
RRL: Resnet as representation for Reinforcement
Learning

Rutav Shah
Computer Science and Engineering

Indian Institute of Technology, Kharagpur
Email: rutavms@gmail.com

Vikash Kumar
Meta AI Research
Pittsburgh, USA

Email: vikash@cs.washington.edu

Abstract—Generalist robots capable of performing dexterous,
contact-rich manipulation tasks will enhance productivity and
provide care in un-instrumented settings like homes. Such tasks
warrant operations in real-world only using the robot’s propri-
oceptive sensor such as onboard cameras, joint encoders, etc
which can be challenging for policy learning owing to the high
dimensionality and partial observability issues. We propose RRL:
Resnet as representation for Reinforcement Learning – a straight-
forward yet effective approach that can learn complex behaviors
directly from proprioceptive inputs. RRL fuses features extracted
from pre-trained Resnet into the standard reinforcement learning
pipeline and delivers results comparable to learning directly from
the state. In a simulated dexterous manipulation benchmark,
where the state of the art methods fails to make significant
progress, RRL delivers contact rich behaviors. The appeal of
RRL lies in its simplicity in bringing together progress from
the fields of Representation Learning, Imitation Learning, and
Reinforcement Learning. Its effectiveness in learning behaviors
directly from visual inputs with performance and sample effi-
ciency matching learning directly from the state, even in complex
high dimensional domains, is far from obvious.

I. INTRODUCTION

Recently, Reinforcement learning (RL) has seen tremendous
momentum and progress [33, 45, 19, 6] in learning complex
behaviors from states [42, 11, 38]. Most success stories,
however, are limited to simulations or instrumented laboratory
conditions as real world doesn’t provide direct access to
its internal state. Not only learning with state-space, but
visual observation spaces have also found reasonable success
[22, 36]. However, the majority of these methods have been
tested on low-dimensional, 2D tasks [54] that lack depth
information. Contact rich manipulation tasks, on the other
hand, are high dimensional and necessitate intricate details
in order to be completed successfully. In order to deliver the
promise presented by data-driven techniques, we need efficient
techniques that can learn complex behaviors unobtrusively
without the need for environment instrumentation.

Learning without environment instrumentation, especially
in unstructured settings like homes, can be quite challenging
[62, 5, 1]. Challenges include – (a) Decision making with
incomplete information owing to partial observability as the
agents must rely only on proprioceptive on-board sensors
(vision, touch, joint position encoders, etc) to perceive and act.
(b) The influx of sensory information makes the input space
quite high dimensional. (c) Information contamination due

Supervised Learning

Reinforcement
Learning

Fig. 1. RRL Resnet as representation for Reinforcement Learning takes a small
step in bridging the gap between Representation learning and Reinforcement
learning. RRL pre-trains an encoder on a wide variety of real world classes like
ImageNet dataset using a simple supervised classification objective. Since the
encoder is exposed to a much wider distribution of images while pretraining,
it remains effective whatever distribution the policy might induce during the
training of the agent. This allows us to freeze the encoder after pretraining
without any additional efforts.

to sensory noise and task-irrelevant conditions like lightning,
shadows, etc. (d) Most importantly, the scene being flushed
with information irrelevant to the task (background, clutter, etc).
Agents learning under these constraints is forced to take a large
number of samples simply to untangle these task-irrelevant
details before it makes any progress on the true task objective.
A common approach to handle these high dimensionality and
multi-modality issues is to learn representations that distil
information into low dimensional features and use them as
inputs to the policy. While such ideas have found reasonable
success [37, 30], designing such representations in a supervised
manner requires a deep understanding of the problem and
domain expertise. An alternative approach is to leverage
unsupervised representation learning to autonomously acquire
representations based on either reconstruction [17, 62, 58] or
contrastive [48, 50] objective. These methods are quite brittle
as the representations are acquired from narrow task-specific
distributions [49], and hence, do not generalize well across
different tasks Table I. Additionally, they acquire task-specific
representations, often needing additional samples from the
environment leading to poor sample efficiency or domains
specific data-augmentations for training representations.

The key idea behind our method stems from an intuitive
observation over the desiderata of a good representation i.e.
(a) it should be low dimensional for a compact representation.
(b) it should be able to capture silent features encapsulating

the diversity and the variability present in a real-world task for
better generalization performance. (c) it should be robust to
irrelevant information like noise, lighting, viewpoints, etc so
that it is resilient to the changes in surroundings. (d) it should
provide effective representation in the entire distribution that a
policy can induce for effective learning. These requirements
are quite harsh needing extreme domain expertise to manually
design and an abundance of samples to automatically acquire.
Can we acquire this representation without any additional
effort? Our work takes a very small step in this direction.

The key insight behind our method (Figure 1) is embarrass-
ingly simple – representations do not necessarily have to be
trained on the exact task distribution; a representation trained
on a sufficiently wide distribution of real-world scenarios, will
remain effective on any distribution a policy optimizing a task
in the real world might induce. While training over such wide
distribution is demanding, this is precisely what the success of
large image classification models [15, 46, 53, 52] in Computer
Vision delivers – representations learned over a large family
of real-world scenarios.

Our Contributions: We list the major contributions

1) We present a surprisingly simple method (RRL) at the
intersection of representation learning, imitation learning
(IL) and reinforcement learning (RL) that uses features
from pre-trained image classification models (Resnet34)
as representations in standard RL pipeline. Our method
is quite general and can be incorporated with minimal
changes to most state based RL/IL algorithms.

2) Task-specific representations learned by supervised as
well as unsupervised methods are usually brittle and
suffer from distribution mismatch. We demonstrate that
features learned by image classification models are
general towards different task (Figure 2), robust to visual
distractors, and when used in conjunction with standard
IL and RL pipelines can efficiently acquire policies
directly from proprioceptive inputs.

3) While competing methods have restricted results primar-
ily to planar tasks devoid of depth perspectives, on a
rich collection of simulated high dimensional dexterous
manipulation tasks, where state-of-the-art methods strug-
gle, we demonstrate that RRL can learn rich behaviors
directly from visual inputs with performance & sample
efficiency approaching state-based methods.

4) Additionally, we underline the performance gap between
the SOTA approaches and RRL on simple low dimen-
sional tasks as well as high dimensional more realistic
tasks. Furthermore, we experimentally establish that the
commonly used environments for studying image based
continuous control methods are not a true representative
of real-world scenario.

II. RELATED WORK

RRL rests on recent developments from the fields of
Representation Learning, Imitation Learning and Reinforcement
Learning. In this section, we outline related works leveraging

Features for ImageNet categories Features for our tasks

Fig. 2. Visualization of Layer 4 of Resnet model of the top 1 class using Grad-
CAM [43][Top] and Guided Backpropogation [47][Bottom]. This indicates
that Resnet is indeed looking for the right features in our task images (right)
in spite of such high distributional shift.

representation learning for visual reinforcement and imitation
learning.

A. Learning without explicit representation

A common approach is to learn behaviors in an end to end
fashion – from pixels to actions – without explicit distinction
between feature representation and policy representations.
Success stories in this categories range from seminal work [32]
mastering Atari 2600 computer games using only raw pixels
as input, to [28] which learns trajectory-centric local policies
using Guided Policy Search [27] for diverse continuous control
manipulation tasks in the real world learned directly from
camera inputs. More recently, [12] has demonstrated success
in acquiring multi-finger dexterous manipulation [61] and agile
locomotion behaviors using off-policy action critic methods
[11]. While learning directly from pixels has found reasonable
success, it requires training large networks with high input
dimensionality. Agents require a prohibitively large number
of samples to untangle task-relevant information in order to
acquire behaviors, limiting their application to simulations or
constrained lab settings. RRL maintains an explicit representa-
tion network to extract low dimensional features. Decoupling
representation learning from policy learning delivers results
with large gains in efficiency. Next, we outline related works
that use explicit representations.

B. Learning with supervised representations

Another approach is to first acquire representations using ex-
pert supervision, and use features extracted from representation
as inputs in standard policy learning pipelines. A predominant
idea is to learn representative keypoints encapsulating task
details from the input images and using the extracted keypoints
as a replacement of the state information [25]. Using these
techniques, [37, 31] demonstrated tool manipulation behaviors
in rich scenes flushed with task-irrelevant details. [34] demon-
strated simultaneous manipulation of multiple objects in the
task of Baoding ball tasks on a high dimensional dexterous
manipulation hand. Along with the inbuilt proprioceptive
sensing at each joint, they use an RGB stereo image pair that is
fed into a separate pre-trained tracker to produce 3D position
estimates [59] for the two Baoding balls. These methods,

while powerful, learn task-specific features and requires expert
supervision, making it harder to (a) translate to variation
in tasks/environments, and (b) scale with increasing task
diversity. RRL, on the other hand, uses single task-agnostic
representations with better generalization capability making it
easy to scale.

C. Learning with unsupervised representations

With the ambition of being scalable, this group of methods
intends to acquire representation via unsupervised techniques.
[44] uses contrastive learning to time-align visual features
across different embodiment to demonstrate behavior transfer
from human to a Fetch robot. [3], [7, 62] use variational
inference [23, 3] to learn compressed latent representations
and use it as input to standard RL pipeline to demonstrate
rich manipulation behaviors. [14] additionally learns dynamics
models directly in the latent space and use model-based RL to
acquire behaviors on simulated tasks. On similar tasks, [13]
uses multi-step variational inference to learn world dynamic
as well as rewards models for off-policy RL. [48] use image
augmentation with variational inference to construct features to
be used in standard RL pipeline and demonstrate performance
at par with learning directly from the state. [26, 24] demonstrate
comparable results by assimilating updates over features
acquired only via image augmentation. Similar to supervised
methods, unsupervised methods often learns task-specific brittle
representations as they break when subjected to small variations
in the surroundings and often suffers challenges from non-
stationarity arising from the mismatch between the distribution
representations are learned on and the distribution policy
induces. To induce stability, RRL uses pre-trained stationary
representations trained on distribution with wider support than
what policy can induce. Additionally, representations learned
over a wide distribution of real-world samples are robust to
noise and irrelevant information like lighting, illumination, etc.

D. Learning with representations and demonstrations

Learning from demonstrations has a rich history. We focus
our discussion on DAPG [38], a state-based method which
optimizes for the natural gradient [20] of a joint loss with
imitation as well as reinforcement objective. DAPG has been
demonstrated to outperform competing methods [8, 16] on
the high dimensional ADROIT dexterous manipulation task
suite we test on. RRL extends DAPG to solve the task suite
directly from proprioceptive signals with performance and
sample efficiency comparable to state-DAPG. Unlike DAPG
which is on-policy, FERM [60] is a closely related off-policy
actor-critic methods combining learning from demonstrations
with RL. FERM builds on RAD [26] and inherits its challenges
like learning task-specific representations. We demonstrate
via experiments that RRL is more stable, more robust to
various distractors, and convincingly outperforms FERM since
RRL uses a fixed feature extractor pre-trained over wide
variety of real world images and avoids learning task specific
representations.

III. BACKGROUND

RRL solves a standard Markov decision process (Section
III-A) by combining three fundamental building blocks - (a)
Policy gradient algorithm (Section III-B), (b) Demonstration
bootstrapping (Section III-C), and (c) Representation learning
(Section III-D). We briefly outline these fundamentals before
detailing our method in Section IV.

A. Preliminaries: MDP

We model the control problem as a Markov decision
process (MDP), which is defined using the tuple: M =
(S,A,R, T , ρ0, γ). S ∈ Rn and A ∈ Rm represent the state
and actions. R : S × A → R is the reward function. In
the ideal case, this function is simply an indicator for task
completion (sparse reward setting). T : S × A → S is the
transition dynamics, which can be stochastic. In model-free
RL, we do not assume any knowledge about the transition
function and require only sampling access to this function. ρ0
is the probability distribution over initial states and γ ∈ [0, 1)
is the discount factor. We wish to solve for a stochastic policy
of the form π : S ×A → R which optimizes the expected sum
of rewards:

η(π) = Eπ,M
[∞∑
t=0

γtrt

]
(1)

B. Policy Gradient

The goal of the RL agent is to maximise the expected
discounted return η(π) (Equation 1) under the distribution
induced by the current policy π. Policy Gradient algorithms
optimize the policy πθ(a | s) directly, where θ is the function
parameter by estimating ∇η(π). First we introduce a few
standard notations, Value function : V π(s), Q function :
Qπ(s, a) and the advantage function : Aπ(s, a). The advantage
function can be considered as another version of Q-value with
lower variance by taking the state-value off as the baseline.

V π(s) = EπM
[∞∑
t=0

γtrt | s0 = s
]

Qπ(s, a) = EM
[
R(s, a)

]
+ Es′∼T (∫ ,a)

[
V π(s′)

]
Aπ(s, a) = Qπ(s, a)− V π(s)

(2)

The gradient can be estimated using the Likelihood ratio
approach and Markov property of the problem [56] and using
a sampling based strategy,

∇η(π) = g =
1

NT

N∑
i=0

T∑
t=0

∇θ log πθ(ait|sit)Âπ(sit, ait, t)

(3)
Amongst the wide collection of policy gradient algorithms,
we build upon Natural Policy Gradient (NPG) [20] to solve
our MDP formulation owing to its stability and effectiveness
in solving complex problems. We refer to [55] for a detailed
background on different policy gradient approaches. In the
next section, we describe how human demonstrations can be
effectively used along with NPG to aid policy optimization.

C. Demo Augmented Policy Gradient

Policy Gradients with appropriately shaped rewards can solve
arbitrarily complex tasks. However, real-world environments
seldom provide shaped rewards, and it must be manually
specified by domain experts. Learning with sparse signals,
such as task completion indicator functions, can relax domain
expertise in reward shaping but it results in extremely high
sample complexity due to exploration challenges. DAPG
([38]) combines policy gradients with few demonstrations
in two ways to mitigate this issue and effectively learn
from them. We represent the demonstration dataset using
ρD =

{(
s
(i)
t , a

(i)
t , s

(i)
t+1, r

(i)
t

)}
where t indexes time and

i indexes different trajectories.
(1) Warm up the policy using few demonstrations (25 in

our setting) using a simple Mean Squared Error(MSE) loss,
i.e, initialize the policy using behavior cloning [Eq 4]. This
provides an informed policy initialization that helps in resolving
the early exploration issue as it now pays attention to task
relevant state-action pairs and thereby, reduces the sample
complexity.

LBC(θ) =
1

2

∑
i,t∈minibatch

(
πθ(s

(i)
t)− a(i)Ht

)2
(4)

where, θ are the agent parameters and a
(i)H
t represents the

action taken by the human/expert.
(2) DAPG builds upon on-policy NPG algorithm [20]

which uses a normalized gradient ascent procedure where the
normalization is under the Fischer metric.

θk+1 = θk +

√
δ

gT F̂−1θk
g
F̂−1θk

g (5)

where F̂θk is the Fischer Information Metric at the current
iterate θk,

F̂θk =
1

T

T∑
t=0

∇θlog πθ(at|st)∇θlog πθ(at|st)T (6)

and g is the sample based estimate of the policy gradient [Eq
3]. To make the best use of available demonstrations, DAPG
proposes a joint loss gaug combining task as well as imitation
objective. The imitation objective asymptotically decays over
time allowing the agent to learn behaviors surpassing the expert.

gaug =
∑

(s,a)∈ρπ

∇θ ln πθ(a|s)Aπ(s, a)

+
∑

(s,a)∈ρD

∇θ ln πθ(a|s)w(s, a)
(7)

where, ρπ is the dataset obtained by executing the current
policy, ρD is the demonstration data and w(s, a) is the heuristic
weighting function defined as :

w(s, a) = λ0λ
k
1 max
(s′,a′)∈ρπ

Aπ(s′, a′) ∀ (s, a) ∈ ρD (8)

DAPG has proven to be successful in learning policy for
the dexterous manipulation tasks with reasonable sample
complexity.

D. Representation Learning

DAPG has thus far only been demonstrated to be effective
with access to low-level state information which is not readily
available in real-world. DAPG is based on NPG which works
well but faces issues with input dimensionality and hence,
cannot be directly used with the input images acquired from
onboard cameras. Representation learning [2] is learning
representations of input data typically by transforming it or
extracting features from it, which makes it easier to perform
the task (in our case it can be used in place of the exact state of
the environment). Let I ∈ Rn represents the high dimensional
input image, then

h = fρ(I) (9)

where f represents the feature extractor, ρ is the distribution
over which f is valid and h ∈ Rd with d << n is the compact,
low dimensional representation of I . In the next section, we
outline our method that scales DAPG to solve directly from
visual information.

IV. RRL: RESNET AS REPRESENTATION FOR RL
In an ideal RL setting, the agent interacts with the environ-

ment based on the current state, and in return, the environment
outputs the next state and the reward obtained. This works
well in a simulated environment but in a real-world scenario,
we do not have access to this low-level state information.
Instead we get the information from cameras (It) and other
onboard sensors like joint encoders (δt). To overcome the
challenges associated with learning from high dimensional
inputs, we use representations that project information into
a lower-dimensional manifolds. These representations can be
(a) learned in tandem with the RL objective. However, this
leads to non-stationarity issue where the distribution induced
by the current policy πi may lie outside the expressive power
of f , πi 6⊂ ρi at any step i during training. (b) decoupled from
RL by pre-training f . For this to work effectively, the feature
extractor must be trained on a sufficiently wide distribution
such that it covers any distribution that the policy might induce
during training, πi ⊂ ρ ∀ i. Getting hold of such task specific
training data beforehand becomes increasingly difficult as the
complexity and diversity of the task increases. To this end,
we propose to use a fixed feature extractor (Section V-B) that
is pretrained on a wide variety of real world scenarios like
ImageNet dataset [Highlighted in purple in Figure 1]. We
experimentally demonstrate that the diversity (Section V-C)
of the such feature extractor allows us to use it across all
tasks we considered. The use of pre-trained representations
induces stability to RRL as our representations are frozen
and do-not face the non-stationarity issues encountered while
learning policy and representation in tandem.

The features (ht) obtained from the above feature extractor
are appended with the information obtained from the internal
joint encoders of the Adroit Hand (δ t). As a substitute of the

Algorithm 1 RRL
1: Input: 25 Human Demonstrations ρD
2: Initialize using Behavior Cloning [Eq.4].
3: repeat
4: for i = 1 to n do
5: for t = 1 to horizon do
6: Take action
7: at = πθ([Encoder(It), δ t])
8: and receive It+1, δ t+1, rt+1

9: from the environment.
10: end for
11: end for
12: Compute ∇θ log πθ(at|st) for each (s, a) ∈ ρπ, ρD
13: Compute Aπ(s, a) for each (s, a) ∈ ρπ and w(s, a) for

each (s, a) ∈ ρD according to Equations 2, 8
14: Calculate policy gradient according to 7
15: Compute Fisher matrix 6
16: Take the gradient ascent step according to 5.
17: Update the parameters of the value function in order to

approximate(2) : V πk (s
(n)
t) ≈

∑T
t′=t γ

t′−tr
(n)
t

18: until Satisfactory performance

exact state (st), we empirically show that [ht, δ t] can be used
as an input to the policy. In principle any RL algorithm can be
deployed to learn the policy, in RRL we build upon Natural
Policy Gradients [21] owing to effectiveness in solving complex
high dimensional tasks [38]. We present our full algorithm in
Algorithm-1.

V. EXPERIMENTAL EVALUATIONS

Our experimental evaluations aims to address the following
questions: (1) Does pre-tained representations acquired via
large real world image dataset allow RRL to learn complex
tasks directly from proprioceptive signals (camera inputs
and joint encoders)? (2) How does RRL’s performance and
efficiency compare against other state-of-the-art methods? (3)
How various representational choices influence the generality
and versatility of the resulting behaviors? (5) What are the
effects of various design decisions on RRL? (6) Are commonly
used benchmarks for studying image based continuous control
methods effective?

A. Tasks

Applicability of prior proprioception based RL methods
[26, 24, 14] have been limited to simple low dimensional tasks
like Cartpole, Cheetah, Reacher, Finger spin, Walker, Ball in
cup, etc. Moving beyond these simple domains, we investigate
RRL on Adroit manipulation suite [38] which consists of
contact-rich high-dimensional dexterous manipulation tasks
(Figure 3) that have found to be challenging ever for state
(st) based methods. Furthermore, unlike prior task sets, which
are fundamentally planar and devoid of depth perspective, the
Adroit manipulation suite consists of visually-rich physically-
realistic tasks that demand representations untangling complex
depth information.

Fig. 3. ADROIT manipulation suite consisting of complex dexterous
manipulation tasks involving object relocation, in hand manipulation (pen
repositioning), tool use (hammering a nail), and interacting with human centric
environments (opening a door).

B. Implementation Details

We use standard Resnet-34 model as RRL’s feature extractor.
The model is pre-trained on the ImageNet dataset which
consists of 1000 classes. It is trained on 1.28 million images
on the classification task of ImageNet. The last layer of the
model is removed to recover a 512 dimensional feature space
and all the parameters are frozen throughout the training of the
RL agent. During inference, the observations obtained from
the environment are of size 256× 256, a center crop of size
224× 224 is fed into the model. We also evaluate our model
using different Resnet sizes (Figure 7). All the hyperparameters
used for training are summarized in Appendix(Table II). We
report an average performance over three random seeds for all
the experiments.

C. Results

In Figure 4, we contrast the performance of RRL against the
state of the art baselines. We begin by observing that NPG [21]
struggles to solve the suite even with full state information,
which establishes the difficulty of our task suite. DAPG(State)
[38] uses privileged state information and a few demonstrations
from the environment to solve the tasks and pose as the
best case oracle. RRL demonstrates good performance on
all the tasks, relocate being the hardest, and often approaches
performance comparable to our strongest oracle-DAPG(State).

A competing baseline FERM 1 [60] is quite unstable in
these tasks. It starts strong for hammer and door tasks but
saturates in performance. It makes slow progress in pen, and
completely fails for relocate. In Figure 5 [Left] we compare the

1Reporting best performance amongst over 30 configurations per task we
tried in consultation with the FERM authors.

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 1 2 3 4
samples(M)

Door Opening

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 1 2 3 4
samples(M)

0

20

40

60

80

100

Su
cc

es
s R

at
e

Tool Use (Hammer)

0 10 20 30
Robot Hours

0 10 20 30
Robot Hours

0 10 20 30
Robot Hours

0 10 20 30
Robot Hours

0 2 4 6 8 10 12
samples(M)

In-hand Manipulation (Pen)

0 5 10 15 20
Robot Hours

0 5 10 15 20
Robot Hours

0 5 10 15 20
Robot Hours

0 5 10 15 20
Robot Hours

0 2 4 6 8
samples(M)

Object Relocation

RRL(Ours)
FERM
DAPG(State)
NPG(State)

Fig. 4. Performance on ADROIT dexterous manipulation suite [38]: State of the art policy gradient method NPG(State) [39] struggles to solve the suite even
with privileged low level state information, establishing the difficulty of the suite. Amongst demonstration accelerated methods, RRL(Ours) demonstrates
stable performance and approaches performance of DAPG(State) [38] (upper bound), a demonstration accelerated method using privileged state information. A
competing baseline FERM [60] makes good initial, but unstable, progress in a few tasks and often saturates in performance before exhausting our computational
budget (40 hours/ task/ seed).

computational footprint of FERM (along with other methods,
discussed in later sections) with RRL. We note that our method
not only outperforms FERM but also is approximately five
times more compute-efficient.

D. Effects of Visual Distractors

In Figure 5 [Center, Right] we probe the robustness of
the final policies by injecting visual distractors in the envi-
ronment during inference. We note that the resilience of the
resnet features induces robustness to RRL’s policies. On the
other hand, task-specific features learned by FERM are brittle
leading to larger degradation in performance. In addition to
improved sample and time complexity resulting from the use of
pre-trained features, the resilience, robustness, and versatility
of Resnet features lead to policies that are also robust to
visual distractors, clutter in the scene. More details about the
experiment setting is provided in Section VII-H in Appendix.

E. Effect of Representation

Is Resnet lucky? To investigate if architectural choice of
Resnet is lucky, in Figure 6 we test different models pretrained
on ImageNet dataset as RRL’s feature extractors – MobileNetV2
[41], ShuffleNet [29] and state of the art hierarchical VAE [4]
[Refer Section VII-E in Appendix for more details]. Not much
degradation in performance is observed with respect to the
Resnet model. This highlights that it is not the architecture
choices in particular, rather the dataset on which models are
being pre-trained, that delivers generic features effective for
the RL agents.

Task-specific vs Task-agnostic representation: In Figure
7, we compare the performance between (a) learning task
specific representations (VAE) (b) generic representation trained
on a very wide distribution (Resnet). We note that RRL using
Resnet34 significantly outperforms a variant RRL(VAE) (see
appendix for details Section VII-G) that learns features via
commonly used variational inference techniques on a task
specific dataset [10, 9, 18, 35]. This indicates that pre-trained
Resnet provides task agnostic and superior features compared

to methods that explicitly learn brittle (Section-V-H) and task-
specific features using additional samples from the environment.
It is important to note that the latent dimension of the Resnet34
and VAE are kept same (512) for a fair comparison, however,
the model sizes are different as one operates on a very wide
distribution while the other on a much narrower task specific
dataset. Additionally, we summarize the compute cost of both
the methods RRL(Ours) and RRL(VAE) in Figrue 5 [Left].
We notice that even though RRL(VAE) is the cheapest, its
performance is quite low (Figure 7). RRL(Ours) strikes a
balance between compute and efficiency.

F. Effects of proprioception choices and sensor noise

While it’s hard to envision a robot without proprioceptive
joint sensing, harsh conditions of the real-world can lead to
noisy sensing, even sensor failures. In Figure 8, we subjected
RRL to (a) signals with 2% noise in the information received
from the joint encoders RRL(Noise), and (b) only visual inputs
are used as proprioceptive signals RRL(Vision). In both these
cases, our methods remained performant with slight to no
degradation in performance.

G. Ablations and Analysis of Design Decisions

In our next set of experiments, we evaluate the effect of
various design decisions on our method. In Figure 7, we study
the effect of different Resnet features as our representation.
Resnet34, though computationally more demanding (Figure 5)
than Resnet18, delivers better performance owing to its
improved representational capacity and feature expressivity.
A further boost in capacity (Resnet50) degrades performance,
likely due to the incorporation of less useful features and an
increase in samples required to train the resulting larger policy
network.

Reward design, especially for complex high dimensional
tasks, requires domain expertise. RRL replaces the needs of
well-shaped rewards by using a few demonstrations (to curb the
exploration challenges in high dimensional space) and sparse
rewards (indicating task completion). This significantly lowers

Ti
m

e(
H

ou
rs

)

0.0

10.0

20.0

30.0

40.0

RRL
(Ours)

FERM RRL
(Resnet 18)

RRL
(Resnet 50)

RRL
(VAE)

RRL
(ShuffleNet)

RRL
(MobileNet)

RRL
(vdvae)

Compute Cost

S
uc

ce
ss

 R
at

e

0

25

50

75

100

Default Light Position Light Direction Object Color Random Object

RRL(Ours) FERM

Hammer-v0

S
uc

ce
ss

 R
at

e

0

25

50

75

100

Default Light Position Light Direction Object Color Random Object

RRL(Ours) FERM

Door-v0

Fig. 5. LEFT: Comparison of the computational cost of RRL with Resnet34 i.e RRL(Ours), FERM - Strongest baseline, RRL with Resnet 18, RRL
with Resnet 50, RRL(VAE), RRL with ShuffleNet, RRL with MobileNet and RRL with Very Deep VAE baseline. CENTER,RIGHT: Influence of various
environment distractions (lightning condition, object color) on RRL(Ours), and FERM. RRL(Ours) consistently performs better than FERM in all the variations
we considered.

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 1 2 3 4
samples(M)

Door Opening

RRL(Ours)
RRL(ShuffleNet)
RRL(vdvae)
RRL(MobileNet)

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 1 2 3 4
samples(M)

0

20

40

60

80

100

Su
cc

es
s

Ra
te

Tool Use (Hammer)

Fig. 6. Effect of different types of Feature extractor pretrained on ImageNet
dataset, highlighting that not just Resnet but any feature extractor pretrained
on a sufficiently wide distribution of data remains effective.

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 1 2 3 4
samples(M)

Door Opening

RRL(Ours)
RRL(Resnet18)
RRL(Resnet50)
RRL(VAE)
NPG(Resnet34)

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 1 2 3 4
samples(M)

0

20

40

60

80

100

Su
cc

es
s

Ra
te

Tool Use (Hammer)

Fig. 7. Influence of representation: RRL(Ours), using resnet34 features,
outperforms commonly used representation

(
RRL(VAE)

)
learning method

VAE. Amongst different Resnet variations, Resnet34 strikes the balance
between representation capacity and computational overhead. NPG(Resnet34)
showcases the performance with Resnet34 features but without demonstration
bootstrapping, indicating that only representational choices are not enough to
solve the task suite.

the domain expertise required for our methods. In Figure 9-
LEFT, we observe that RRL (using sparse rewards) delivers
competitive performance to a variant of our methods that uses
well-shaped dense rewards while being resilient to variation in
policy network capacity (Figure 9-RIGHT).

H. Rethinking benchmarking for visual RL

DMControl [54] is a widely used benchmark for proprio-
ception based RL methods – RAD [26], SAC+AE [58], CURL
[48], DrQ [24]. While these methods perform well (Table I) on

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 1 2 3 4
samples(M)

Door Opening

RRL(Vision+Sensors)
RRL(Noise)
RRL(Vision)

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 1 2 3 4
samples(M)

0

20

40

60

80

100

Su
cc

es
s

Ra
te

Tool Use (Hammer)

Fig. 8. Influence of proprioceptive signals on RRL(Vision+sensors-Ours):
RRL(Noise) demonstrates that RRL remains effectiveness in presence of noisy
(2%) proprioception. RRL(Vision) demonstrates that RRL remains performant
with (only) visual inputs as well.

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 1 2 3 4
samples(M)

0

20

40

60

80

100

Su
cc

es
s

Ra
te

Tool Use (Hammer)

RRL(Sparse)
RRL(Dense)

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 1 2 3 4
samples(M)

0

20

40

60

80

100

Su
cc

es
s

Ra
te

Tool Use (Hammer)

RRL(64,64)
RRL(128,128)
RRL(256,256)
RRL(512,512)

Fig. 9. LEFT: Influence of rewards signals: RRL(Ours), using sparse rewards,
remains performant with a variation RRLdense using well-shaped dense
rewards. RIGHT: Effect of policy size on the performance of RRL . We
observe that it is quite stable with respect to a wide range of policy sizes.

such simple DMControl tasks, their progress struggles to scale
when met with task representative of real world complexities
such as realistic Adroit Manipulation benchmarks (Figure 4).

For example we demonstrate in Figure 4 that a representative
SOTA methods FERM (uses expert demos along with RAD)
struggles to perform well on Adroit Manipulation benchmark.
On the contrary, RRL using Resnet features pretrained on real
world image dataset, delivers state comparable results on Adroit
Manipulation benchmark while struggles on the DMControl
(RRL+SAC: RRL using SAC and Resnet34 features I). This
highlights large domain gap between the DMControl suite and

500K Step Scores RRL+SAC RAD Fixed RAD Encoder CURL SAC+AE State SAC
Finger, Spin 422± 102 947± 101 789± 190 926± 45 884± 128 923± 211
Cartpole, Swing 357± 85 863± 9 875± 01 845± 45 735± 63 848± 15
Reacher, Easy 382± 299 955± 71 53± 44 929± 44 627± 58 923± 24
Cheetah, Run 154± 23 728± 71 203± 31 518± 28 550± 34 795± 30
Walker, Walk 148± 12 918± 16 182± 40 902± 43 847± 48 948± 54
Cup, Catch 447± 132 974± 12 719± 70 959± 27 794± 58 974± 33
100K Step Scores
Finger, Spin 135± 67 856± 73 655± 104 767± 56 740± 64 811± 46
Cartpole, Swing 192± 19 828± 27 840± 34 582± 146 311± 11 835± 22
Reacher, Easy 322± 285 826± 219 162± 40 538± 233 274± 14 746± 25
Cheetah, Run 72± 63 447± 88 188± 20 299± 48 267± 24 616± 18
Walker, Walk 63± 07 504± 191 106± 11 403± 24 394± 22 891± 82
Cup, Catch 261± 57 840± 179 533± 148 769± 43 391± 82 746± 91

TABLE I
RESULTS ON DMCONTROL BENCHMARK. RAD OUTPERFORMS ALL THE BASELINES WHEREAS RRL PERFORMS WORSE IN THE 100K AND 500K

ENVIRONMENTAL STEP BENCHMARK SUGGESTING THAT IT IS QUICKER TO LEARN TASK SPECIFIC REPRESENTATION IN SIMPLE TASKS WHEREAS FIXED
RAD ENCODER HIGHLIGHTS THAT THE REPRESENTATIONS LEARNED BY RAD ARE NARROW AND TASK SPECIFIC.

the real-world.
We further note that the pretrained features learned by

SOTA methods aren’t as widely applicable. We use a pre-
trained RAD encoder (pretrained on Cartpole) as fixed feature
extractor (Fixed RAD encoder in Table I) and retrain the policy
using these features for all environments. The performance
degrades for all the tasks except Cartpole. This highlights
that the representation learned by RAD (even with various
image augmentations) are task specific and fail to generalize
to other tasks set with similar visuals. Furthermore, learning
such task specific representations are easier on simpler scenes
but their complexity grows drastically as the complexity of
tasks and scenes increases. To ensure that important problems
aren’t overlooked, we emphasise the need for the community
to move towards benchmarks representative of realistic real
world tasks.

VI. STRENGTHS, LIMITATIONS & OPPORTUNITIES

This paper presents an intuitive idea bringing together
advancements from the fields of representation learning, imita-
tion learning, and reinforcement learning. We present a very
simple method named RRL that leverages Resnet features
as representation to learn complex behaviors directly from
proprioceptive signals. The resulting algorithm approaches
the performance of state-based methods in complex ADROIT
dexterous manipulation suite.

Strengths: The strength of our insight lies in its simplicity,
and applicability to almost any reinforcement or imitation
learning algorithm that intends to learn directly from high
dimensional proprioceptive signals. We present RRL , an
instantiation of this insight on top of imitation + (on-policy)
reinforcement learning methods called DAPG, to showcase its
strength. It presents yet another demonstration that features
learned by Resnet are quite general and are broadly applicable.
Resnet features trained over 1000s of real-world images are
more robust and resilient in comparison to the features learned
by methods that learn representation and policies in tandem
using only samples from the task distribution. The use of
such general but frozen representations in conjunction with
RL pipelines additionally avoids the non-stationary issues

faced by competing methods that simultaneously optimizes
reinforcement and representation objectives, leading to more
stable algorithms. Additionally, not having to train your own
features extractors results in a significant sample and compute
gains, Refer to Figure 5.

Limitations: While this work demonstrates promises of
using pre-trained features, it doesn’t investigate the data
mismatch problem that might exist. Real-world datasets used
to train resnet features are from human-centric environments.
While we desire robots to operate in similar settings, there are
still differences in their morphology and mode of operations.
Additionally, resent (and similar models) acquire features
from data primarily comprised of static scenes. In contrast,
embodied agents desire rich features of dynamic and interactive
movements.

Opportunities: RRL uses a single pre-trained representation
for solving all the complex and very different tasks. Unlike
the domains of vision and language, there is a non-trivial cost
associated with data in robotics. The possibility of having
a standard shared representational space opens up avenues
for leveraging data from various sources, building hardware-
accelerated devices using feature compression, low latency and
low bandwidth information transmission.

REFERENCES

[1] Michael Ahn, Henry Zhu, Kristian Hartikainen, Hugo
Ponte, Abhishek Gupta, Sergey Levine, and Vikash Kumar.
Robel: Robotics benchmarks for learning with low-cost
robots. In Conference on Robot Learning, pages 1300–
1313. PMLR, 2020.

[2] Yoshua Bengio, Aaron Courville, and Pascal Vincent.
Representation learning: A review and new perspectives,
2014.

[3] Christopher P. Burgess, Irina Higgins, Arka Pal, Loic
Matthey, Nick Watters, Guillaume Desjardins, and Alexan-
der Lerchner. Understanding disentangling in β-vae, 2018.

[4] Rewon Child. Very deep vaes generalize autoregressive
models and can outperform them on images, 2021.

[5] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd

Hester. Challenges of real-world reinforcement learning.
arXiv preprint arXiv:1904.12901, 2019.

[6] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen
Simonyan, Volodymir Mnih, Tom Ward, Yotam Doron,
Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and
Koray Kavukcuoglu. Impala: Scalable distributed deep-
rl with importance weighted actor-learner architectures,
2018.

[7] Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell,
Sergey Levine, and Pieter Abbeel. Learning visual
feature spaces for robotic manipulation with deep spatial
autoencoders.

[8] Abhishek Gupta, Clemens Eppner, Sergey Levine, and
Pieter Abbeel. Learning dexterous manipulation for a soft
robotic hand from human demonstration, 2017.

[9] David Ha and Jürgen Schmidhuber. World models. arXiv
preprint arXiv:1803.10122, 2018.

[10] David Ha and Jürgen Schmidhuber. Recurrent world
models facilitate policy evolution, 2018.

[11] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey
Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor, 2018.

[12] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen,
George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar, Henry
Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine.
Soft actor-critic algorithms and applications, 2019.

[13] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben
Villegas, David Ha, Honglak Lee, and James Davidson.
Learning latent dynamics for planning from pixels, 2019.

[14] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mo-
hammad Norouzi. Dream to control: Learning behaviors
by latent imagination, 2020.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition, 2015.

[16] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc
Lanctot, Tom Schaul, Bilal Piot, Dan Horgan, John Quan,
Andrew Sendonaris, Gabriel Dulac-Arnold, Ian Osband,
John Agapiou, Joel Z. Leibo, and Audrunas Gruslys. Deep
q-learning from demonstrations, 2017.

[17] Irina Higgins, Loic Matthey, Arka Pal, Christopher
Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mo-
hamed, and Alexander Lerchner. beta-vae: Learning basic
visual concepts with a constrained variational framework.
2016.

[18] Irina Higgins, Arka Pal, Andrei A. Rusu, Loic Matthey,
Christopher P Burgess, Alexander Pritzel, Matthew
Botvinick, Charles Blundell, and Alexander Lerchner.
Darla: Improving zero-shot transfer in reinforcement
learning, 2018.

[19] Max Jaderberg, Wojciech M. Czarnecki, Iain Dunning,
Luke Marris, Guy Lever, Antonio Garcia Castañeda,
Charles Beattie, Neil C. Rabinowitz, Ari S. Morcos,
Avraham Ruderman, and et al. Human-level performance
in 3d multiplayer games with population-based reinforce-
ment learning. Science, 364(6443):859–865, May 2019.
ISSN 1095-9203. doi: 10.1126/science.aau6249. URL

http://dx.doi.org/10.1126/science.aau6249.
[20] S. Kakade. A natural policy gradient. In NIPS, 2001.
[21] Sham M Kakade. A natural policy gradient. Advances in

neural information processing systems, 14, 2001.
[22] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian

Ibarz, Alexander Herzog, Eric Jang, Deirdre Quillen,
Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke,
and Sergey Levine. Qt-opt: Scalable deep reinforcement
learning for vision-based robotic manipulation, 2018.

[23] Diederik P Kingma and Max Welling. Auto-encoding
variational bayes, 2014.

[24] Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image
augmentation is all you need: Regularizing deep rein-
forcement learning from pixels, 2020.

[25] Tejas Kulkarni, Ankush Gupta, Catalin Ionescu, Sebastian
Borgeaud, Malcolm Reynolds, Andrew Zisserman, and
Volodymyr Mnih. Unsupervised learning of object
keypoints for perception and control, 2019.

[26] Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto,
Pieter Abbeel, and Aravind Srinivas. Reinforcement
learning with augmented data, 2020.

[27] Sergey Levine and Vladlen Koltun. Guided policy
search. In Sanjoy Dasgupta and David McAllester, editors,
Proceedings of the 30th International Conference on
Machine Learning, volume 28 of Proceedings of Machine
Learning Research, pages 1–9, Atlanta, Georgia, USA,
17–19 Jun 2013. PMLR. URL http://proceedings.mlr.
press/v28/levine13.html.

[28] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter
Abbeel. End-to-end training of deep visuomotor policies,
2016.

[29] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian
Sun. Shufflenet v2: Practical guidelines for efficient cnn
architecture design, 2018.

[30] Lucas Manuelli, Wei Gao, Peter Florence, and Russ
Tedrake. kpam: Keypoint affordances for category-level
robotic manipulation. arXiv preprint arXiv:1903.06684,
2019.

[31] Lucas Manuelli, Wei Gao, Peter Florence, and Russ
Tedrake. kpam: Keypoint affordances for category-level
robotic manipulation, 2019.

[32] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex
Graves, Ioannis Antonoglou, Daan Wierstra, and Martin
Riedmiller. Playing atari with deep reinforcement learning,
2013.

[33] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex
Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-
level control through deep reinforcement learning. Nature,
518(7540):529–533, February 2015. ISSN 00280836.
URL http://dx.doi.org/10.1038/nature14236.

[34] Anusha Nagabandi, Kurt Konoglie, Sergey Levine, and
Vikash Kumar. Deep dynamics models for learning

http://dx.doi.org/10.1126/science.aau6249
http://proceedings.mlr.press/v28/levine13.html
http://proceedings.mlr.press/v28/levine13.html
http://dx.doi.org/10.1038/nature14236

dexterous manipulation, 2019.
[35] Ashvin Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl,

Steven Lin, and Sergey Levine. Visual reinforcement
learning with imagined goals, 2018.

[36] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek
Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael
Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek,
Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech
Zaremba, and Lei Zhang. Solving rubik’s cube with a
robot hand, 2019.

[37] Zengyi Qin, Kuan Fang, Yuke Zhu, Li Fei-Fei, and Silvio
Savarese. Keto: Learning keypoint representations for
tool manipulation, 2019.

[38] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta,
John Schulman, Emanuel Todorov, and Sergey Levine.
Learning complex dexterous manipulation with deep
reinforcement learning and demonstrations. CoRR,
abs/1709.10087, 2017. URL http://arxiv.org/abs/1709.
10087.

[39] Aravind Rajeswaran, Kendall Lowrey, Emanuel Todorov,
and Sham Kakade. Towards generalization and simplicity
in continuous control, 2018.

[40] Aravind Rajeswaran, Igor Mordatch, and Vikash Kumar.
A game theoretic framework for model based reinforce-
ment learning, 2020.

[41] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: In-
verted residuals and linear bottlenecks, 2019.

[42] John Schulman, Sergey Levine, Philipp Moritz, Michael I.
Jordan, and Pieter Abbeel. Trust region policy optimiza-
tion, 2017.

[43] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek
Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv
Batra. Grad-cam: Visual explanations from deep networks
via gradient-based localization. International Journal
of Computer Vision, 128(2):336–359, Oct 2019. ISSN
1573-1405. doi: 10.1007/s11263-019-01228-7. URL
http://dx.doi.org/10.1007/s11263-019-01228-7.

[44] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine
Hsu, Eric Jang, Stefan Schaal, and Sergey Levine. Time-
contrastive networks: Self-supervised learning from video,
2018.

[45] David Silver, Julian Schrittwieser, Karen Simonyan,
Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas
Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yu-
tian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre,
George van den Driessche, Thore Graepel, and Demis
Hassabis. Mastering the game of go without human
knowledge. Nature, 550:354–, October 2017. URL
http://dx.doi.org/10.1038/nature24270.

[46] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recognition,
2015.

[47] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas
Brox, and Martin Riedmiller. Striving for simplicity: The

all convolutional net, 2015.
[48] Aravind Srinivas, Michael Laskin, and Pieter Abbeel.

Curl: Contrastive unsupervised representations for rein-
forcement learning, 2020.

[49] Austin Stone, Oscar Ramirez, Kurt Konolige, and Rico
Jonschkowski. The distracting control suite – a challeng-
ing benchmark for reinforcement learning from pixels,
2021.

[50] Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael
Laskin. Decoupling representation learning from rein-
forcement learning, 2020.

[51] A.K Subramanian. Pytorch-vae. https://github.com/
AntixK/PyTorch-VAE, 2020.

[52] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. Rethinking the
inception architecture for computer vision, 2015.

[53] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking
model scaling for convolutional neural networks, 2020.

[54] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez,
Yazhe Li, Diego de Las Casas, David Budden, Abbas
Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy
Lillicrap, and Martin Riedmiller. Deepmind control suite,
2018.

[55] Lilian Weng. Policy gradient algorithms.
lilianweng.github.io/lil-log, 2018. URL
https://lilianweng.github.io/lil-log/2018/04/08/
policy-gradient-algorithms.html.

[56] Ronald J. Williams. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. In
Machine Learning, pages 229–256, 1992.

[57] Denis Yarats and Ilya Kostrikov. Soft actor-critic (sac)
implementation in pytorch. https://github.com/denisyarats/
pytorch sac, 2020.

[58] Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos,
Joelle Pineau, and Rob Fergus. Improving sample
efficiency in model-free reinforcement learning from
images, 2020.

[59] Yang You, Yujing Lou, Chengkun Li, Zhoujun Cheng,
Liangwei Li, Lizhuang Ma, Weiming Wang, and Cewu Lu.
Keypointnet: A large-scale 3d keypoint dataset aggregated
from numerous human annotations, 2020.

[60] Albert Zhan, Philip Zhao, Lerrel Pinto, Pieter Abbeel,
and Michael Laskin. A framework for efficient robotic
manipulation, 2020.

[61] Henry Zhu, Abhishek Gupta, Aravind Rajeswaran, Sergey
Levine, and Vikash Kumar. Dexterous manipulation with
deep reinforcement learning: Efficient, general, and low-
cost, 2018.

[62] Henry Zhu, Justin Yu, Abhishek Gupta, Dhruv Shah,
Kristian Hartikainen, Avi Singh, Vikash Kumar, and
Sergey Levine. The ingredients of real-world robotic
reinforcement learning, 2020.

http://arxiv.org/abs/1709.10087
http://arxiv.org/abs/1709.10087
http://dx.doi.org/10.1007/s11263-019-01228-7
http://dx.doi.org/10.1038/nature24270
https://github.com/AntixK/PyTorch-VAE
https://github.com/AntixK/PyTorch-VAE
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://github.com/denisyarats/pytorch_sac
https://github.com/denisyarats/pytorch_sac

VII. APPENDIX

A. Project’s webpage

Full details of the project (including video results, codebase, etc) are available at https://sites.google.com/view/abstractions4rl.

B. Overview of all methods used in baselines and ablations

The environmental setting and the feature extractor used in all the variations and different methods considered is summarized
in Table VII-B

Observation Latent
Features

Demos Rewards

Vision (RGB) Joint
Encoders

Environment
State

RRL(Ours) ✓ ✓ Resnet34 ✓ Sparse

RRL(Resnet18) ✓ ✓ Resnet18 ✓ Sparse

RRL(Resnet50) ✓ ✓ Resnet50 ✓ Sparse

RRL (VAE) ✓ ✓ VAE ✓ Sparse

RRL(Vision) ✓ Resnet34 ✓ Sparse

FERM ✓ ✓ ✓ Sparse

NPG(State) ✓ ✓ Sparse

NPG(Vision) ✓ Resnet34 Sparse

DAPG(State) ✓ ✓ ✓ Sparse

RRL(Sparse) ✓ ✓ Resnet34 ✓ Sparse

RRL(Dense) ✓ ✓ Resnet34 ✓ Dense

RRL(Noise) ✓ ✓ Resnet34 ✓ Sparse

RRL(Vision +
 Sensors)

✓ ✓ Resnet34 ✓ Sparse

RRL(ShuffleNet) ✓ ✓ ShuffleNet-v2 ✓ Sparse

RRL(MobileNet) ✓ ✓ MobileNet-v2 ✓ Sparse

RRL(vdvae) ✓ ✓ Very Deep
VAE

✓ Sparse

C. RRL(Ours)

Parameters Setting
BC batch size 32
BC epochs 5
BC learning rate 0.001
Policy Size (256, 256)
vf batch size 64
vf epochs 2
rl step size 0.05
rl gamma 0.995
rl gae 0.97
lam 0 0.01
lam 1 0.95

TABLE II
HYPERPARAMETER DETAILS FOR ALL THE RRL VARIATIONS.

Same parameters are used across all the tasks (Pen, Door, Hammer, Relocate, PegInsertion, Reacher) unless explicitly
mentioned. Sparse reward setting is used in all the hand manipulation environments as proposed by Rajeswaran et al. along
with 25 expert demonstrations. We have directly used the parameters (summarize in Table II) provided by DAPG without any
additional hyperparameter tuning except for the policy size (used same across all tasks). On the Adroit Manipulation task,
200 trajectories for Hammer-v0, Door-v0, Relocate-v0 whereas 400 trajectories for Pen-v0 per iteration are collected in each
iteration.

D. Results on MJRL Environment

https://sites.google.com/view/abstractions4rl

0 1 2 3 4
Robot Hours

0 1 2 3 4
Robot Hours

0 1 2 3 4
Robot Hours

0 1 2 3 4
Robot Hours

0.00 0.25 0.50 0.75 1.00 1.25 1.50
samples(M)

PegInsertion

RRL(Ours)
FERM
DAPG(State)
NPG(State)

0 1 2 3 4 5
Robot Hours

0 1 2 3 4 5
Robot Hours

0 1 2 3 4 5
Robot Hours

0 1 2 3 4 5
Robot Hours

0.0 0.5 1.0 1.5 2.0
samples(M)

0

20

40

60

80

100

Su
cc

es
s

Ra
te

Reacher

Fig. 10. Results on MJRL Environment. RRL outperforms FERM and
delivers results on par with DAPG(State) in the PegInsertion task. In Reacher,
FERM outperforms RRL following that learning task specific representations
is easier in simple tasks.

We benchmark the performance of RRL on two of the
MJRL environments [40], Reacher and Peg Insertion in
Figure 10. These environments are quite low dimensional
(7DoF Robotic arm) compared to the Adroit hand (24 DoF)
but still require rich understanding of the task. In the peg
insertion task, RRL delivers state comparable (DAPG(State))
results and significantly outperforms FERM. However, in the
Reacher task, we notice that DAPG(State) and FERM perform
surprisingly well whereas RRL struggles to perform initially.
This highlights that using task specific representations in simple,
low dimensional environments might be beneficial as it is easy
to overfit the feature encoder for the task in hand while the
Resnet features are quite generic. For the MJRL environment,
shaped reward setting is used as provided in the repository 2

along with 200 expert demonstrations. For the Peg Insertion
task 200 trajectories and for Reacher task 400 trajectories are
collected per iteration.

E. Other variations of RRL

a) RRL(MobileNet), RRL(ShuffleNet) : The encoders (ShuffleNet [29] and MobileNet [41]) are pretrained on ImageNet
Dataset using a classification objective. We pick the pretrained models from torchvision directly and freeze the parameters
during the entire training of the RL agent. Similar to RRL(Ours), the last layer of the model is removed and a latent feature of
dimension 1024 and 1280 in case of ShuffleNet and MobileNet respectively is used.
b) RRL(vdvae) : We use a very recent state of the art hierarchical VAE [4] that is trained on ImageNet dataset. The code
along with the pretrained weights are publically available 3 by the author. We use the intermediate features of the encoder of
dimension 512. All the parameters are frozen similar to RRL(Ours).

F. DMControl Experiment Details

For the RAD [26], CURL [48], SAC+AE [58] and State SAC [12], we report the numbers directly provided by Laskin et al..
For SAC+RRL, Resnet34 is used as a fixed feature extractor and the past three output features (frame stack= 3) are used as a
representative of state information in SAC algorithm. For the fixed RAD encoder, we train the RL agent along with RAD
encoder using the default hyperparameters provided by the authors for Cartpole environment. We used the trained encoder as a
fixed feature extractor and retrain the policies for all the tasks. The frame skip values are task specific as mentioned in [58]
also outlined in Table IV. The hyperparameters used are summarized in the Table III where a grid search is made on actor lr
= {1e − 3, 1e − 4}, critic lr = {1e − 3, 1e − 4}, critic update freq = {1, 2}, critic tau = {0.01, 0.05, 0.1} and an average
over 3 seeds is reported. SAC implementation in PyTorch courtesy [57].

G. RRL(VAE)

Fig. 11. ROW1: Original input images of the Hammer task; ROW2: Corresponding Reconstructed images; ROW3: Original input images of the Door task;
ROW4: Corresponding Reconstructed images. These images depict that the latent features sufficiently encodes features required to reconstruct the images.

2https://github.com/aravindr93/mjrl
3https://github.com/openai/vdvae

Parameter Setting
frame stack 3
replay buffer capacity 100000
init steps 1000
batch size 128
hidden dim 1024
critic lr 1e-3
critic beta 0.9
critic tau 0.01
critic target update freq 2
actor lr 1e-3
actor beta 0.9
actor log std min -10
actor log std max 2
actor update freq 2
discount 0.99
init temperature 0.1
alpha lr 1e-4
alpha beta 0.5

TABLE III
SAC HYPERPARAMETERS.

Environment action repeat
Cartpole, Swing 8
Reacher, Easy 4
Cheetah, Run 4
Cup, Catch 4
Walker, Walk 2
Finger, Spin 2

TABLE IV
ACTION REPEAT VALUES FOR DMCONTROL SUITE

For training, we collected a dataset of 1 million images of size 64 x 64. Out of the 1 million images collected, 25% of the
images are collected using an optimal course of actions (expert policy), 25% with a little noise (expert policy + small noise),
25% with even higher level of noise (expert policy + large noise) and remaining portion by randomly sampling actions (random
actions). This is to ensure that the images collected sufficiently represents the distribution faced by policy during the training of
the agent. We observed that this significantly helps compared to collecting data only from the expert policy. The variational
auto-encoder(VAE) is trained using a reconstruction objective [23] for 10epochs. Figure 11 showcases the reconstructed images.
We used a latent size of 512 for a fair comparison with Resnet. The weights of the encoder are freezed and used as feature
extractors in place of Resnet in RRL. RRL(VAE) also uses the inputs from the pro-prioceptive sensors along with the encoded
features. VAE implementation courtesy [51].

H. Visual Distractor Evaluation details

In order to test the generalisation performance of RRL and FERM [60], we subject the environment to various kinds of
visual distractions during inference (Figure 12). Note all parameters are freezed during this evaluation, an average performance
over 75 rollouts is reported. Following distractors were used during inference to test robustness of the final policy -
• Random change in light position.
• Random change in light direction.
• Random object color. (Handle, door color for Door-v0; Different hammer parts and nail for Hammer-v0)
• Introducing a new object in scene - random color, position, size and geometry (Sphere, Capsule, Ellipsoid, Cylinder, Box).

I. Compute Cost calculation

We calculate the actual compute cost involved for all the methods (RRL(Ours), FERM, RRL(Resnet-50), RRL(Resnet-18))
that we have considered. Since in a real-world scenario there is no simulation of the environment we do not include the cost of
simulation into the calculation. For fair comparison we show the compute cost with same sample complexity (4 million steps)
for all the methods. FERM is quite compute intensive (almost 5x RRL(Ours)) because (a) Data augmentation is applied at
every step (b) The parameters of Actor and Critic are updated once/twice at every step (Compute results shown are with one
update per step) whereas most of the computation of RRL goes in the encoding of features using Resnet. The cost of VAE
pretraining in included in the over all cost. RRL(Ours) that uses Resnet-34 strikes a balance between the computational cost
and performance. Note: No parallel processing is used while calculating the cost.

Fig. 12. COL1: Original images; COL2: Change in light position; COL3: Change in light direction; COL4: Randomizing object colors; COL5: Introducing a
random object in the scene. All the parameters are randomly sampled every time in an episode.

	Introduction
	Related Work
	Learning without explicit representation
	Learning with supervised representations
	Learning with unsupervised representations
	Learning with representations and demonstrations

	Background
	Preliminaries: MDP
	Policy Gradient
	Demo Augmented Policy Gradient
	Representation Learning

	RRL: Resnet as Representation for RL
	Experimental Evaluations
	Tasks
	Implementation Details
	Results
	Effects of Visual Distractors
	Effect of Representation
	Effects of proprioception choices and sensor noise
	Ablations and Analysis of Design Decisions
	Rethinking benchmarking for visual RL

	Strengths, Limitations & Opportunities
	Appendix
	Project's webpage
	Overview of all methods used in baselines and ablations
	RRL(Ours)
	Results on MJRL Environment
	Other variations of RRL
	DMControl Experiment Details
	RRL(VAE)
	Visual Distractor Evaluation details
	Compute Cost calculation

