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Abstract
Data scarcity is one of the major challenges in
many real-world applications. To handle low-
data regimes, practitioners often take an existing
pre-trained network and fine-tune it on a data-
deficient target task. In this setup, a network is
pre-trained on a source dataset and fine-tuned on
a different, potentially smaller, target dataset. We
address two critical challenges with transfer learn-
ing via fine-tuning: (1) The required amount of
fine-tuning greatly depends on the distribution
shift from source to target dataset. (2) This dis-
tribution shift greatly varies by layer, thereby re-
quiring layer-wise adjustments in fine-tuning to
adapt to this distribution shift while preserving the
pre-trained network’s feature representation. To
overcome these challenges, we propose RL-Tune,
a layer-wise fine-tuning framework for transfer
learning which leverages reinforcement learning
to adjust learning rates as a function of the target
data shift. In our RL framework, the state is a col-
lection of the intermediate feature activations gen-
erated from training samples. The agent generates
layer-wise learning rates as actions for fine-tuning
based on the current state and obtains sample ac-
curacy as the reward. RL-Tune outperforms other
state-of-the-art approaches on standard transfer
learning benchmarks by a large margin, e.g., 6%
mean accuracy improvement on CUB-200-2011
with 15% data.

1. Introduction
In low-data regimes, neural networks suffer from overfitting
and poor generalization on unseen training samples (Bansal
et al., 2020). One effective solution to learning with in-
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sufficient data is transfer learning via fine-tuning where
a model is pre-trained on the source dataset and subse-
quently fine-tuned on the target task (Tan et al., 2018). We
have seen the effectiveness of transfer learning via fine-
tuning on a wide variety of applications including medical
imaging (Tajbakhsh et al., 2016) and standard ML bench-
marks (Guo et al., 2019). Prior work has shown that layer-
wise fine-tuning is beneficial for transfer learning, because
the pre-trained model’s initial layers act as general feature
extractors whereas the final layers can extract more specific
features (Yosinski et al., 2014; Girshick et al., 2014). When
the source and target domains share similar features, we
can leverage the model’s general feature extractor and only
fine-tune the layers where the target task’s features differ
significantly.

In traditional fine-tuning approaches, we either fine-tune
globally, or freeze some layers and fine-tune the rest with
a uniform learning rate. Once a model is pre-trained, its
earlier layers do not need as much fine-tuning since they
act as general feature extractors (Sun et al., 2019; Ro &
Choi, 2021). For transfer learning applications, there is a
variety of techniques to apply layer-specific fine-tuning, in-
cluding heuristic-based methods (Kornblith et al., 2019; Li
et al., 2020) and supervised approaches, such as probabilis-
tic frameworks (You et al., 2020) and a zoo of models (Shu
et al., 2021). In contrast to the pre-training phase, the layer-
wise learning rates in the transfer phase are more sensitive
to the data distribution shift between the source and target
datasets. Improper learning rate selection may lead to catas-
trophic forgetting that neutralizes the advantages of transfer
learning (Sun et al., 2019).

Several approaches have been explored to automate the
hyper-parameter search in the training phase. To tune the
hyper-parameters, a population based bandit algorithm is
found to be effective in optimizing RL training (Parker-
Holder et al., 2020). A meta learning approach has been
introduced recently (Oh et al., 2020) for learning the update
rule of the RL algorithm. However, the data distribution
shift is a core problem for most transfer learning applica-
tions (Weiss et al., 2016). With significant distributional
shift, transfer learning becomes difficult as the source and
target features may not match. To overcome this challenge,
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we propose RL-Tune which leverages reinforcement learn-
ing to improve knowledge transfer through sample-based
layer-wise fine-tuning (see Fig. 1(a)).

In our RL setup, the agent’s input state is the collection of
all intermediary feature maps, which captures the domain
shift on a per-sample basis. In response to the current state,
the agent’s action is a vector of learning rates for layer-wise
fine-tuning. Once one round of fine-tuning is complete, the
agent’s reward is the corresponding sample accuracy. We
carried out extensive experiments and find that RL-Tune
outperforms state-of-the-art approaches (You et al., 2020;
Li & Hoiem, 2018; Chen et al., 2019; Li et al., 2018) by
more than 2% for a variety of sampling rates on the CUB-
200-2011, Stanford, and FGVC Aircraft datasets.

2. Related Work
2.1. Pre-training

Training very deep models on large-scale benchmark
datasets (Deng et al., 2009; Lin et al., 2014) establishes sev-
eral well known architectures, such as AlexNet (Krizhevsky
et al., 2012), ResNet (He et al., 2016), DenseNet (Huang
et al., 2017), Vision Transformers (Han et al., 2022), and
BERT (Devlin et al., 2018). The pre-trained weights of
these deep networks are widely used for transfer learning
on similar datasets with significantly lower amount of data.
Most of these networks are trained with supervised learn-
ing on large-scale labeled data. To leverage large-scale
unlabeled data, semi-supervised (Chen et al., 2020) and
self-supervised (Hendrycks et al., 2019) learning have been
adopted to increase the diversity of pre-trained models (Rad-
ford et al., 2021; Brown et al., 2020).

2.2. Transfer learning

Fine-tuning deep pre-trained model was established as an
effective approach for better performance (Girshick et al.,
2014; Agrawal et al., 2014) and faster convergence (He
et al., 2019) particularly in low-data regimes. (Li et al.,
2020) confirms that the choice of hyper-parameters, par-
ticularly learning rates and momentum, play a significant
role in the final performance of transfer learning. Various
approaches have been explored for better regularization of
the transfer learning with effective hyper-parameter selec-
tion. (Kornblith et al., 2019) proposes a grid-search based
approach to search for better hyper-parameters. (Li et al.,
2020) provides an elaborate guideline of learning rates and
other hyper-parameter selections that confirms the increas-
ing challenges of fine-tuning with dissimilar target datasets.
However, all of these approaches primarily focus on manual
search of hyper-parameters that hardly take care of the dis-
tribution shift of the target datasets and various abstractions
of intermediate levels. Apart from these, Co-Tuning (You

et al., 2020) attempts to integrate the whole pre-trained
network, including top fully connected layers, by learning
the probabilistic class mapping of source and target data.
Self-tuning (Wang et al., 2021) integrates the additional
unlabeled data with semi-supervised learning into transfer
learning. Zoo-Tuning (Shu et al., 2021) learns the combina-
tions of a zoo of pre-trained models for improved transfer
learning. However, most of these approaches operate with a
pre-defined set of hyper-parameters. We particularly focus
on improving standard transfer learning from a pre-trained
model to a target task with limited amount of labeled data.

3. Methodology
3.1. Problem Formulation

Given a pre-trained model M0 on a source dataset Ds =
{(xi

s, y
i
s}

ms
i=1 where xs, ys,ms represent the source image,

labels, and source dataset size, respectively, we gener-
ate the fine-tuned model Mf on the target dataset Dg =
{(xi

g, y
i
g}

mg

i=1 where xg, yg,mg represent the target image,
labels, and target dataset size, respectively. Only the pre-
trained model M0, and the target dataset Dg are available
for transfer learning.

3.2. Proposed Reinforcement Learning Framework

We begin with the target model initialized with the pre-
trained weights and deploy an RL agent to adapt layer-wise
learning rates as fine-tuning progresses (Fig. 1(a)). The RL
framework is defined as a tabular RL problem by specifying
the state, action, reward, and next state as (st, at, rt+1, st+1).
We primarily consider policy gradient algorithms that re-
quire no knowledge of the underlying environment dynam-
ics function (Schulman et al., 2017).

STATE SPACE

The state space (S) corresponds the current representation
of the model for target data distribution. A batch (bt) is fed
into the target model and the mean of intermediate feature
activations f i is extracted from each layer i. The state
representation at each timestamp t (st ∈ S) incorporates all
the mean feature activations (f i) of intermediate layers; that
can be represented by:

st = {f1
t , f

2
t , . . . , f

n−1
t , fn

t } (1)

where f i
t represents the feature map obtained from ith layer

at timestamp t from all n layers of the target model.

ACTION SPACE

The action space (A) represents the set of learning rates
for each layer in the sequential fine-tuning process. The
agent considers the current feature representations of each
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(a) RL-Tune Framework (b) Agent Architecture (c) Episodic Moving Average Control

Figure 1. The proposed approach for transfer learning via layer-wise fine-tuning. (a) RL-Tune framework: The RL agent receives each
layer’s mean feature maps (averaged over the batch), and outputs one learning rate per layer. (b) Agent architecture: An actor-critic model
built on linear and LSTM layers. (c) Episodic Moving Average Control: The target model is trained with agent-environment interaction
while the running source model is updated with exponential moving averages of the updated target model.

layer (st) obtained with the sample batch (bt) and predicts
the learning rate of each layer (at) to update the model for
generating new state representation (st+1). The action (at)
generated at each time stamp t can be represented by

at(st) = {lr1t , lr2t , . . . , lrn−1
t , lrnt } (2)

where lrit represents the learning rate of the ith layer at time
step t. The learning rate of each layer can be chosen either
from a discrete or continuous set of choices.

REWARD

The reward function (rt+1) represents the immediate gain
achieved through performing an action (at) based on the cur-
rent (st+1) and past state (st). We update the target model
based on the learning rates (at) with stochastic gradient de-
scent on current batch of samples (bt). The reward at time t
(rt+1) is represented by the accuracy of the updated target
model (M’) on the current sample batch (bt), which is given
by

rt+1(st, at, st+1) = Accuracy(M′, bt) (3)

OBJECTIVE DEFINITION

We define our RL problem as an episodic task in the sequen-
tial fine-tuning scheme. The primary objective is to derive a
better policy for generating layer-wise learning rates over
the old policy on the current model/state representations
from observed interactions. We primarily focus on the prox-
imal policy objective (Schulman et al., 2017) Lt at each

time-step t which is defined as the expectation (Et) of the
policy improvement as:

Lt(θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
(4)

where θ represents the policy parameters, Ât represents the
estimated advantage function corresponding to the reward,
ϵ is a hyper-parameter (usually 0.1) and rt(θ) is the ratio of
the action probability under the new and old policies.

3.3. Proposed Actor-Critic Agent Architecture

The agent architecture consists of an actor-critic model in
the proposed formulation (Fig. 1(b)). The actor network
generates the action choices (at) representing layer-wise
learning rates based on the corresponding state (st) and
current policy. It consists of an intermediate linear layer to
process the mean feature activations (f1

t , f
2
t , . . . , f

n−1
t , fn

t )
representing state followed by a long short term memory
(LSTM) layer to predict the sequence of learning rates for
each layer. The MLP-based critic network estimates the
value (vt) of the current state (st).

3.4. Proposed Episodic Moving Average Control

Inspired by the moving average baseline in (Zoph & Le,
2016), the model is updated through a moving average
of the weights in sequential episodes (Fig. 1(c)). Rather
than directly updating the target model in one episode, we
gradually update the weights with a moving average which
encourages more agent-environment interactions. Firstly,
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Table 1. Performance comparison of state-of-the-art approaches with pre-trained ResNet-50 on ImageNet (Deng et al., 2009)

Dataset Method Sampling rates
15% 30% 50% 100%

CUB-200-2011 Fine-Tune (baseline) 45.25 ± 0.12 59.28 ± 0.21 70.12 ± 0.16 78.01 ± 0.16
L2-SP (Li & Hoiem, 2018) 45.08 ± 0.19 57.78 ± 0.24 69.47 ± 0.29 78.44 ± 0.17
DELTA (Li et al., 2018) 46.83 ± 0.21 60.37 ± 0.25 71.38 ± 0.20 78.63 ± 0.18
BSS (Chen et al., 2019) 47.74 ± 0.23 63.38 ± 0.29 72.56 ± 0.17 78.85 ± 0.31
Co-Tuning (You et al., 2020) 52.58 ± 0.53 66.47 ± 0.17 74.64 ± 0.36 81.24 ± 0.14
RL-Tune (Ours) 58.75 ± 0.18 71.16 ± 0.21 78.92 ± 0.25 84.12 ± 0.22

Stanford Cars Fine-Tune (baseline) 36.77 ± 0.12 60.63 ± 0.18 75.10 ± 0.21 87.20 ± 0.19
L2-SP (Li & Hoiem, 2018) 36.10 ± 0.30 60.30 ± 0.28 75.48 ± 0.22 86.58 ± 0.26
DELTA (Li et al., 2018) 39.37 ± 0.34 63.28 ± 0.27 76.53 ± 0.24 86.32 ± 0.20
BSS (Chen et al., 2019) 40.57 ± 0.12 64.13 ± 0.18 76.78 ± 0.21 87.63 ± 0.27
Co-Tuning (You et al., 2020) 46.02 ± 0.18 69.09 ± 0.10 80.66 ± 0.25 89.53 ± 0.09
RL-Tune (Ours) 52.19 ± 0.24 75.28 ± 0.23 84.24 ± 0.26 91.81 ± 0.22

FGVC Aircraft Fine-Tune (baseline) 39.57 ± 0.20 57.46 ± 0.12 67.93 ± 0.28 81.13 ± 0.21
L2-SP (Li & Hoiem, 2018) 39.27 ± 0.24 57.12 ± 0.27 67.46 ± 0.26 80.98 ± 0.29
DELTA (Li et al., 2018) 42.16 ± 0.21 58.60 ± 0.29 68.51 ± 0.25 80.44 ± 0.20
BSS (Chen et al., 2019) 40.41 ± 0.12 59.23 ± 0.31 69.19 ± 0.13 81.48 ± 0.18
Co-Tuning (You et al., 2020) 44.09 ± 0.67 61.65 ± 0.32 72.73 ± 0.08 83.87 ± 0.09
RL-Tune (Ours) 50.11 ± 0.23 66.63 ± 0.19 76.77 ± 0.25 86.12 ± 0.15

the pre-trained model is initialized as the source model, and
the target model starts with the source model weights before
each episode. One episode continues for several epochs
with the replay buffer tracking the agent-environment in-
teractions, and the target model is updated with stochastic
gradient descent. The agent model is updated after each
epoch in an episode based on the stored interactions in the
replay buffer. After each episode, the weights of the source
model are updated based on the moving average of the prior
weights and the weights of the updated target model.

4. Results and Discussion
4.1. Datasets

We consider three publicly available benchmark datasets
for image classifications: CUB-200-2011 (Welinder et al.,
2010) (11,788 images for 200 bird classes), Stanford-
cars (Krause et al., 2013) (16,185 images with 196 classes),
and FGVC Aircraft (Maji et al., 2013) (10,000 images with
100 aircraft classes). We have experimented with different
sampling rates to analyze the effect on low-data regime fol-
lowing prior work (You et al., 2020). Unlike Self-Tuning
(Wang et al., 2021) that leverages the remaining data as
unlabeled samples for semi-supervised learning, only the
sampled data is used following standard transfer learning.

4.2. Implementation Details

All the experiments have been conducted with OpenAI gym-
toolkit and official PyTorch framework. Though the pro-

posed RL-Tune can be modeled with either continuous or
discrete actions, we consider the discrete action setup with
20 intermediate uniform steps for the learning rate of each
layer (minimum 0, maximum 0.01). We have used the
Adam optimizer for all experiments where the learning rate
of each layer is adapted with the RL-Tune framework. We
have considered ten epochs per-episodes in all experiments
of RL-Tune. Moreover, the experiments continued for five
episodes with an exponential moving average factor of 0.2.
We considered the ResNet-50 model for experiments pre-
trained on large-scale ImageNet dataset (Deng et al., 2009).
For generating the baseline, we have followed the standard
process of fine-tuning with uniform learning rate over the
pretrained network with Adam optimizer. Each experiment
has been carried out at least three times to get the expected
value of the reported accuracy.

4.3. Main Results

We have compared our method with several state-of-the-art
approaches on three benchmark datasets as summarized in
Table 1. RL-Tune consistently outperforms its state-of-the
art counterpart Co-Tuning (You et al., 2020) with average
improvements of 2.72% on CUB-200-2011, 2.28% on Stan-
ford Cars, and 2.25% on FGVC Aircraft with 100% training
data. Moreover, in all other state-of-the-art approaches, uni-
form learning rate is used over the network in fine-tuning
where several approaches to adapt the distribution shift of
the source and target dataset is incorporated, e.g. Co-Tuning
introduces the learning of the category relationship between
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Table 2. The effect of the number of episodes on training accuracy
with 50% sampling rate. The performance gradually improves
with more episodes in the exponential moving average approach.

No. of Episodes CUB-200-2011 Stanford Cars FGVC Aircraft

1 76.12 ± 0.21 81.91 ± 0.22 67.93 ± 0.28
2 77.08 ± 0.17 82.77 ± 0.16 67.46 ± 0.26
3 78.35 ± 0.24 83.52 ± 0.18 68.51 ± 0.25
4 78.78 ± 0.11 84.11 ± 0.14 72.73 ± 0.08
5 78.92 ± 0.25 84.24 ± 0.26 76.77 ± 0.25

the target dataset and the source dataset to adapt accord-
ingly. However, the proposed approach particularly controls
learning of each layer to adapt the fine-tuning process on the
target dataset. In low-data regimes using only a fraction of
the target dataset, we see even sharper improvements over
baseline methods. For example, RL-Tune achieves 6.02%
higher accuracy on FGVC Aircraft with only 15% of train-
ing samples, and 4.98% improvements with 30% training
data. This demonstrates that RL-Tune can be very effec-
tive for small datasets when only a few thousand samples
are available, and strictly improves over Co-Tuning in all
sampling regimes.

5. Ablation Studies
5.1. Ablation of the Number of Episodes

In the proposed exponential moving average approach (see
Section 3.4), the total number of training episodes plays an
important role on the final performance. We have carried out
an ablation study on the choice of total number of episodes
with a moving average factor of 0.2. The final accuracy
obtained on different datasets with 50% sampling rate is
summarized in Table 2. Each episode is continued for ten
epochs. The performance improves by incorporating more
episodes, representing more interaction with the training
environment. The best performance is achieved for a total
five episodes. However, the improvement margin gradually
shrinks with increasing number of episodes.

5.2. Ablation of the Number of Epochs Per-Episode

Each episode is continued for a number of epochs that repre-
sents the agent-environment interactions carried out before
the exponential moving average updates (see Section 3.4).
The performance obtained with different number of train-
ing epochs per episode is provided in Table 3. Each run is
continued for five episodes with an exponential moving av-
erage factor of 0.2. Similar to the total number of episodes,
the performance continues to improve with increasing num-
ber of training epochs. However, the agent adapts quickly
with the optimization dynamics and the improvement gets
saturated gradually.

Table 3. The effect of the number of training epoch per episode
with 5 episodes run and 50% sampling rate. Additional epochs
during each episode improve performance.

No. of Epochs CUB-200-2011 Stanford Cars FGVC Aircraft

1 73.56 ± 0.13 78.93 ± 0.32 71.11 ± 0.21
5 76.87 ± 0.21 83.22 ± 0.19 74.31 ± 0.17
8 78.10 ± 0.23 84.02 ± 0.18 75.93 ± 0.23
10 78.92 ± 0.25 84.24 ± 0.26 76.77 ± 0.25

Table 4. The effect of the total number of learning rate steps for
each layer with 50% sampling rate. Best performance is achieved
with an intermediate value of 20 steps.

Learning Rate Steps CUB-200-2011 Stanford Cars FGVC Aircraft

10 77.78 ± 0.18 82.38 ± 0.20 75.94 ± 0.27
15 78.43 ± 0.24 83.98 ± 0.28 76.36 ± 0.21
20 78.92 ± 0.25 84.24 ± 0.26 76.77 ± 0.25
25 78.17 ± 0.29 84.43 ± 0.32 76.56 ± 0.26

5.3. Ablation of the Per-layer Learning-rate Steps

Since we considered a discrete set of actions representing
learning rate for each layer (see Section 3.2), the choice of
total number of intermediate steps for learning rates signifi-
cantly impacts the final performance. We have carried out
an ablation study on different choices of layer-wise learn-
ing rates with a maximum of 0.01 and minimum of 0. The
choices are distributed uniformly in the specific range of
learning rates. The performance obtained with different
learning rates is presented in Table 4. We note that a lower
number of steps achieves lower accuracy whereas a larger
number of steps increases complexity. The best performance
is achieved with an intermediate choice of 20 steps.

6. Conclusion
We propose RL-Tune, a novel reinforcement learning based
framework for determining layer-wise learning rates in trans-
fer learning. RL-Tune adapts to the domain shift by adjusting
learning rates for each layer as the network state changes.
We apply fine-grained adjustments via layer-wise learning
rates, which aim to preserve the pre-trained network’s de-
ductive power while allowing each layer to adapt to the
target distribution. We have shown significant improvement
in low-data regimes for three benchmark datasets, illustrat-
ing the effectiveness of RL-based learning rate selection for
transfer learning.

Acknowledgements
This research was supported in part by the Office of Naval
Research, Minerva Program, and a UT Cockrell School of
Engineering Doctoral Fellowship.



Submission and Formatting Instructions for ICML 2022

References
Agrawal, P., Girshick, R., and Malik, J. Analyzing the

performance of multilayer neural networks for object
recognition. In European conference on computer vision,
pp. 329–344. Springer, 2014.

Bansal, M. A., Sharma, D. R., and Kathuria, D. M. A
systematic review on data scarcity problem in deep learn-
ing: Solution and applications. ACM Computing Surveys
(CSUR), 2020.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chen, T., Kornblith, S., Swersky, K., Norouzi, M., and
Hinton, G. E. Big self-supervised models are strong semi-
supervised learners. Advances in neural information
processing systems, 33:22243–22255, 2020.

Chen, X., Wang, S., Fu, B., Long, M., and Wang, J. Catas-
trophic forgetting meets negative transfer: Batch spectral
shrinkage for safe transfer learning. Advances in Neural
Information Processing Systems, 32, 2019.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 580–587,
2014.

Guo, Y., Shi, H., Kumar, A., Grauman, K., Rosing, T., and
Feris, R. Spottune: transfer learning through adaptive
fine-tuning. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 4805–
4814, 2019.

Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z.,
Tang, Y., Xiao, A., Xu, C., Xu, Y., et al. A survey on vi-
sion transformer. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2022.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

He, K., Girshick, R., and Dollár, P. Rethinking imagenet pre-
training. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 4918–4927, 2019.

Hendrycks, D., Mazeika, M., Kadavath, S., and Song, D.
Using self-supervised learning can improve model robust-
ness and uncertainty. Advances in Neural Information
Processing Systems, 32, 2019.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708, 2017.

Kornblith, S., Shlens, J., and Le, Q. V. Do better imagenet
models transfer better? In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pp. 2661–2671, 2019.

Krause, J., Stark, M., Deng, J., and Fei-Fei, L. 3d ob-
ject representations for fine-grained categorization. In
Proceedings of the IEEE international conference on
computer vision workshops, pp. 554–561, 2013.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Advances in neural information processing systems, 25,
2012.

Li, H., Chaudhari, P., Yang, H., Lam, M., Ravichandran, A.,
Bhotika, R., and Soatto, S. Rethinking the hyperparam-
eters for fine-tuning. arXiv preprint arXiv:2002.11770,
2020.

Li, X., Xiong, H., Wang, H., Rao, Y., Liu, L., and Huan,
J. Delta: Deep learning transfer using feature map with
attention for convolutional networks. In International
Conference on Learning Representations, 2018.

Li, Z. and Hoiem, D. Learning without forgetting.
IEEE transactions on pattern analysis and machine
intelligence, 40(12):2935–2947, 2018.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollár, P., and Zitnick, C. L. Microsoft coco:
Common objects in context. In European conference on
computer vision, pp. 740–755. Springer, 2014.

Maji, S., Rahtu, E., Kannala, J., Blaschko, M., and Vedaldi,
A. Fine-grained visual classification of aircraft. arXiv
preprint arXiv:1306.5151, 2013.

Oh, J., Hessel, M., Czarnecki, W. M., Xu, Z., van Hasselt,
H. P., Singh, S., and Silver, D. Discovering reinforcement
learning algorithms. Advances in Neural Information
Processing Systems, 33:1060–1070, 2020.



Submission and Formatting Instructions for ICML 2022

Parker-Holder, J., Nguyen, V., and Roberts, S. J.
Provably efficient online hyperparameter optimiza-
tion with population-based bandits. Advances in
Neural Information Processing Systems, 33:17200–
17211, 2020.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International Conference on
Machine Learning, pp. 8748–8763. PMLR, 2021.

Ro, Y. and Choi, J. Y. Autolr: Layer-wise pruning and auto-
tuning of learning rates in fine-tuning of deep networks.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 2486–2494, 2021.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shu, Y., Kou, Z., Cao, Z., Wang, J., and Long, M.
Zoo-tuning: Adaptive transfer from a zoo of models.
In International Conference on Machine Learning, pp.
9626–9637. PMLR, 2021.

Sun, C., Qiu, X., Xu, Y., and Huang, X. How to fine-
tune bert for text classification? In China national
conference on Chinese computational linguistics, pp.
194–206. Springer, 2019.

Tajbakhsh, N., Shin, J. Y., Gurudu, S. R., Hurst, R. T.,
Kendall, C. B., Gotway, M. B., and Liang, J. Convolu-
tional neural networks for medical image analysis: Full
training or fine tuning? IEEE transactions on medical
imaging, 35(5):1299–1312, 2016.

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and Liu,
C. A survey on deep transfer learning. In International
conference on artificial neural networks, pp. 270–279.
Springer, 2018.

Wang, X., Gao, J., Long, M., and Wang, J. Self-tuning for
data-efficient deep learning. In International Conference
on Machine Learning, pp. 10738–10748. PMLR, 2021.

Weiss, K., Khoshgoftaar, T. M., and Wang, D. A survey of
transfer learning. Journal of Big data, 3(1):1–40, 2016.

Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F.,
Belongie, S., and Perona, P. Caltech-ucsd birds 200.
2010.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. How trans-
ferable are features in deep neural networks? Advances
in neural information processing systems, 27, 2014.

You, K., Kou, Z., Long, M., and Wang, J. Co-tuning
for transfer learning. Advances in Neural Information
Processing Systems, 33:17236–17246, 2020.

Zoph, B. and Le, Q. V. Neural architecture search with re-
inforcement learning. arXiv preprint arXiv:1611.01578,
2016.


