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ABSTRACT

We propose a novel formulation of the triplet objective function that improves
metric learning without additional sample mining or overhead costs. Our approach
aims to explicitly regularize the distance between the positive and negative samples
in a triplet with respect to the anchor-negative distance. As an initial validation,
we show that our method (called No Pairs Left Behind [NPLB]) improves upon
the traditional and current state-of-the-art triplet objective formulations on stan-
dard benchmark datasets. To show the effectiveness and potentials of NPLB on
real-world complex data, we evaluate our approach on a large-scale healthcare
dataset (UK Biobank), demonstrating that the embeddings learned by our model
significantly outperform all other current representations on tested downstream
tasks. Additionally, we provide a new model-agnostic single-time health risk defini-
tion that, when used in tandem with the learned representations, achieves the most
accurate prediction of subjects’ future health complications. Our results indicate
that NPLB is a simple, yet effective framework for improving existing deep metric
learning models, showcasing the potential implications of metric learning in more
complex applications, especially in the biological and healthcare domains. Our
code package as well as tutorial notebooks is available on our public repository:
<revealed after the double blind reviews>.

1 INTRODUCTION

Metric learning is the task of encoding similarity-based embeddings where similar samples are
mapped closer in space and dissimilar ones afar (Xing et al., 2002; Wang et al., 2019; Roth et al.,
2020). Deep metric learning (DML) has shown success in many domains, including computer vision
(Hermans et al., 2017; Vinyals et al., 2016; Wang et al., 2018b) and natural language processing
(Reimers & Gurevych, 2019; Mueller & Thyagarajan, 2016; Benajiba et al., 2019). Many DML
models utilize paired samples to learn useful embeddings based on distance comparisons. The most
common architectures among these techniques are the Siamese (Bromley et al., 1993) and triplet
networks (Hoffer & Ailon, 2015). The main components of these models are the: (1) Strategies
for constructing training tuples and (2) objectives that the model must minimize. Though many
studies have focused on improving sampling strategies (Wu et al., 2017; Ge, 2018; Shrivastava et al.,
2016; Kalantidis et al., 2020; Zhu et al., 2021), modifying the objective function has attracted less
attention. Given that learning representations with triplets very often yield better results than pairs
using the same network (Hoffer & Ailon, 2015; Balntas et al., 2016), our work focuses on improving
triplet-based DML through a simple yet effective modification of the traditional objective.

Modifying DML loss functions often requires mining additional samples or identifying new quantities
(e.g. identifying class centers iteratively throughout training (He et al., 2018)) or computing quantities
with costly overheads (Balntas et al., 2016), which may limit their applications. In this work, we
aim to provide an easy and intuitive modification of the traditional triplet loss that is motivated by
metric learning on more complex datasets, and the notion of density and uniformity of each class.
Our proposed variation of the triplet loss leverages all pairwise distances between existing pairs in
traditional triplets (positive, negative, and anchor) to encourage denser clusters and better separability
between classes. This allows for improving already existing triplet-based DML architectures using
implementations in standard deep learning (DL) libraries (e.g. TensorFlow), enabling a wider usage
of the methods and improvements presented in this work.
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Many ML algorithms are developed for and tested on datasets such as MNIST (LeCun, 1998) or
ImageNet (Deng et al., 2009), which often lack the intricacies and nuances of data in other fields,
such as health-related domains (Lee & Yoon, 2017). Unfortunately, this can have direct consequences
when we try to understand how ML can help improve care for patients (e.g. diagnosis or prognosis).
In this work, we demonstrate that DML algorithms can be effective in learning embeddings from
complex healthcare datasets. We provide a novel DML objective function and show that our model’s
learned embeddings improve downstream tasks, such as classifying subjects and predicting future
health risk using a single-time point. More specifically, we build upon the DML-learned embeddings
to formulate a new mathematical definition for patient health-risks using a single time point which,
to the best of our knowledge, does not currently exist. To show the effectiveness of our model and
health risk definition, we evaluate our methodology on a large-scale complex public dataset, the
UK Biobank (UKB) (Bycroft et al., 2018), demonstrating the implications of our work for both
healthcare and the ML community. In summary, our most important contributions can be described as
follows. 1) We present a novel triplet objective function that improves model learning without any
additional sample mining or overhead computational costs. 2) We demonstrate the effectiveness
of our approach on a large-scale complex public dataset (UK Biobank) and on conventional
benchmarking datasets (MNIST, Fashion MNIST (Xiao et al., 2017) and CIFAR10 (Krizhevsky,
2010)). This demonstrates the potential of DML in other domains which traditionally may have been
less considered. 3) We provide a novel definition of patient health risk from a single time point,
demonstrating the real-world impact of our approach by predicting current healthy subjects’ future
risks using only a single lab visit, a challenging but crucial task in healthcare.

2 BACKGROUND AND RELATED WORK

Contrastive learning aims to minimize the distance between two samples if they belong to the
same class (are similar). As a result, contrastive models require two samples to be inputted before
calculating the loss and updating their parameters. This can be thought of as passing two samples to
two parallel models with tied weights, hence being called Siamese or Twin networks (Bromley et al.,
1993). Triplet networks (Hoffer & Ailon, 2015) build upon this idea to rank positive and negative
samples based on an anchor value, thus requiring the model to produce mappings for all three before
the optimization step (hence being called triplets).

Modification of Triplet Loss: Due to their success and importance, triplet networks have attracted
increasing attention in recent years. Though the majority of proposed improvements focus on the
sampling and selection of the triplets, some studies (Balntas et al., 2016; Zhao et al., 2019; Kim &
Park, 2021; Nguyen et al., 2022) have proposed modifications of the traditional triplet loss proposed
in Hoffer & Ailon (2015). Similar to our work, Multi-level Distance Regularization (MDR) (Kim
& Park, 2021) seeks to regularize the DML loss function. MDR regularizes the pairwise distances
between embedding vectors into multiple levels based on their similarity. The goal of MDR is to
disturb the optimization of the pairwise distances among examples and to discourage positive pairs
from getting too close and the negative pairs from being too distant. A drawback of regularization
methods is the choice of hyperparameter that balances the regularization term, though adaptive
balancing methods could be used (Chen et al., 2018; Heydari et al., 2019). Most related to our
work, Balntas et al. (2016) modified the traditional objective by explicitly accounting for the distance
between the positive and negative pairs (which the traditional triplet function does not consider), and
applied their model to learn local feature descriptors using shallow convolutional neural networks.
They introduce the idea of "in-triplet hard negative", referring to the swap of the anchor and positive
sample if the positive sample is closer to the negative sample than the anchor, thus improving on the
performance of traditional triplet networks (we refer to this approach as Distance Swap). Though
this method uses the distance between the positive and negative samples to choose the anchor, it
does not explicitly enforce the model to regularize the distance between the two, which was the
main issue with the original formulation. Our work addresses this pitfall by using the notion of local
density and uniformity (defined later in §3) to explicitly enforce the regularization of the distance
between the positive and negative pairs using the distance between the anchors and the negatives.
As a result, our approach ensures better inter-class separability while encouraging denser intra-class
embeddings. In addition to MDR and Swap Distance, we benchmark our approach againt three
related and widely-used metric learning algorithms, namely LiftedStruct Song et al. (2015), N-Pair
Loss Sohn (2016), and InfoNCE Oord et al. (2018a). Due to the space constraints, and given the
popularity of the methods, we provide an overview of these algorithms in Appendix E
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Figure 1: Visual comparisons between a traditional triplet loss (left), a Distance Swap triplet loss (middle)
and our proposed No Pairs Left Behind objective (right) on a toy example. In this figure φ refers to a
learned operator, δ+ = d(φ(pi), φ(ai)), δ− = d(φ(ni), φ(ai)) and ε◦ denotes the margin. For this toy example,
the network φ(·) trained on the traditional objective (left) is only concerned with satisfying δ− > δ+ + ε◦,
potentially mapping a positive close to negative samples nj , nq , which is not desirable. A similar case could
happen for the Distance Swap variant as well (middle). Our proposed objective seeks to avoid this by explicitly
forming dependence between the distance of the positive and negative pair and δ−. This regularization results in
denser mappings when samples are similar and vice versa when the samples are dissimilar, as shown in §4. We
describe our formulation and modification in §3.

Deep Learned Embeddings for Healthcare: Recent years have seen an increase in the number
of DL models for Electronic Health Records (EHR) with several methods aiming to produce rich
embeddings to better represent patients (Rajkomar et al., 2018; Choi et al., 2016b; Tran et al., 2015;
Nguyen et al., 2017; Choi et al., 2016a; Pham et al., 2017). Though most studies in this area consider
temporal components, DeepPatient (Miotto et al., 2016) does not explicitly account for time, making
it an appropriate model for comparison with our representation learning approach given our goal of
predicting patients’ health risks using a single snapshot. DeepPatient is an unsupervised DL model
that seeks to learn general deep representations by employing three stacks of denoising autoencoders
that learn hierarchical regularities and dependencies through reconstructing a masked input of EHR
features. We hypothesize that learning patient reconstructions alone (even with masking features)
does not help to discriminate against patients based on their similarities. We aim to address this by
employing a deep metric learning approach that learns similarity-based embeddings.

Predicting Patient’s Future Health Risks: Assessing patients’ health risk using EHR remains a
crucial, yet challenging task of epidemiology and public health (Li et al., 2015). An example of such
challenges are the clinically-silent conditions, where patients fall within "normal" or "borderline"
ranges for specific known blood work markers, while being at the risk of developing chronic conditions
and co-morbidities that will reduce quality of life and cause mortality later on (Li et al., 2015).
Therefore, early and accurate assessment of health risk can tremendously improve the patient care,
specially in those who may appear "healthy" and do not show severe symptoms. Current approaches
for assessing future health complications tie the definition of health risks to multiple time points
(Hirooka et al., 2021; Chowdhury & Tomal, 2022; Razavian et al., 2016; Kamal et al., 2020; Cohen
et al., 2021; Che et al., 2017). Despite the obvious appeal of such approaches, the use of many
visits for modeling and defining risk simply ignores a large portion of patients who do not return
for subsequent check ups, especially those with lower incomes and those without adequate access
to healthcare (Kullgren et al., 2010; Taani et al., 2020; Nishi et al., 2019). Given the importance of
addressing these issues, we propose a mathematical definition (that is built upon DML) based on a
single time point, which can be used to predict patient health risk from a single lab visit.

3 METHODS

Main Idea of No Pairs Left Behind (NPLB): The main idea behind our approach is to ensure that,
during optimization, the distance between positive pi and negative samples ni is considered, and
regularized with respect to the anchors ai (i.e. explicitly introducing a notion of distance between
d(pi, ni) which depends on d(ai, ni)). We visualize this idea in Fig. 1. The mathematical intuition
behind our approach can be described by considering in-class local density and uniformity, as
introduced in Rojas-Thomas & Santos (2021) for unsupervised clustering evaluation metric.

Given a metric learning model φ, let local density of a sample pi be defined as LD(pi)pi∈ck =
min{d(φ(pi), φ(pj))}, ∀pi ∈ ck and i 6= j, and let AD(ck) be the average local density of all
point in class ck. An ideal operator φ would produce embeddings that are compact while well
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separated from other classes, or that the in-class embeddings are uniform. This notion of uniformity,
is proportional to the difference between the local and average density of each class, i.e.

Unif(ck) =

{∑|ck|
i |LD(pi)−AD(ck)|

AD(ck)+ξ
if |ck| > 1

0 Otherwise
.

for 0 < ξ � 1. However, computing density and uniformity of classes is only possible post-hoc once
all labels are present and not feasible during training if the triplets are mined in a self-supervised
manner. To reduce the complexity and allow for general use, we utilize proxies for the mentioned
quantities to regularize the triplet objective using the notion of uniformity. We take the distance
between positive and negative pairs as inversely proportional to the local density of a class. Similarly,
the distance between anchors and negative pairs is closely related to the average density, given
that a triplet model maps positive pairs inside an ε◦-ball of the anchor (ε◦ being the margin).
In this sense, the uniformity of a class is inversely proportional to |d(φ(pi), φ(ni))−d(φ(ai), φ(ni))|.

NPLB Objective: Let φ(·) denote an operator and T be the set of triplets of the form (pi, ai, ni)
(positive, anchor and negative tensors) sampled from a mini-batch B with size N . For the ease of
notation, we will write φ(qi) as φq. Given a margin ε◦ (a hyperparameter), the traditional objective
function for a triplet network is shown in Eq. (1):

LTriplet =
1

N

N∑
(pi,ai,ni)∈T

[d(φa, φp)− d(φa, φn) + ε◦]
+ (1)

with [·]+ = max{·, 0} and d(·) being the Euclidean distance. Minimizing Eq. (1) only ensures that
the negative pairs fall outside of an ε◦-ball around the ai, while bringing the positive sample pi inside
of this ball (illustrated in Fig. 1), satisfying d(φa, φn) > d(φa, φp) + ε◦. However, this objective
does not explicitly account for the distance between positive and negative samples, which can impede
performance especially when there exists high in-class variability. Motivated by our main idea of
having denser and more uniform in-class embeddings, we add a simple regularization term to address
the issues described above, as shown in Eq. (2)

LNPLB =
1

N

N∑
(pi,ai,ni)∈T

[d(φa, φp)− d(φa, φn) + ε◦]
+
+ [d(φp, φn)− d(φa, φn)]p , (2)

where p ∈ N and NPLB refers to "No Pairs Left Behind." The regularization term in Eq. (2)
enforces positive and negative samples to be roughly the same distance away as all other negative
pairings, while still minimizing their distance to the anchor values. However, if not careful, this
approach could result in the model learning to map ni such that d(φa, φp) > max{ε◦, d(φp, φn)},
which would ignore the triplet term, resulting in a minimization problem with no lower bound1. To
avert such issues, we restrict p = 2 (or generally, p ≡ 0 (mod 2)) as in Eq. (3).

LNPLB =
1

N

N∑
(pi,ai,ni)∈T

[d(φa, φp)− d(φa, φn) + ε◦]
+
+ [d(φp, φn)− d(φa, φn)]2 , (3)

Note that this formulation does not require mining of any additional samples nor complex computa-
tions since it just uses the existing samples in order to regularize the embedded space. Moreover

LNPLB = 0 =⇒ − [d(φp, φn)− d(φa, φn)]2 = [d(φa, φp)− d(φa, φn) + ε◦]
+

which, considering only the real domain, is possible if and only if d(φp, φn) = d(φa, φn), and
d(φa, φn) ≥ d(φa, φp) + ε◦, explicitly enforcing separation between negative and positive pairs.

1The mentioned pitfall can be realized by taking p = 1, i.e.

L(pi, ai, ni) =
1

N

N∑
(pi,ai,ni)∈T

[d(φa, φp)− d(φa, φn)) + ε◦]
+ + [d(φp, φn)− d(φa, φn)].

In this case, the model can learn to map ni and ai such that d(φa, φn) > C where
C = max{d(φp, φn), d(φa, φp) +m}, resulting in L < 0.
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Figure 2: Visual comparisons between a traditional triplet loss, Distance Swap and the proposed NPLB
objective on train (top row) and test (bottom row) sets of (A) MNIST and (B) Fashion MNIST. (A) To
evaluate the feasibility of the proposed Triplet loss on general datasets, we trained the same network (described
in Appendix Appendix K) under identical conditions on the MNIST dataset, with the only difference being
the loss function used. (B) UMAP-reduced embeddings of Fashion MNIST trained with the three triplet loss
versions. Our results indicate both quantitative and qualitative improvements in the embeddings, as shown above
and in Table 1. (See Fig. A6 and A7 for higher resolution versions).

4 VALIDATION OF NPLB ON STANDARD DATASETS

Prior to testing our methodology on healthcare data, we validate our derivations and intuition
on common benchmark datasets, namely MNIST, Fashion MNIST and CIFAR10. To assess the
improvement gains from the proposed objective, we refrained from using more advanced triplet
construction techniques and followed the most common approach of constructing triplets using the
labels offline. We utilized the same architecture and training settings for all experiments, with the only
difference per dataset being the objective functions (see Appendix K for details on each architecture).
After training, we evaluated our approach quantitatively through assessing classification accuracy of
embeddings produced by optimizing the traditional triplet, Swap Distance and our proposed NPLB
objective. The results for each data are presented in Table 1, showing that our approach improves
classification. We also assessed the embeddings qualitatively: Given the simplicity of MNIST, we
designed our model to produce two-dimensional embeddings which we directly visualized. For
Fashion MNIST and CIFAR, we generated embeddings in R64 and R128, respectively, and used
Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 2018) to reduce the
dimensions for visualizations, as shown in Fig. 2. Our results show that networks trained on NPLB
objective produce embeddings that are denser and well separated in space, as desired.

Table 1: Comparison of state-of-the-art (SOTA) triplet losses with our proposed objective function. We
present the classification accuracy (Weighted F1 score) on standard datasets using XGBoost for five random
train-test splits (we randomly split the data into train and test (80-20) five time, and calculated the mean and
standard deviation of the accuracies). We note that the improved performance of the NPLB-trained model
was consistent across different classifiers (as shown for a different dataset in §5). Results for LiftedStruct and
InfoNCE are presented in Table A2.

Trad. Triplet Loss N-Pair MDR Distance Swap NPLB Objective (Ours)
MNIST 0.9859 ± 0.0009 0.9843 ± 0.0003 0.9886 ± 0.0009 0.9891 ± 0.0003 0.9954 ± 0.0003

Fashion MNIST 0.9394 ± 0.001 0.9586 ± 0.003 0.9557 ± 0.001 0.9536 ± 0.001 0.9664 ± 0.001
CIFAR10 0.8036 ± 0.028 0.7963 ± 0.034 0.8152 ± 0.027 0.8285 ± 0.022 0.8475 ± 0.025

5 IMPROVING PATIENT REPRESENTATION LEARNING

In this section, we aim to demonstrate the potential and implications of our approach on a more
complex dataset in three steps: First, we show that deep metric learning improves upon current
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state-of-the-art patient embedding models (§5.1). Next, we provide a comparison between NPLB,
Distance Swap and the traditional triplet loss formulations (§5.2). Lastly, we apply our methodology
to predict health risks of currently healthy subjects from a single time point (§5.3). We focus on
presenting results for the female subjects due to space limitations. We note that results on male
subjects are very similar to the female population, as presented in Appendix I.

5.1 DEEP METRIC LEARNING FOR BETTER PATIENT EMBEDDINGS

Healthcare datasets are considerably different than those in other domains. Given the restrictions on
sharing health-related data (as stipulated by laws such as those defined under the Health Insurance
Portability and Accountability Act - HIPAA), most DL-based models are developed and tested
on proprietary in-house datasets, making comparisons and benchmarking a major hurdle (Evans,
2016). This is in contrast to other areas of ML which have established standard datasets (e.g.
ImageNet or GLUE (Wang et al., 2018a)). To show the feasibility of our approach, we present the
effectiveness of our methodology on the United Kingdom Biobank (UKB) (Bycroft et al., 2018): a
large-scale (∼ 500K subjects) complex public dataset, showing the potential of UKB as an additional
benchmarking that can be used for developing and testing future DL models in the healthcare domain.
UKB contains deep genetic and phenotypic data from approximately 500,000 individuals aged
between 39-69 across the United Kingdom, collected over many years. We considered patients’ lab
tests and their approximated activity levels (e.g. moderate or vigorous activity per week) as predictors
(complete list of features used is shown in Appendix M), and their doctor-confirmed conditions and
medication history for determining labels. Specifically, we labeled a patient as "unhealthy" if they
have confirmed conditions or take medication for treating a condition, and otherwise labeled them as
"apparently-healthy". We provide a step-by-step description of our data processing in Appendix F.

A close analysis of the UKB data revealed large in-class variability of test ranges, even among those
with no current or prior confirmed conditions (the "apparently-healthy" subjects). Moreover, the
overall distribution of key metrics are very similar between the unhealthy and apparently-healthy
patients (visualized in Appendix G). As a result, we hypothesized that there exists a continuum
among patients’ health states, leading to our idea that a similarity-based learned embedding can
represent subjects better than other representations for downstream tasks. This idea, in tandem
with our assumption of intricate nonlinear relationships among features, naturally motivated our
approach of deep metric learning: our goal is to train a model that learns a metric for separating
patients in space, based on their similarities and current confirmed conditions (labels). Due to our
assumptions, we used the apparently-healthy patients initially as anchor points between the two ends
of the continuum (the very unhealthy and healthy). However, this formulation necessitates identifying
a more "reliable" healthy group, often referred to as the bona fide healthy (BFH) group (Cohen et al.,
2021)2.

To find the BFH population, we considered all patients whose key lab tests for common conditions
fall within the clinically-normal values. These markers are: Total Cholesterol, HDL Cholesterol,
LDL Cholesterol, Triglycerides, Fasting Glucose, HbA1c, C-Reactive Protein.; we refer to this set of
metrics as the P0 metrics and provide the traditional "normal" clinical ranges in Appendix H. It is
important to note that the count of the BFH population is much smaller than the apparently-healthy
group (∼ 6% and ∼ 5% of female and male populations, respectively). To address this issue and to
keep DML as the main focus, we implemented a simple yet intuitive rejection-based sampling to
generate synthetic BFH patients, though more sophisticated methods could be employed in future
work. Similar to any other rejection-based sampling and given that lab results often follow a Gaussian
distribution (Whyte & Kelly, 2018), we assumed that each feature follows a distribution N (µx, σx)
where µx and σx denote the empirical mean and standard deviation of feature xi for all patients.
Since BFH patients are selected if their P0 biosignals fall within the clinically-normal lab ranges, we
used the bounds of the clinically normal range as the accept/reject criteria. Our simple rejection-based
sampling scheme is presented in Appendix L.

Training Procedure and Model Architecture: Before training, we split the data 70% : 30% for
training and testing. In the training partition, we augment the bona fide population 3 folds and then
generate 100K triplets of the form (ai, pi, ni) randomly in an offline manner. We chose to generate

2Although it is possible to further divide each group (e.g. based on conditions), we chose to keep the patients
in three very general groups to show the feasibility of our approach in various health-related domains.
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only 100K triplets in order to reduce training time and demonstrate the capabilities of our approach
for smaller datasets. Note that in an unsupervised setting, these triplets need to be generated online
via negative sample mining, but this is out of scope for this work given that we have labels a priori .
Our model consists of the three hidden layers with two probabilistic dropout layers in between and
Parametric Rectified Linear Units (PReLU) (He et al., 2015) nonlinear activations. We present a
visual representation of our architecture and the dimensions in Fig. A5. We optimize the weights
for minimizing our proposed NPLB objective, Eq.(3), using Adam (Kingma & Ba, 2014) for 1000
epochs with lr = 0.001, and employ an exponential learning rate decay (γ = 0.95) to decrease the
learning rate after every 50 epochs, and set the triplet margin to ε◦ = 1. For simplicity, we will refer
to our model as SPHR (Similarity-based Patient Risk modeling). In order to test the true capability
of our model, all evaluations are performed on the non-augmented data.

Results: Similar to §4, we evaluated our deep-learned embeddings on its improvements for binary
(unhealthy or apparently-healthy) and multi-class (unhealthy, apparently-healthy or bona fide healthy)
classification tasks. The idea here is that if SPHR has learned to separate patients based on their
conditions and similarities, then training classifiers on SPHR-produced embeddings should show
improvements compared to raw data. We trained five classifiers (k-nearest neighbors (KNN), Linear
Discriminate Analysis (LDA), a neural network (NN) for EHR (Chen et al. (2020a)), and XGBoost
Chen & Guestrin (2016)) on raw data (not-transformed) and other common transformations. These
transformations include a linear transformation (Principal Component analysis [PCA]), a non-linear
transformation (Diffusion Maps (Coifman & Lafon (2006) [DiffMap]) and the current state-of-the-art
nonlinear transformation, DeepPatient. DeepPatient, PCA, DiffMap, and SPHR are Rn → Rd,
where n, d ∈ N denote the initial number of features and a (reduced) mapping space, respectively,
with d = 32 (in order to have the same dimensionality as SPHR), though various choices of d
yielded similar results. We present these results in Table 2 comparing classification weighted F1
score for models trained on raw EHR, linear and nonlinear transformations. We also evaluate
the separability qualitatively using UMAP, as shown in Fig. A1. In all tested cases, our model
significantly outperforms all other transformations, demonstrating the effectiveness of DML in better
representing patients from EHR.

Table 2: Comparison of binary and multi-label classification performance (weighted F1 score) with vari-
ous representations on the female subjects. We kept the same random seeds across different classifiers and
randomly split the data into train and test (80-20) five time, and calculated the mean and standard deviation
of the accuracies. For binary classification, we considered BFH patients as healthy patients (hence having
binary labels). Our results show that SPHR significantly improves the classification of all tested classifiers,
demonstrating better separability in space compared to raw data and state-of-the-art methods (DeepPatient).

Model Not-Transformed PCA DiffMap DeepPatient SPHR (Ours)
Binary Classification

KNNs 0.6093 ± 0.002 0.6067 ± 0.002 0.6281 ± 0.003 0.6397 ± 0.003 0.7180 ± 0.002
LDA 0.6189 ± 0.001 0.6144 ± 0.002 0.6309 ± 0.002 0.6404 ± 0.005 0.7189 ± 0.002

NN for EHR 0.6214 ± 0.006 0.6127 ± 0.006 0.6228 ± 0.003 0.6315 ± 0.001 0.7142 ± 0.003
XGBoost 0.6113 ± 0.003 0.6088 ± 0.002 0.6196 ± 0.005 0.6311 ± 0.003 0.7223 ± 0.002

Multi-Label Classification
KNNs 0.5346 ± 0.002 0.5341 ± 0.002 0.5646 ± 0.006 0.5740± 0.004 0.6534 ± 0.002

LDA 0.5501 ± 0.002 0.5432 ± 0.001 0.5510 ± 0.007 0.5637 ± 0.003 0.6640 ± 0.001
NN for EHR 0.5374 ± 0.004 0.5473 ± 0.003 0.5541 ± 0.004 0.5774 ± 0.004 0.6667 ± 0.002

XGBoost 0.5190 ± 0.003 0.5082 ± 0.003 0.5390 ± 0.002 0.5688 ± 0.002 0.6642 ± 0.002

Table 3: Comparison of SOTA Triplet losses with our proposed objective on UK Biobank data (male and
female patients). We quantitatively evaluate embeddings by measuring classification accuracy (weighted F1
scores) of XGBoost on five random train-test splits of the UK Biobank for each gender. As shown below, our
model significantly outperforms traditional and distance swap loss in both binary and multi-class classification,
demonstrating its potential in real-world applications, such as healthcare applications. Results for LiftedStruct
and InfoNCE are presented in Table A2.

Trad. Triplet Loss N-Pair MDR Distance Swap NPLB Objective (Ours)
Females: Binary 0.6592 ± 0.002 0.6727 ± 0.004 0.6612 ± 0.003 0.6041 ± 0.002 0.7223 ± 0.002

Females: Multi-Label 0.5874 ± 0.001 0.6064 ± 0.002 0.6047 ± 0.005 0.5416 ± 0.004 0.6642 ± 0.002
Males: Binary 0.7174 ± 0.001 0.7423 ± 0.005 0.7208 ± 0.002 0.6563 ± 0.003 0.8160 ± 0.003

Males: Multi-Label 0.6861 ± 0.003 0.6961 ± 0.002 0.6964 ± 0.002 0.6628 ± 0.002 0.7845 ± 0.003

7



Under review as a conference paper at ICLR 2023

5.2 NPLB SIGNIFICANTLY IMPROVES LEARNING ON COMPLEX DATA

One of our main motivations for modifying the triplet object was to improve model performance on
more complex datasets with larger in-class variability. To evaluate the improvements provided by
our NPLB objective, we perform the same analysis as in §4, but this time on the UKB data. Table 3
demonstrate the significant improvement made by our simple modification to the traditional triplet
loss, further validating our approach and formulation experimentally.

5.3 PREDICTING HEALTH RISKS FROM A SINGLE LAB VISIT

Table 4: The percentage of apparently-healthy female subjects who later develop conditions within each
predicted risk group. For the same number of healthy subjects, we use embeddings from each method to
classify patients into three health risk groups using the provided health risk definition [Normal (N), Lower Risk
(LR), and Higher Risk (HR)]. To validate each model’s risk prediction, we use future health assessment to
calculate the percentage of subjects in each risk group who later developed Cancer, Diabetes or Other Serious
Conditions. Among all methods (top three shown), SPHR-predicted Normal and Higher Risk patients developed
the fewest and most conditions, respectively, as desired.

P0 (Not-Transformed) DeepPatient SPHR (Ours)
Normal LR HR Normal LR HR Normal LR HR

Predicted Healthy Subjects in Each Risk Group
Percentage 74.71% 5.82% 16.26% 77.19% 7.61% 15.2% 68.35% 6.94% 24.71%

Validation on Future Diagnosis
Cancer 3.17% 0.92% 2.83% 3.21% <0.1% <0.1% 1.67% 2.85% 3.22%

Diabetes 1.26% 1.85% 1.41% 0.51% <0.1% <0.1% 0.50% <0.1% 4.80%
Other Serious Cond 9.3% 5.66% 9.29% 8.77% 4.98% 6.81% 1.47% 8.33% 11.65%

Definition of Single-Time Health Risk: Predicting patients’ future health risks is a challenging task,
especially when using only a single lab visit. As described in §2, all current models use multiple
assessments for predicting health risks of a patient; however, these approaches ignore a large portion
of the population who do not return for additional check-ups. Motivated by the definition of risk in
other fields (e.g. risk of re-identification of anonymized data (Ito & Kikuchi, 2018)), we provide
a simple and intuitive distance-based definition of health risk to address the mentioned issues and
that is well suited for DML embeddings. Given the simplicity of our definition and due to space
constraints, we describe the definition below and outline the mathematical framework in Appendix B.

We define the health distance as the euclidean distance between a subject and the reference bona fide
healthy (BFH) subject. Many studies have shown the large discrepancy of lab metrics among different
age groups and genders (Cohen et al., 2021). To account for these known differences, we identify
a reference vector which is the median BFH subject from each age group per gender. Moreover,
for simplicity and interpretability, we define health risk as discrete groups using the known BFH
population: For each stratification g (age and sex), we identify two BFH subjects who are at the 2.5
and 97.5 percentiles (giving us the inner 95% of the distribution), and calculate their distance to the
corresponding reference vector, This gives us a distance interval [tg2.5, t

g
97.5]. In a group g, any new

patient whose distance to the reference vector falls inside the corresponding [tg2.5, t
g
97.5] is considered

to be "Normal". Similarly, we identify the [tg1, t
g
99] intervals (corresponding to the inner 98% of BFH

group); any new patient whose health distance is within [tg1, t
g
99] but not in [tg2.5, t

g
97.5] is considered

to be in the "Lower Risk" (LR) group. Lastly, any patient with health distance outside of these
intervals is considered to have "Higher Risk" (HR). The UKB data is a good candidate for predicting
potential health risks, given that it includes subsequent follow-ups where a subset of patients are
invited for a repeat assessment. The first follow-up was done between 2012-2013 and it included
approximately 20,000 individuals (Littlejohns et al., 2019) (25× reduction with many measurements
missing). Based on our goal of predicting risk from a single visit, we only include the patients’ first
visits for modeling, and use the 2012-2013 follow-ups for evaluating the predictions.

Results: We utilized the single-time health risk definition to predict a patient’s future potentials of
health complications. To demonstrate the versatility of our approach, we predicted general health
risks that were used for all health conditions available (namely Cancer, Diabetes and Other Serious
Conditions); however, we hypothesize that constraining health risks based on specific conditions
will improve risk predictions. We considered five methods for assigning a risk group to each
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patient: (i) Euclidean distance on raw data (preprocessed but not transformed), (ii) Mahalanobis
distance on pre-processed data, (iii) Euclidean distance on the key metrics (P0) for the available
conditions(described in section 5.1), therefore hand-crafting features and reducing dimensionality in
order to achieve an upper bound performance for most traditional methods (though this will not be
possible for all diseases). The last two methods we consider are deep representation learning methods:
(iv) DeepPatient and (v) SPHR embeddings (proposed model). We use the Euclidean metric for
calculating the distance between deep-learned representations of (iv) and (v). For all approaches, we
assigned all patients to one of the three risk groups using biosignals from a single visit, and calculated
the percentage of patients who developed a condition in the immediate next visit. Intuitively, patients
who fall under the "Normal" group should have fewer confirmed cases compared to subjects in
"Lower Risk" or "Higher Risk" groups. Table 4 shows the results for the top three methods, with
our approach consistently matching the intuitive criteria: among the five methods, SPHR-predicted
patients in the Normal risk group have the fewest instance of developing future conditions, while the
ones predicted as High risk have the highest instance of developing future conditions (Table 4).

6 CONCLUSION AND DISCUSSION

We present a simple and intuitive variation of the traditional triplet loss (NPLB) which regularizes the
distance between positive and negative samples based on the distance between anchor and negative
pairs. To show the general applicability of our methods and as an initial validation step, we tested our
model on three standard benchmarking datasets (MNIST, Fashion MNIST and CIFAR-10) and found
that our NPLB-trained model produced better embeddings. To demonstrate the real world impact of
DML, such as our proposed framework called SPHR, we applied our methodology on the UKB to
classify patients and predict future health risk for the current healthy patients, using only a single
time point. Motivated by risk prediction in other domains, we provide a distance-based definition of
health risk. Utilizing this definition, we partitioned patients into three health risk groups (Normal,
Lower Risk and Higher Risk). Among all methods, SPHR-predicted Higher Risk healthy patients
had the highest percentage of actually developing conditions in the next visit, while SPHR-predicted
Normal patients had the lowest instances, which is desired. Although the main point of our work
focused on modifying the objective function, a limitation of our work is the simple triplet sampling
that we employed, particularly when applied to healthcare. We anticipate additional improvement
gains by employing online triplet sampling or extending our work to be self-supervised (Chen et al.,
2020b; Oord et al., 2018b; Wang et al., 2021).

The implications of our work are threefold: (1) Our proposed objective has the potential of improving
existing triplet-based models without requiring additional sample mining or computationally intensive
operations. We anticipate that combining our work with existing triplet sampling can further improve
model learning and results. (2) Models for predicting patients’ health risks are nascent and often
require time-series data. Our experiments demonstrated the potential improvements gained by
developing DML-based models for learning patient embeddings, which in turn can improve patient
care. Our results show that more general representation learning models are valuable in pre-processing
EHR data and producing deep learned embeddings that can be used (or fine-tuned) for more specific
downstream analyses. We believe additional analysis on the learned embedding space can prove to
be useful for various tasks. For example, we show that there exists a relationship between distances
in the embedded space and the time to develop a condition, which we present in Appendix C. The
rapid growth of healthcare data, such as EHR, necessitates the use of large-scale algorithms that
can analyze such data in a scalable manner (Evans, 2016). Currently, most applications of ML in
healthcare are formulated for small-scale studies with proprietary data, or use the publicly-available
MIMIC dataset (Miotto et al., 2016; Johnson et al., 2016), which is not as large-scale and complex as
the UKB. Similar to our work, we believe that future DL models can benefit from using the UKB
for development and benchmarking. (3) Evaluating health risk based on a single lab visit can enable
clinicians to flag high-risk patients early on, potentially reducing the number (and the scope) of costly
tests and significantly improving care for the most vulnerable individuals in a population.

9
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REPRODUCIBILITY

Our code package and tutorial notebooks are all publicly available at on the authors’ Github at:
<revealed after the double blind reviews>, and we will actively monitor the repository for any
issues or improvements suggested by the users. Moreover, we have designed our Appendix to
be a comprehensive guide for reproducing our results and experiments as well. Our Appendix
includes all used features from the UK Biobank (for male and female patients), a complete list of
model parameters (for classification models), detailed definition of single-time health risk as well as
pseudocode and description of architectures we developed for our experiments.
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Appendix

APPENDIX A RUNTIME AND SCALING ANALYSIS OF SPHR

To measure the scalability of SPHR, we generated a random dataset consisting of 100,000 samples
with 64 linearly-independent (also known as "informative") features and 10 classes, resulting in a
matrix X ∈ R100000×64. From this dataset, we then randomly generated varying number of triplets
following the strategy described in the main manuscript and in Hoffer & Ailon (2015), representing a
computationally intensive case (as opposed to more intricate and faster mining schemes). The average
of five mining runs is presented as "Avg. Mining Time" column in Table A1. Next, we trained SPHR
on the varying number of triplets five times using (1) A Google Compute Engines with 48 logical
cores (CPU) (2) A Google Virtual Machine equipped with one NVIDIA V100 GPU (referred to as
GPU). The average training times for CPUs and GPUs are shown in Table A1.

Table A1: Average training time of the proposed deep learning model (SPHR). All experiments are done
under the same computational The times shown below are the average of 5 runs with all identical settings.

Number of Triplets Avg. CPU Training Time Avg. GPU Training Time Avg. Mining Time
1,000 8.28 Mins 3.95 Mins <0.01 Mins
5,000 15.07 Mins 5.96 Mins 0.01 Mins

10,000 31.02 Mins 7.60 Mins 0.12 Mins
50,000 76.24 Mins 16.79 Mins 0.65 Mins
100,000 133.26 Mins 27.15 Mins 1.27 Mins
500,000 512.75 Mins 94.79 Mins 5.58 Mins

APPENDIX B MATHEMATICAL DEFINITION OF SINGLE-TIME HEALTH RISK

In this section, we aim to provide a mathematical definition of health risk that can measure similarity
between a new cohort and an existing bona fide healthy population without requiring temporal data.
This definition is inspired by the formulation of risk in other domains, such as defining the risk of
re-identification of anonymized data (Ito & Kikuchi, 2018). We first define the notion of a "health
distance", and use that to formulate thresholds intervals which enable us to define health risk as a
mapping between continuous values and discrete risk groups.

Definition Appendix B.1. Given a space X , a bona fide healthy population distribution B and a new
patient p (all in X), the health score sn of p is:

sq(p) = d(Pq(B), p)

where Pq(H) denotes the qth percentile of B, and d(·) refers to a metric defined on X (potentially a
pseudo metric).

Definition Appendix B.1 provides a measure of distance between a new patient and an existing
reference population, which can be used to define similarity. For example, if d(·) is the Euclidean
distance, then the similarity between patient x and y is sim(x, y) = 1

1+d(x,y) . Next, using this notion
of distance (and similarity), we define risk thresholds that allow for grouping of patients.

Definition Appendix B.2. A threshold interval Iq = [tlq, t
u
q ] is defined as the distance between the

vectors providing the inner q percent of a distribution H and the median value. Let n = (100− q)/2,
then we have Iq as:

Iq = [tlq, t
u
q ] = [d(Pn(H), P50(H)), d(Pq+n(H), P50(H))] .

Additionally, for the sake of interpretability and convenience, we can define health risk groups using
known Iq values which we define below.

Definition Appendix B.3. Let M : Rd → V ∪ {η} where d denotes the number of features defining
a patient, with η being discrete group and V denoting pre-defined risk groups based on k ∈ N many
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Figure A1: Qualitative assessment of our approach on UKB female patients. The NPLB-trained network
better separates subjects, resulting in significant improvements in classification of patients, as shown in Table 3.
Note the continuum of patients for both metric learning techniques, especially among the apparently-healthy
patients (in yellow).

intervals (i.e. |V | = |Iq| = k). Using the same notion of health distance sn and threshold interval Iq
as before, we define a patient p’s health risk group as:

M(p) =

{
Vq if sq(p) ∈ Iq
η otherwise

.

We utilize our deep metric learning model and the definitions above in tandem to predict health risks.
That is, we first produce embeddings for all patients using our learned nonlinear operator G, and then
use the distance between the bona fide healthy (BFH) population and new patients to assign them a
risk group. Mathematically, given the set of BFH population for all groups, i.e.

BAll = {B[36,45], B[46,50], B[51,55], B[56,60], B[61,65], B[66,75]},
we take the reference value per age group to be

r̃age = G(P50(Bage)),

where Bage denotes the BFH population for the age group age. Then, using definition Appendix B.2,
we define:

Nage = Iage95 = [d(P2.5(Bage), P50(Bage)), d(P97.5(Bage), P50(Bage))] (A.4a)

LRage = Iage98 = [d(P1(Bage), P50(Bage)), d(P99(Bage), P50(Bage))] . (A.4b)

Note that Nage ⊂ LRage. Lastly, using the intervals defined in Eq. (A.4), we define the mapping M
as shown in Eq. (A.5).

Mage(p) =



Normal if sn(G(p)) = d(G(p), r̃age) ∈ Nage

Lower Risk if sn(G(p)) = d(G(p), r̃age) ∈ LRage\Nage

Higher Risk otherwise

. (A.5)

APPENDIX C PREDICTING PATIENT’S HEALTH RISK IN TIME

Given the performance of our DML model in classifying subjects and health risk assessment, we
hypothesized that we can retrieve a relationship between spatial distance (in the embedded space)
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and a patient’s time to develop a condition using only a single lab visit. Let us assume that subjects
start from a "healthy" point and move along a trajectory (among many trajectories) to ultimately
become "unhealthy" (similar to the principle of entropy). In this setting, we hypothesized that our
model maps patients in space based on their potential of moving along the trajectory of becoming
unhealthy. To test our hypothesis, we designed an experiment to use our distance-based definition of
health risk, and the NPLB embeddings to further stratify patients based on the immediacy of their
health risk (time). More specifically, we investigated the correlation between spatial locations of the
currently-healthy patients in the embedded space and the time to which they develop a condition.

Similar to the health risk prediction experiment in the main manuscript, we computed the distance
between each patient’s embedding and the corresponding reference value in the ultra healthy pop-
ulation (refer to the main manuscript for details on this procedure). We then extracted all healthy
patients at the time of first visit who returned in (2012-2013) and 2014 (and after) for reassessment or
imaging visits. It is important to again note that there is a significant drop in the number of returning
patients for subsequent visits. Among the retrieved patients, we calculated the number of individuals
who developed Cancer, Diabetes or Other Serious Conditions. We found strong negative correlations
between the calculated health score (distances) and time of diagnosis for Other Serious Conditions
(r = −0.72, p = 0.00042) and Diabetes (r = −0.64, p = 0.0071), with Cancer having the least
correlation r = −0.20 and p = 0.025. Note that the lab tests used as predictors are associated with
diagnosing metabolic health conditions and less associated with diagnosing cancer, which could
explain the low correlation between health score and time of developing cancer. These results indicate
that the metric learned by our model accounts for the immediacy of health risk, mapping patient’s
who are at a higher risk of developing health conditions farther from those who are at a lower risk
(hence the negative correlation).

APPENDIX D : NPLB CONDITION IN MORE DETAIL

In this section, we aim to take a closer look at the minimizer of our proposed objective. Using the
same notations as in the main manuscript, we define the following variables for convenience:

δ+ , d(φa, φp)

δ− , d(φa, φn)

ρ , d(φp, φn)

With this notation, we can rewrite our proposed No Pairs Left Behind objective as:

LNPLB =
1

N

N∑
(pi,ai,ni)∈T

[δ+ − δ− + ε0]
+
+ (ρ− δ−)2 . (A.7)

Note that the since [δ+ − δ− + ε0]
+ ≥ 0,LNPLB = 0 if and only the summation of each term is

identically zero. This yields the following relation:

− (ρ− δ−)2 = [δ+ − δ− + ε0]
+ (A.8)

which, considering the real solutions, is only valid if ρ = δ−, and if δ− > δ+ + ε0, and therefore
ρ > δ+ + ε0. As a result, the regularization term enforces that the distance between the positive and
the negative to be at least as much δ+ + ε0, leading to denser clusters that are better separated from
other classes in space.

NPLB can be very easily implemented using existing implementations in standard libraries. As an
example, we provide a Pytorch-like pseudo code showing the implementation of our approach:

1 from typing import Callable, Optional
2 import torch
3

4 class NPLBLoss(torch.nn.Module):
5

3
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6 def __init__(self,
7 triplet_criterion: torch.nn.TripletMarginLoss,
8 metric: Optional[Callable[
9 [torch.Tensor, torch.Tensor],

10 torch.Tensor]] = torch.nn.functional.pairwise_distance
):

11 """Initializes the instance with backbone triplet and distance metric
."""

12 super().__init__()
13 self.triplet = triplet_criterion
14 self.metric = metric
15

16 def forward(self, anchor: torch.Tensor, positive: torch.Tensor,
17 negative: torch.Tensor) -> torch.Tensor:
18 """Forward method of NPLB loss."""
19

20 # Traditional triplet as the first component of the loss function.
21 triplet_loss = self.triplet(anchor, positive, negative)
22 # This
23 positive_to_negative = self.metric(positive, negative, keepdim=True)
24 anchor_to_negative = self.metric(anchor, negative, keepdim=True)
25 # Here we use the reduction to be ’mean’, but it can be any kind
26 # that the DL library would support.
27 return triplet_loss + torch.mean(
28 torch.pow((positive_to_negative - anchor_to_negative), 2))

Listing 1: Pytorch implementation of NPLB.

APPENDIX E LIFTEDSTRUCT, N-PAIRS LOSS, AND INFONCE

In this section, we provide a brief description of three popular deep metric learning models that are
related to our work. We also describe the implementations used for these models, and present a
complete comparison of all methods on all datasets in this work. In LiftedStruct (Song et al., 2015),
the authors propose to take advantage of the full batch for comparing pairs as opposed to traditional
approaches where positive and negative pairs are pre-defined for an anchor. The authors describe
their approach as "lifting" the vector of pairwise distances for each batch to the matrix of pairwise
distances. N-Pair Loss (Sohn, 2016) is a generalization of the traditional triplet loss which aims to
address the "slow" convergence of traditional triplet models through considering N − 1 negative
examples instead of the one negative pair considered in the traditional approach. InfoNCE (Oord et al.,
2018a) is a generalization of N-pair loss that is also known as the normalized temperature-scaled
cross entropy loss (NT-Xent). This loss aims to maximize the agreement between positive samples.
Both N-Pair and InfoNCE loss relate to our work due to their formulation of the metric learning
objective that are closely related to Triplet loss. To compare our approach against these algorithms,
we leveraged the widely used Pytorch Metric Learning (PML) package (Musgrave et al., 2020). The
complete results of our comparisons on all tested datasets are shown below in Table A2.

Table A2: Comparison of state-of-the-art (SOTA) triplet losses with our proposed objective function (com-
plete version of Tables 1 and 3 of the main manuscript). The classifications were done on the embeddings
using XGBoost for five different train-test splits, with the average Weighted F1 score reported below. We note
that the improved performance of the NPLB-trained model was consistent across different classifiers. The UKB
results are for the multi-class classification.

MNIST FashionMNIST CIFAR10 UKB (Females) UKB (Males)
Trad. Triplet Loss 0.9859 ± 0.0009 0.9394 ± 0.001 0.8036 ± 0.028 0.5874 ± 0.001 0.6861 ± 0.003

N-Pair 0.9863 ± 0.0003 0.9586 ± 0.003 0.7936 ± 0.034 0.6064 ± 0.004 0.6961 ± 0.002
LiftedStruct 0.9853 ± 0.0007 0.9495 ± 0.002 0.7946 ± 0.041 0.5994 ± 0.003 0.6989 ± 0.004

MDR 0.9886 ± 0.0003 0.9557 ± 0.003 0.8152 ± 0.027 0.6047 ± 0.005 0.6964 ± 0.002
InfoNCE 0.9858 ± 0.0002 0.9581 ± 0.004 0.8039 ± 0.026 0.6103 ± 0.002 0.6816 ± 0.003

Distance Swap 0.9891 ± 0.0003 0.9536 ± 0.001 0.8285 ± 0.022 0.5416 ± 0.004 0.6628 ± 0.002
NPLB (Ours) 0.9954 ± 0.0003 0.9664 ± 0.001 0.8475 ± 0.025 0.6642 ± 0.002 0.7845 ± 0.003
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Figure A2: Visualization of the data processing scheme described in Section Appendix F.

APPENDIX F UK BIOBANK DATA PROCESSING

Given the richness and complexity of the UKB and the scope of this work, we subset the data
to include patients’ age and gender (demographics), numerous lab metrics (objective features),
Metabolic Equivalent Task (MET) scores for vigorous/moderate activity and self-reported hours of
sleep (lifestyle) (complete list of features in Appendix M). Additionally, we leverage doctor-confirmed
conditions as well as current medication to assess subjects’ health (assigning labels and not used as
predictors).

After selecting these features, we use the following scheme to partition the subjects (illustrated in Fig.
A2):

1. Ensure all features are at least 75% complete (i.e. at least 75% of patients have a non-null
value for that feature)

2. Exclude subjects with any null values

3. Split resulting data according to biological sex (male or female), and perform quantile
normalization (as in Cohen et al. (2021))

4. For each sex, partition patients into "unhealthy" (those who have at least one doctor-
confirmed health condition or take medication for treating a serious condition) and "appar-
ently healthy" population (who do not have any serious health conditions and do not take
medications for treating such illnesses). This data is used for training our neural network.

5. Split patients into six different age groups: Each age group is constructed so that the number
of patients in each group is on the same order, while the bias in the data is preserved
(age groups are shown in Fig. A2). These age groups are used to determine age-specific
references at the time of risk prediction.

APPENDIX G : SIMILARITY OF DISTRIBUTIONS FOR KEY METRICS AMONG
PATIENTS

Although lab metric ranges seem very different at a first glance, look at the age-stratified ranges of
tests show similarity among the apparently healthy and unhealthy patients. Additionally, if we further
stratify the data based on lifestyle, the similarities between the two health groups becomes even more
evident. The additional filtering is as follows: We identify the median sleep hours per group as well
as identifying "active" and "less active" individuals. We define active as someone who is moderately
active for 150 minutes or vigorously active for 75 minutes per week. We use the additional filtering
to further stratify patients in each age group. Below in Fig. A3 and A4 we show examples of these
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similarities for two age groups chosen at random. These results motivated our approach in identifying
the bona fide healthy population to be used as reference points.

Figure A3: Distribution similarity of key lab metrics between apparently-healthy and unhealthy female
patients. We present the violin plot for Total Cholestrol (left) and LDL Cholestrol (right) for patients between
the ages of 36-45 (chosen at random). This figure aims to illustrate the similarity between these distributions
based on lifestyle and age. That is, by stratifying the patients based on their sleep and activity we can see that
health status alone can not separate the patients well, given the similarity in the signals.

APPENDIX H NORMAL RANGES FOR KEY METRICS

Below we provide a list of the current "normal" lab ranges for key metrics that determined the bona
fide healthy population:

Key Biomarker Gender Specific? Range for Males Range for Females Reference
Total Cholesterol No ≤ 5.18 mmol

L
≤ 5.18 mmol

L
Link to Reference 1, Link to Reference 2

HDL Yes ≥ 1 mmol
L

≥ 1.3 mmol
L

Link to Reference 1, Link to Reference 2
LDL No ≤ 3.3 mmol

L
≤ 3.3 mmol

L
Link to Reference 1, Link to Reference 2

Triglycerides No ≤ 1.7 mmol
L

≤ 1.7 mmol
L

Link to Reference 1, Link to Reference 2
Fasting Glucose No ∈ [70, 100] mg

dL
∈ [70, 100] mg

dL
Link to Reference 3

HbA1c No < 42 mmol
mol

< 42 mmol
mol

Link to Reference 4
C-Reactive Protein No < 10 mg

L
< 10 mg

L
Link to Reference 5

APPENDIX I : PERFORMANCE OF SPHR ON MALE SUBJECTS

In this section, we present the results of the experiments in the main manuscript (which were done
for female patients) for the male patients. The classification results are presented in Tables A3, A4,
A5, and A6, and the health risk predictions are shown in Table A7.
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Figure A4: Distribution similarity of key lab metrics between apparently-healthy and unhealthy female
patients. We present the violin plot for HDL Cholestrol (left) and Triglycerides (right) for patients between
the ages of 55-60 (age group chosen at random). This figure aims to illustrate the similarity between these
distributions based on lifestyle and age. That is, by stratifying the patients based on their sleep and activity we
can see that health status alone can not separate the patients well, given the similarity in the signals.

Table A3: Comparison of binary classification performance (weighted F1 score) with various representa-
tions on the male patients. In this case, we consider the bona fide healthy patients as healthy patients and train
each model to predict binary labels. We keep the same random seeds across different classifiers, and for the
supervised methods, we randomly split the data into train and test (80-20) five time, and calculate the mean and
standard deviation of the accuracies. Our model significantly improves the classification all tested classifiers,
demonstrating better separability in space compared to raw data and state-of-the-art method (DeepPatient).

Model Not-Transformed ICA PCA DeepPatient SPHR (Ours)
KNNs 0.6200 ± 0.004 0.6167 ± 0.003 0.6077 ± 0.003 0.6224 ± 0.001 0.8163 ± 0.002

LDA 0.6275 ± 0.005 0.6227 ± 0.004 0.6227 ± 0.003 0.6385 ± 0.002 0.8141 ± 0.002
NN for EHR 0.5926 ± 0.014 0.6301 ± 0.018 0.6105 ± 0.021 0.6148 ± 0.032 0.8092 ± 0.011

XGBoost 0.5975 ± 0.004 0.5804 ± 0.004 0.6157 ± 0.004 0.6101 ± 0.004 0.8160 ± 0.003

APPENDIX J EFFECTS OF AUGMENTATION ON DML

In order to evaluate the effect of augmenting the bona fide population and to determine the appropriate
increase fold, we trained SPHR with different levels of augmentation, and evaluated the effect of
each increase fold through multi-label classification performance. More specifically, created new
augmented datasets with no augmentation, 1×, 3×, 5× and 10× and generated the same number of
triplets (as described previously) and trained SPHR. We evaluated the multi-label classification using
the same approach and classifiers as before (described in the main manuscript) and present the results
of XGBoost classification in Table A8. Based on our findings and considerations for computational
efficiency, we chose 3x augmentation as the appropriate fold increase.
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Table A4: Comparison of binary classification performance (micro F1 score) with various representations
on the male patients. In this case, we consider the bona fide healthy patients as healthy patients and train
each model to predict binary labels. We keep the same random seeds across different classifiers, and for the
supervised methods, we randomly split the data into train and test (80-20) five time, and calculate the mean and
standard deviation of the accuracies. Our model significantly improves the classification all tested classifiers,
demonstrating better separability in space compared to raw data and state-of-the-art method (DeepPatient).

Model Not-Transformed ICA PCA DeepPatient SPHR (Ours)
KNNs 0.6490 ± 0.004 0.6480 ± 0.004 0.6469 ± 0.003 0.6639 ± 0.001 0.8185 ± 0.002

LDA 0.6529 ± 0.004 0.6509 ± 0.002 0.6509 ± 0.002 0.6664 ± 0.003 0.8138 ± 0.002
NN for EHR 0.6345 ± 0.003 0.6419 ± 0.003 0.6380 ± 0.003 0.6527 ± 0.005 0.8176 ± 0.004

XGBoost 0.6573 ± 0.002 0.6488 ± 0.003 0.6469 ± 0.003 0.6701 ± 0.003 0.8180 ± 0.003

Table A5: Comparison of multi-label classification accuracy (weighted F1 score) with various representa-
tions on the male patients. We keep the same random seeds across different classifiers, and for the supervised
methods, we randomly split the data into train and test (80-20) five time, and calculate the mean and stan-
dard deviation of the accuracies. Our model significantly improves the classification for all tested classifiers,
demonstrating better separability in space compared to raw data and state-of-the-art method (DeepPatient).

Model Not-Transformed PCA ICA DeepPatient SPHR (Ours)
KNNs 0.5852 ± 0.005 0.5820 ± 0.005 0.5734 ± 0.003 0.5834 ± 0.002 0.7819 ± 0.001

LDA 0.6011 ± 0.004 0.5953 ± 0.003 0.5952 ± 0.002 0.6080 ± 0.003 0.7865 ± 0.002
NN for EHR 0.5926 ± 0.004 0.5925 ± 0.004 0.5838 ± 0.003 0.5918 ± 0.001 0.7884 ± 0.005

XGBoost 0.5439 ± 0.005 0.5583 ± 0.004 0.5587 ± 0.005 0.5896 ± 0.003 0.7845 ± 0.003

APPENDIX K ADDITIONAL DETAILS ON MODEL ACRCHITECTURES

K.1 SPHR’S NEURAL NETWORK

Figure A5: Architecture of SPHR. Our neural network is composed of three hidden layers, probablistic
dropouts (p = 0.1) and nonlinear activations (PReLU) in between. In the figure above, b, n denote to the number
of patients and features, respectively, with d being the output dimension (in our case d = 32).

For readability and reproducibility purposes, we also include a Pytorch snippet of the network used
for learning representations from the UK Biobank:

1 import torch.nn as nn
2

3 class SPHR(nn.Module):
4 def __init__(self, input_dim:int = 64, output_dim:int= 32):
5 self.inp_dim = input_dim
6 self.out_dim = output_dim
7 super().__init__()

8
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Table A6: Comparison of multi-label classification accuracy (micro F1 score) with various representations
on the male patients. We keep the same random seeds across different classifiers, and for the supervised
methods, we randomly split the data into train and test (80-20) five time, and calculate the mean and standard
deviation of the accuracies. Our model significantly improves the classification for all tested classifiers,
demonstrating better separability in space compared to raw data and state-of-the-art method (DeepPatient).

Model Not-Transformed PCA ICA DeepPatient SPHR (Ours)
KNNs 0.6364 ± 0.004 0.6355 ± 0.004 0.6358 ± 0.004 0.6358 ± 0.001 0.7921 ± 0.001

LDA 0.6405 ± 0.003 0.6393 ± 0.002 0.6392 ± 0.003 0.6383 ± 0.003 0.7811 ± 0.002
NN for EHR 0.6345 ± 0.003 0.6342 ± 0.003 0.6342 ± 0.004 0.6438 ± 0.001 0.7930 ± 0.003

XGBoost 0.6409 ± 0.003 0.6380 ± 0.003 0.6384 ± 0.003 0.6403 ± 0.002 0.7940 ± 0.003

Table A7: The percentage of apparently-healthy male patients who develop conditions in the next immedi-
ate visit within each predicted risk group. Among all methods (top three shown), SPHR-predicted Normal
and High risk patients developed the fewest and most conditions, respectively, as expected.

P0 (Not-Transformed) DeepPatient SPHR (Ours)
Future Diagnosis Normal LR HR Normal LR Higher Risk Normal LR HR

Cancer 2.76% 0.62% 2.75% 2.86% 0.33% <0.1% 1.52% 2.96% 4.14%
Diabetes 1.88% 1.94% 1.63% 0.85% 0.73% 1.62% 0.73% 0.55% 5.29%

Other Serious Cond 9.57% 6.44% 9.47% 9.33% 4.41% 7.28% 2.73% 8.60% 12.45%

8 self.nonlinear_net = nn.Sequential(
9 nn.Linear(self.inp_dim,512),

10 nn.Dropout(p=0.1),
11 nn.PReLU(),
12 nn.Linear(512, 256),
13 nn.Dropout(p=0.1),
14 nn.PReLU(),
15 nn.Linear(256,self.out_dim),
16 nn.PReLU()
17 )
18

19 def forward_oneSample(self, input_tensor):
20 # useful for the forward method call and for inference
21 return self.nonlinear_net(input_tensor)
22

23 def forward(self, positive, anchor, negative):
24 ## forward method for training
25 return self.forward_oneSample(positive), self.forward_oneSample(

anchor), self.forward_oneSample(negative)

Listing 2: SPHR’s network architecture

We train SPHR by minimizing our proposed NPLB objective, Eq.(3), using the Adam optimizer
for 1000 epochs with lr = 0.001, and employ an exponential learning rate decay (γ = 0.95) to
decrease the learning rate after every 50 epochs. We set the margin hyperparameter to be ε◦ = 1. In
all experiments, the triplet selection was done in an offline manner using the most common triplet
selection scheme (e.g. see https://www.kaggle.com/code/hirotaka0122/triplet-
loss-with-pytorch?scriptVersionId=26699660&cellId=6).

K.2 CIFAR-10 EMBEDDING NETWORK AND EXPERIMENTAL SETUP

To further demonstrate the improvements of NPLB on representation learning, we benchmarked
various triplet losses on CIFAR10 as well. For this experiment, we trained a randomly-initialized
VGG13 (Simonyan & Zisserman, 2015) model (not pre-trained) on CIFAR10 to produce embeddings
m ∈ R128 for 200 epochs, using the Adam optimizer with lr = 0.001 and a decaying schedule
(similar to SPHR’s optimization setting, as described in the main manuscript). We note that the
architecture used in this experiment is identical to a traditional classification VGG model, with the
difference being in the "classification" layer which is re-purposed for producing 128-dimensional
embeddings. CIFAR-10 images were normalized using the standard CIFAR-10 transformation, and
were not agumented during trainnig (i.e. we did not use any augmentations in training the model).
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Table A8: Studying the effects of different augmentation levels on classification as a proxy for all down-
stream tasks. We followed the same procedure as all other classification experiments (including model
parameters). The results for 1× augmentation are omitted since the results are very similar to no augmentation.

No Augmentation 3× 5× 10×
Females: Multi-Label 0.5730 ± 0.002 0.6642 ± 0.002 0.6619 ± 0.003 0.6584 ± 0.003
Males: Multi-Label 0.6247 ± 0.005 0.7845 ± 0.003 0.7852 ± 0.004 0.7685 ± 0.002

K.3 MNIST EMBEDDING NETWORK

For ease of readability and reproducibility, we provide the architecture used for MNIST as a Pytorch
snippet:

1 import torch.nn as nn
2

3 class MNIST_Network(nn.Module):
4 def __init__(self, embedding_dimension=2):
5 super().__init__()
6 self.conv_net = nn.Sequential(
7 nn.Conv2d(1, 32, 5),
8 nn.PReLU(),
9 nn.MaxPool2d(2, stride=2),

10 nn.Dropout(0.3),
11 nn.Conv2d(32, 64, 5),
12 nn.PReLU(),
13 nn.MaxPool2d(2, stride=2),
14 nn.Dropout(0.3)
15 )
16

17 self.feedForward_net = nn.Sequential(
18 nn.Linear(64*4*4, 512),
19 nn.PReLU(),
20 nn.Linear(512, embedding_dimension)
21 )
22

23 def forward(self, input_tensor):
24 conv_output = self.conv_net(input_tensor)
25 conv_output = conv_output.view(-1, 64*4*4)
26 return self.feedForward_net(conv_output)

Listing 3: Network architecture used for validation on MNIST.

We train the network for 50 epochs using the Adam optimizer with lr = 0.001. We set the margin
hyperparameter to be ε◦ = 1.

K.4 FASHION MNIST EMBEDDING NETWORK

For readability and reproducibility purposes, we provide the architecture used for Fashion MNIST as
a Pytorch snippet:

1 import torch.nn as nn
2

3 class FMNIST_Network(nn.Module):
4 def __init__(self, embedding_dimension=128):
5 super().__init__()
6 self.conv_net = nn.Sequential(
7 nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3),
8 nn.PReLU(),
9 nn.MaxPool2d(2, stride=2),

10 nn.Dropout(0.1),
11 nn.Conv2d(in_channels=16, out_channels=32, kernel_size=5),
12 nn.PReLU(),
13 nn.MaxPool2d(2, stride=1),
14 nn.Dropout(0.2),

10
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15 nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5),
16 nn.AvgPool2d(kernel_size=1),
17 nn.PReLU()
18 )
19

20 self.feedForward_net = nn.Sequential(
21 nn.Linear(64*4*4, 512),
22 nn.PReLU(),
23 nn.Linear(512, embedding_dimension)
24 )
25

26 def forward(self, input_tensor):
27 conv_output = self.conv_net(input_tensor)
28 conv_output = conv_output.view(-1, 64*4*4)
29 return self.feedForward_net(conv_output)

Listing 4: Network architecture used for validation on Fashion MNIST.

We train the network for 50 epochs using the Adam optimizer with lr = 0.001. We set the margin
hyperparameter to be ε◦ = 1.

K.5 CLASSIFICATION MODELS

The parameters for NN for EHR were chosen based on Chen et al. (2020a). The "main" parameters
for KNN and XGBoost were chosen through a randomized grid search while parameters for LDA
were unchanged. We specify the parameters that were identified through grid search in the KNN and
XGBoost sections.

K.5.1 NN FOR EHR

We follow the work of Chen et al. (2020a) and construct a feed forward neural network with the
additive attention mechanism in the first layer. As in Chen et al. , we choose the learning rate to be
lr = 0.001 with an L2 penalty coefficient λ = 0.001, and train the model for 100 epochs.

K.5.2 KNNS

We utilized the Scikit-Learn implementation of K-Nearest Neighbors. The optimal number of
neighbors were found with grid search from 10 to 100 neighbors (increasing by 10). For the sake
of reproducibility, we provide the parameters with scikit-learn terminology. For more information
about the meaning of each parameter (and value), we refer the reviewers to the online documentation:
https://scikit-learn.org/stable/modules/generated/sklearn.neighbo
rs.KNeighborsClassifier.html.

• Algorithm: Auto

• Leaf Size: 30

• Metric: Minkowski

• Metric Params: None

• n Jobs: -1

• n Neighbors: 50

• p: 2

• Weights’: Uniform

K.5.3 LDA

We employed the Scikit-Learn implementation of Linear Discriminant Analysis (LDA), with the
default parameters.
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K.5.4 XGBOOST

We utilized the official implementation of XGBoost, located at: https://xgboost.readthed
ocs.io/en/stable/. We optimized model performance through grid search for learning rate
(0.01 to 0.2, increasing by 0.01), max depth (from 1 to 10, increasing by 1) and number of estimators
(from 10 to 200, increasing by 10). For the sake of reproducibility, we provide the parameters the
nomenclature used in the online documentation.

• Objective: Binary-Logistic

• Use Label Encoder: False

• Base Score: 0.5

• Booster: gbtree

• Callbacks: None,

• colsample_by_level:1

• colsample_by_node:1

• colsample_by_tree":1

• Early Stopping Rounds: None

• Enable Categorical: False

• Evaluation metric: None

• γ (gamma): 0

• GPU ID: -1

• Grow Policy: depthwise’

• Importance Type: None

• Interaction Constraints: " "

• Learning Rate: 0.05

• Max Bin: 256

• Max Categorical to Onehot: 4

• Max Delta Step: 0

• Max Depth: 4

• Max Leaves: 0

• Minimum Child Weight: 1

• Missing: NaN

• Monotone Constraints: ’()’

• n Estimators: 50

• n Jobs: -1

• Number of Parallel Trees: 1

• Predictor: Auto

• Random State: 0

• reg_alpha:0

• reg_lambda:1

• Sampling Method: Uniform

• scale_pos_weight:1

• Subsample: 1

• Tree Method: Exact

• Validate Parameters: 1

• Verbosity: None

12
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Algorithm 1 Proposed Augmentation of Electronic Health Records Data. The proposed strategy
will ensure that each augmented feature falls between pre-determined ranges for the appropriate
gender and age group, which are crucial in diagnosing conditions.

Require: Xdict: A mapping between gender/age condition groups to raw bloodwork and lifestyle
matricies

Require: condlist: A list of all present conditions # e.g. bona fide healthy, diabetic, etc.
Require: U : A matrix storing upper bounds for featurej given conditioni
Require: L: A matrix of the lower bounds for featurej given conditioni

1: X̃dict ← Zeros(Xdict)
2: for conditioni in condlist, do
3: for featurej in Xdict[conditioni], do
4: µ←Mean(featurej)
5: σ ← STD(featurej) # Standard deviation
6: z ← -1016 # initialize
7: while z 6∈ [Lij , Uij ], do
8: z←∼ N (µ, σ) # sampled value from the Gaussian distribution
9: end while

10: X̃dict[conditioni][featurej ]← z # augmented feature
11: end for
12: end for

13
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APPENDIX L DATA AUGMENTATION SCHEME

APPENDIX M : COMPLETE LIST OF FEATURES

M.1 UKB FID TO NAME MAPPINGS FOR FEMALE PATIENTS

Lab Metrics
21003: Age
30160: Basophill count
30220: Basophill percentage
30150: Eosinophill count
30210: Eosinophill percentage
30030: Haematocrit percentage
30020: Haemoglobin
concentration
30300: High light scatter
reticulocyte count
30290: High light scatter
reticulocyte percentage
30280: Immature reticulocyte
fraction
30120: Lymphocyte count
30180: Lymphocyte percentage
30050: Mean corpuscular
haemoglobin
30060: Mean corpuscular
haemoglobin concentration
30040: Mean corpuscular
volume
30100: Mean platelet
(thrombocyte) volume
30260: Mean reticulocyte
volume
30270: Mean sphered cell
volume
30080: Platelet count

30110: Platelet distribution
width
30010: Red blood cell
(erythrocyte) count
30070: Red blood cell
(erythrocyte)
distribution width
30250: Reticulocyte count
30240: Reticulocyte percentage
30000: White blood cell
(leukocyte) count
30620: Alanine
aminotransferase
30600: Albumin
30610: Alkaline phosphatase
30630: Apolipoprotein A
30640: Apolipoprotein B
30650: Aspartate
aminotransferase
30710: C-Reactive Protein
30680: Calcium
30690: Cholesterol
30700: Creatinine
30720: Cystatin C
30730: Gamma
glutamyltransferase
30740: Glucose
30750: HbA1c
30130: Monocyte count
30190: Monocyte percentage

30760: HDL Cholesterol
30770: IGF-1
30780: LDL Direct
30810: Phosphate
30830: Sex Hormone-Binding
Globulin (SHBG)
30850: Testosterone
30840: Total bilirubin
30860: Total protein
30870: Triglycerides
30880: Urate
30670: Urea
30890: Vitamin D
21001: Body Mass Index
30140: Neutrophill count
30200: Neutrophill percentage
30090: Platelet crit
Lifestyle Metrics
22038: MET Minutes per Week
for Moderate Activity
22039: MET Minutes per Week
for Vigorous Activity
22037: MET Minutes per Week
for walking
22040: Summed MET Minutes
per week for All Activity
22033: Summed Days of Activity
22034: Summed Minutes of
Activity
1160: Sleep Duration

14
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M.2 UKB FID TO NAME MAPPINGS FOR MALE PATIENTS

Lab Metrics
21003: Age
30160: Basophill count
30220: Basophill percentage
30120: Lymphocyte count
30180: Lymphocyte percentage
30050: Mean corpuscular
haemoglobin
30060: Mean corpuscular
haemoglobin concentration
30040: Mean corpuscular
volume
30100: Mean platelet
(thrombocyte) volume
30260: Mean reticulocyte
volume
30270: Mean sphered cell
volume
30080: Platelet count
30150: Eosinophill count
30210: Eosinophill percentage
30030: Haematocrit percentage
30020: Haemoglobin
concentration
30300: High light scatter
reticulocyte count
30290: High light scatter
reticulocyte percentage
30280: Immature reticulocyte
fraction

30110: Platelet distribution
width
30190: Monocyte percentage
30130: Monocyte count
30750: HbA1c
30730: Gamma
glutamyltransferase
30740: Glucose
30010: Red blood cell
(erythrocyte) count
30070: Red blood cell
(erythrocyte)
distribution width
30250: Reticulocyte count
30240: Reticulocyte percentage
30000: White blood cell
(leukocyte) count
30620: Alanine
aminotransferase
30600: Albumin
30610: Alkaline phosphatase
30630: Apolipoprotein A
30640: Apolipoprotein B
30650: Aspartate
aminotransferase
30710: C-Reactive Protein
30680: Calcium
30690: Cholesterol
30700: Creatinine
30720: Cystatin C

30760: HDL Cholesterol
30770: IGF-1
30780: LDL Direct
30810: Phosphate
30830: SHBG
30850: Testosterone
30840: Total bilirubin
30860: Total protein
30870: Triglycerides
30880: Urate
30670: Urea
30890: Vitamin D
30140: Neutrophill count
30200: Neutrophill percentage
30090: Platelet crit
Lifestyle Metrics
1160: Sleep Duration
21001: Body Mass Index
22038: MET Minutes per Week
for Moderate Activity
22039: MET Minutes per Week
for Vigorous Activity
22037: MET Minutes per Week
for walking
22040: Summed MET Minutes
per week for All Activity
22033: Summed Days of Activity
22034: Summed Minutes of
Activity

15
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APPENDIX N : HIGHER RESOLUTION FIGURES

Figure A6: Visual comparisons between traditional triplet loss (left), Distance Swap (middle) and pro-
posed NPLB objective (right) on train (top row) and test (bottom row) sets of MNIST. To evaluate the
feasibility of proposed loss on general datasets, we trained the same network (described in Appendix Appendix
K) under identical conditions on MNIST dataset, with the only difference being the loss function used. As
expected by our mathematical intuition described in §3, the model trained using our proposed objective learns
embeddings that are much denser within classes and farther apart from other class compared to traditional Triplet
and Distance Swap variation, leading to better classification results (see Table 1).

Figure A7: UMAP-reduced comparisons between traditional triplet loss (left), Distance Swap triplet loss
(middle) and proposed NPLB objective (right) on train and test sets of Fashion MNIST (top and bottom
rows). Similar to our results on MNIST, we see both quantitative and qualitative improvements in the embeddings,
as shown Table 1).
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