.06 1.09 1.06 1.07 1.55 1.24
Llama-7B 7.12 7.10 7.75 8.00 6.93 7.70
Llama-7B Finetuned 2.91 2.91 2.89 2.92 4.72 4.63

Table 4: Human Evaluation of D1 - D2 similarity

Likert Scale % of times it
was chosen

5 (Means the same) 78.25
4 (Meaning is slightly different) 17.25
3 (Meaning is significantly different) 4.50
2 (Mean slightly opposite to each other) 0.00
1 (Mean completely opposite) 0.00

Figure 4: Pictorial representation of ideal scenario
where D1 should be similar in distance to D2 as D3
and D4 should be far away

opportunity to assess implicit acknowledgments,437

which constitute a category of GAs. (Roque and438

Traum, 2008) describe Move and Use as types of439

implicit acknowledgments. Owing to the inherent440

characteristics of Reference Uncertainty, they were441

not examined at the embedding level in the current442

investigation. For Move and Use we took instances443

from the Meetup dataset and created the D2, D3444

and D4 out of them. D4 for them was created445

by swapping utterances with random utterances in446

other dialogs making them meaningless.447

The study focused on the spatial distance be-448

tween the embeddings of different instances of the449

dialogues. Ideally, the first three dialogues (D1,450

D2, D3) would have close proximity in the embed-451

ding space, while D4 should be distinctly separated.452

This was assessed by analyzing the distances be-453

tween the hidden representations of the final en-454

coding layer of each model for each instance. Es-455

sentially, this evaluated whether the dialogue D1456

containing the grounding phenomenon, bore more 457

similarity to D3 or D4, in terms of their respective 458

distances from D2. If the model exhibits ground- 459

ing capabilities, the distance between D1 and D2 460

should be akin to that between D2 and D3; other- 461

wise, it would more closely resemble the distance 462

between D2 and D4 as depicted by Figure 4. 463

We created the D2 test cases from D1 for each 464

phenomenon in the following way - 465

1. Repair: Here, we took the original dialog D1 466

containing the Repair and replaced the origi- 467

nal information with the repaired information. 468

Figure 3 provides an example where we re- 469

place the initial utterance containing ’yellow 470

seat’ with ’yellow table’ directly. As a result, 471

the information present in D1 and D2 remains 472

the same while D4 contains ’yellow seat’. 473

2. Cancel: We remove the information that was 474

canceled in the first place thus having the same 475

meaning as D1. 476

3. Request-Repair: We remove the clarification 477

asked by the listener and add the correct PPL 478

response as repair directly in the speaker’s 479

utterance thus keeping the overall informa- 480

tion intact. We do the same for Request- 481

Repair(Yes/No). 482

4. Use: Since a ’Use’ means using the infor- 483

mation provided in the previous utterance, we 484

convert this implicit acknowledgment to an ex- 485

plicit acknowledgment to check if the model 486

considers this acknowledgment to be similar 487

to an explicit acknowledgment. 488

5. Move: Here, the listener moves to a new set 489

of information thus implicitly acknowledging 490
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Table 5: Ratio of cases where D2 is closer to D1 than D3

Model Repair Cancel Req-Rep Req-Rep(y/n) Use Anaphora Move
T5 0.30 0 0.40 0.25 0.88 0.50 0.88
Godel 0.35 0 0.20 0.30 0.83 0.55 1
T5 - Finetuned 0.30 0 0.40 0.15 0.83 0.55 0.88
Godel - Finetuned 0.35 0 0.25 0.20 0.83 0.50 0.72
Llama 0.30 0.20 0.40 0.35 0.55 0.45 0.55
Llama - Finetuned 0.35 0.35 0.45 0.40 0.72 0.75 1
GPT 3.5 0.65 0.55 0.35 0.25 0.32 0.45 0.88
GPT 4 0.70 0.85 0.70 0.80 0.84 0.90 0.94

Table 6: Ratio of cases where D2 is closer to D1 than D4

Model Repair Cancel Req-Rep Req-Rep(y/n) Use Anaphora Move
T5 0.35 0.50 0.40 0.40 1 0.55 1
Godel 0.35 0.65 0.25 0.50 1 0.45 1
T5 - Finetuned 0.40 0.35 0.40 0.40 0.88 0.45 1
Godel - FineTuned 0.35 0.55 0.25 0.45 0.88 0.40 0.88
Llama 7B 0.50 0.35 0.45 0.40 0.77 0.50 0.65
Llama 7B - Finetuned 0.60 0.35 0.50 0.55 0.77 0.60 0.88
GPT 3.5 0.65 0.60 0.85 0.95 0.59 0.8 0.66
GPT 4 0.85 0.95 0.70 0.95 0.91 1 1

the previous information. Thus we convert491

such instances to an explicit acknowledgment.492

493

6. Anaphora: D2 is the dialog with the correct494

response in PPL testcase where the reference495

is correctly replaced with the object being496

referred while D4 has the wrong response.497

While D1 contains the original reference.498

For GPT 3.5 and GPT 4, since we did not have499

the embeddings of the models, we asked the mod-500

els to rank the three instances D1, D3, and D4501

according to their closeness to D2. While, we do502

not intend to test these 2 models, we have given503

their performance for a benchmark.504

Note - Please check the appendix for examples505

of each category for encoder testing.506

8 Results - Embedding Study507

The data presented in Table 5 reveals that smaller508

and medium-sized models often interpret implicit509

acknowledgments, such as ’Use’ and ’Move’, simi-510

larly to explicit acknowledgments. This suggests511

proficiency in these models for recognizing ac-512

knowledgments that are not explicitly expressed513

by participants. However, in other categories, these514

models perceive a closer similarity between dia-515

logues D2 and D3 than between D1 and D3, in-516

dicating a limitation in understanding dialogs that517

contain nuanced grounding phenomena (D1) differ-518

ently from paraphrased dialogs (D2 and D3). Table519

6 further exposes a discrepancy in smaller mod-520

els, where they erroneously align D4 more closely521

with D2 than D1 in the embedding space in 50-522

80% of cases. This table highlights the failure of523

the models at the encoder level to differentiate be- 524

tween utterances containing grounding phenomena 525

and utterances containing deceptively wrong infor- 526

mation. These distinctions, or lack thereof, in the 527

embedding space lead to generation errors, as pre- 528

viously observed in our experiments. The findings 529

from this study highlight four key insights: 1) The 530

model performance in differentiating between D1, 531

D2, D3 and D4 was directly proportional to the 532

size of the models. 2) The models’ tendency to not 533

equate the original dialog (D1) to the paraphrased 534

dialogs lacking the grounding phenomenon (D2 535

and D3), particularly for phenomena such as Re- 536

pair, Request-Repair, and Cancel indicating their 537

shortcomings in appropriately modifying informa- 538

tion that has been corrected or canceled, or in gen- 539

erating contextually accurate utterances based on 540

the recent information exchanged. In other words, 541

these models lack an ability to distinguish be- 542

tween the information presented across various 543

temporal contexts. 3) The tendency of the models 544

to confuse D2 with D4 due to word similarity, in- 545

dicating a reliance on lexical content over prag- 546

matic understanding as seen in Table 6. 4) The 547

consistent superior performance of the fine-tuned 548

Llama model over its original version, suggests the 549

potential benefits of further finetuning methods for 550

enhancing model performance. 551

9 Positive and Negative Reward Training 552

Based on the embedding testing analysis, we re- 553

alised that the models need to be able to distinguish 554

at the embedding level between dialogs that sound 555

the same but mean very different. Having found 556

out the effectiveness of finetuning in reducing the 557
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Table 7: Ratio of correct response having lower perplexity after positive and negative reward training

Model Repair Cancel Req-Repair(Yes/No) Req-Repair Anaphora Reference Ambiguity
T5 0.50 0.15 0.65 0.35 0.40 0.65
Godel 0.45 0.15 0.60 0.50 0.40 0.75
T5 - Finetuned 0.60 0.35 0.75 0.45 0.50 0.75
Godel - Finetuned 0.50 0.25 0.65 0.45 0.45 0.80
Llama-7B 0.70 0.75 0.60 0.85 0.70 0.90
Llama-7B Finetuned 0.75 0.75 0.65 0.85 0.75 0.95

Table 8: Perplexity of correct utterances for models trained with positive and negative reward

Model Repair Cancel Req-Repair(Yes/No) Req-Repair Anaphora Reference Ambiguity
T5 2.56e+05 6.18 20 37 4.76 1.45e+04
Godel 28.90 5.21 13.55 16.82 4.92 38.90
T5 - Finetuned 932.49 847.43 7.74e+04 1.60e+06 7617.88 5.72e+03
Godel - Finetuned 856 8.70 21.94 22.19 7.82 46.20
Llama-7B 11.88 14.63 14.32 16.51 16.26 22.31
Llama-7B Finetuned 8.95 12.93 9.07 10.67 10.43 19.90

perplexities while also helping the models distin-558

guish more with the incorrect dialogs, we decided559

to create additional cases for each categories and560

finetune the models using Positive and Negative561

Reward Training (Sutton and Barto, 2018). As562

seen in Equation 2, this approach involved reward-563

ing the model for correctly identifying suitable re-564

sponses i.e. reduce the loss of correct response565

(Loss_Correct), while penalizing it for selecting in-566

correct utterances in the same context i.e. increase567

the loss of the wrong response (loss_Wrong). Both568

the correct and Wrong Losses are obtained using569

cross-entropy loss with the entire context as input570

and the correct and wrong responses as outputs.571

Here W1 and W2 are hyper-parameters empirically572

set as W1=4 and W2=0.5.573

Loss = W1 ∗ Loss_Correct−W2 ∗ Loss_Wrong (2)574

Recognizing GPT 4’s superior performance in575

our evaluations, and the need for more diverse cat-576

egory instances in our dataset, we utilized GPT 4577

to generate 100 additional training data by feed-578

ing it examples from every category. However, it579

was noted that GPT 4 had limitations in creating580

complex cases, necessitating manual modifications581

to improve their quality. Tables 7 and 8 show the582

improvement in the performance of Llama-7B and583

its fine-tuned version after the positive-Negative584

reward training over their previous performance585

in Tables 2 and 3. However, the smaller models586

T5 and Godel were not able to improve their per-587

formance indicating a role of model size and pre-588

training on extensive data that leads to their ability589

to learn newer concepts. This indicates that a com-590

plex concept like grounding is difficult to achieve591

with smaller models like T5-Large even after fine-592

tuning. Conversely, a model akin to Llama’s size593

can be trained for better grounding performance, 594

though it may not match the proficiency of larger 595

models like GPT-4 leading to a trade-off between 596

better performance and computational power. 597

10 Conclusion and Future Work 598

In this study, we developed a benchmark aimed at 599

assessing the effectiveness of LLMs in dialogue 600

systems, with a focus on conversational grounding, 601

and utilizing perplexity scores as a measure. Our 602

observations revealed a direct correlation between 603

model size and performance, highlighting the pos- 604

sibility of emergent properties in LLMs leading 605

to the addressing of conversational grounding in 606

dialogs, unlike the previous findings of (Benotti 607

and Blackburn, 2021). Additionally, we introduced 608

an innovative method to investigate the limited per- 609

formance of smaller models by examining the em- 610

beddings from four altered versions of the same 611

dialogue which indicated the emphasis on lexical 612

content by smaller models. Building on these in- 613

sights, we generated new training data employing 614

positive-negative reward techniques which resulted 615

in improved performance of medium-sized mod- 616

els. While they still do not match the performance 617

level of larger models, this finding indicates that, 618

with specific training, medium-sized models could 619

potentially replace larger models in real-time sys- 620

tems where there is a need to balance performance 621

and computational power. Future work will focus 622

on integrating multimodal inputs and outputs in 623

language models, recognizing their vital role in 624

grounding processes. We also identified the ne- 625

cessity for improved representation techniques of 626

grounded information to enhance storage and uti- 627

lization efficiency in language models, setting a 628

direction for subsequent research endeavors. 629
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Request Repair(Yes/No) Perplexity Test-
case Example

<Initial instructions>
<Image A> The picture depicts a calm patio
with an ocean view, featuring two chairs fac-
ing the water and having pink walls. One
chair is on the left and the other is positioned
in the center. There is a cup on the table
between them, adding warmth. A wooden
railing surrounds the space for safety. Every-
thing evokes a feeling of peace and relaxation,
making it a perfect spot to spend time outside.
[00:00:57] A: I’ve found one. Let me know
when you do.
[00:01:04] B: I am on a balcony facing an
ocean
[00:01:14] A: This was thin wood railing.
Two wooden folding chairs?
[00:01:19] A: You can see windows off to the
left.
[00:01:26] B: yes, coffee mug on the floor?
[00:01:35] A: Yes. I think we’re both in the
same bedroom with a barbie theme.
[00:01:42] B: Is it the one with yellow walls?
[correct] A: No it has pink walls
[wrong] A: yes it has yellow walls

Figure 5: Example of test case for a Request-
Repair(Yes/No) instance for testing the perplexity

yes/no type request repairs because the models tend737

to do a lot of mistakes in such cases. It is worth738

noting that in our test cases, the correct answer739

could contain a yes as well. Figure 9 shows a test740

case for Request-Repair where the requests are not741

of the yes/no type.742

Figure 6 provides an example of a test case for743

Anaphora testing. Here we check if the model B744

where asked to clarify for the word ’here’ is able to745

provide the correct referent. In some of the other746

test cases for anaphora, the model has to act as747

the listener and use the reference correctly in it’s748

response.749

Figure 7 shows an example of the repair test750

cases where we check the ability of the model to751

modify the information and ground them. Figure 8752

shows an example of the cancel test case where the753

model has to deal with cases where the information754

provided by the interlocutor was canceled.755

Anaphora Perplexity Testcase Example

<Initial instructions + Image descriptions>
[00:00:18] A: I am in the attick
[00:00:20] A: it is west
[00:00:42] B: I’m in the bedroom
[00:01:22] B: I see a couch here
[00:01:15] A: Sorry where do you see the
couch?
[correct] B: in the bedroom
[wrong] B: in the attick

Figure 6: Example of test case for an Anaphora instance
for testing the perplexity

Repair Perplexity Testcase Example

<Initial instructions + image descriptions of
rooms being visited + previous utterances spo-
ken>
User A: go north
User B: You want me to go north?
User A: sorry. I meant to go south to come
inside
[correct] User B: Okay, let me go to the south
[wrong] User B: Okay, let me go to the north

Figure 7: Example of test case for a repair instance for
testing the perplexity

Cancel Perplexity Testcase Example

<Initial instructions+image descriptions>
[00:00:38] A: I’m in one with diamond
shelves in center
[00:00:41] A: lots of bottles
[00:00:44] A: wood racks
[00:00:54] B: I’m currently in a room with a
pool table
[00:01:08] A: yellow light on ceiling
[00:01:27] B: I’m in a room with lots of bot-
tles
[00:01:45] A: Ohh, it’s not yellow
[correct] B: then what is the color of those
ceilings?
[wrong] B: aah okay looking for yellow bot-
tles then

Figure 8: Example of test case for a cancel instance for
testing the perplexity
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Request Repair Perplexity Testcase Exam-
ple

<Initial instructions>
Below is the dialog history:
<Image B> The image is of a cluttered, tiny
bedroom with two single beds pushed to-
gether, one covered in a checkered blanket.
A matte black chair occupies the center and
a laptop rests on one bed, a cellphone and a
cup. There is a brown table containing books
on top of it. The untidy room needs cleaning.
[00:00:42] B: im in the dining room
[00:00:52] A: okay describe it and I’ll find
you
[00:01:07] B: table with 6 chairs
[00:01:31] A: wooden walls?
[00:01:33] B: support bars on the right
[00:01:40] A: what is the color of the table?
[correct] B: It is brown in color.
[wrong] B: it is matte black in color.

Figure 9: Example of test case for a Request Repair
instance for testing the perplexity

A.2 encoding test examples756

Here we look at the examples of the remaining cat-757

egories for the encoder testing. As seen in Figure758

12 and 13, we convert the implicit acknowledg-759

ments to explicit acknowledgments to check if the760

model considers the both of them to be similar.761

In other words, does the model understand that762

implicit acknowledgments are also a type of an763

acknowledgment.764

Figure 11 shows an example of Cancel where A765

says something but then cancels it. D2 in this case766

doesn’t contain any information about going north.767

Hence, we want to check if the model is able to768

consider both information same or not.769

Figure 10 is the same example as Figure 9 where770

the correct response becomes part of D2 while771

wrong response becomes part of D4.772

A.3 Training Setup773

For smaller models we used a single A100 gpu774

to train the models while for Llama, we used 2775

gpu nodes to finetune. All the models were trained776

with 3 epochs. We used a Adam optimizer with777

a learning rate of 2e-5 and a cosine learning rate778

scheduler. The weight decay of the models was set779

Request Repair Encoding Testcase Exam-
ple

D1 with Request Repair
[00:00:42] B: im in the dining room
[00:00:52] A: okay describe it and I’ll find
you
[00:01:07] B: table with 6 chairs
[00:01:31] A: wooden walls?
[00:01:33] B: support bars on the right
[00:01:40] A: what is the color of the table?
[00:01:46] B: It is brown in color.

D2
[00:00:42] B: im in the dining room
[00:00:52] A: okay describe it and I’ll find
you
[00:01:07] B: brown table with 6 chairs
[00:01:31] A: wooden walls?
[00:01:33] B: support bars on the right

D3
[00:00:42] B: im in the dining room
[00:00:52] A: okay describe it and I’ll find
you
[00:01:07] B: matte black table with 6 chairs
[00:01:31] A: wooden walls?
[00:01:33] B: support bars on the right

Figure 10: Example of test case for a Request Repair
instance for understanding the hidden representations
for each model

at 0.01 and a batch size of 4 was used. The initial 780

finetuning was done with a 80-20 ration of train 781

and validation test while the entire artificial test set 782

generated for positive-negative reward training was 783

used for the training purpose. 784

A.4 Complete example of instructions 785

Figure 14 provides the complete instruction that 786

was provided to the models. It also shows the ex- 787

ample of an image description that was obtained 788

from the Llava model and later modified manually. 789
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Cancel Encoding Testcase Example

D1 with cancel
[00:00:30] B: Okay, I got a bedroom almost
all the way north
[00:00:31] A: one in a wooden cabin room,
small bed
[00:00:36] B: Alright, I’ll come find you
[00:00:41] A: I’m north
[00:00:53] A: no forget about it.

D2
[00:00:30] B: Okay, I got a bedroom almost
all the way north
[00:00:31] A: one in a wooden cabin room,
small bed
[00:00:36] B: Alright, I’ll come find you

Figure 11: Example of test case for a Cancel instance
for understanding the hidden representations for each
model

Use Encoding Testcase Example

D1 with use
[00:00:10] B: I am in the kitchen
[00:00:21] A: Stay there and I will come.
[Use]
[00:00:30] B: Okay

D2
[00:00:10] B: I am in the kitchen
[00:00:15] A: okay [explicit acknowledg-
ment]
[00:00:21] A: Stay there and I will come.
[00:00:30] B: Okay

Figure 12: Example of test case for a Use instance for
understanding the hidden representations for each model

Move On Encoding Testcase Example

D1 with use
[00:00:08] B: I am going to the left of the
room
[00:00:15] A: Let me stay here
[00:00:30] B: Okay

D2
[00:00:08] B: I am going to the left of the
room
[00:00:12] A: okay got it.
[00:00:15] A: Let me stay here
[00:00:30] B: Okay

Figure 13: Example of test case for a Move On instance
for understanding the hidden representations for each
model
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Instructions : Here is a conversation between
two Participants A and B who are in a vir-
tual space that has lots of different rooms that
are depicted with images. Each room has a
type (such as kitchen, bathroom, bedroom,
etc.). The participants are initially located
in different rooms. The goal of the game is
for the two participants to locate themselves
in the same room. In order to achieve this
goal, the participants communicate with one
another by text and describe the room they
find themselves in. On the basis of those de-
scriptions, they move to different rooms and
describe their new room to the other partic-
ipant. The game ends when the two partici-
pants find themselves in the same room. We
translated the images that the participants saw
into text. That description of the room is pro-
vided below as soon as a participant enters a
given room. The current room description of
User A starts with a token <Image A> and the
current room description of User B starts with
a token <Image B>. Every utterance from A
or B is preceded with a timestamp closed un-
der brackets. Some text is provided by GM,
a non-participant in the game who provides
essential information regarding the game to
both participants.
Following is the dialog history along with

image descriptions :
<Image A> The image showcases a large,
modern kitchen with dark wood cabinets and
sleek black countertops. The kitchen is well-
equipped with a stove top oven positioned
under a ventilation fan, a microwave situated
above the oven, and a refrigerator placed on
the right side of the room. There are several
items placed on the countertops, including
a bowl, a few apples, and an orange. The
kitchen also features a dining table with chairs
placed around it. A potted plant adds a touch
of greenery to the room, located near the din-
ing table.
[00:00:19] B: i am currently outside
.........

Figure 14: Example of complete input context provided
to the models including the instructions, image descrip-
tions, and some dialog history
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