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Abstract
Warning: This paper contains samples of of-001
fensive text.002
The popularity of pretrained language models003
in natural language processing systems calls004
for a careful evaluation of such models in005
down-stream tasks, which have a higher poten-006
tial for societal impact. The evaluation of such007
systems usually focuses on accuracy measures.008
Our findings in this paper call for attention to009
be paid to fairness measures as well. Through010
the analysis of more than a dozen pretrained011
language models of varying sizes on two toxic012
text classification tasks, we demonstrate that013
focusing on accuracy measures alone can lead014
to models with wide variation in fairness char-015
acteristics. Specifically, we observe that fair-016
ness can vary even more than accuracy with017
increasing training data size and different ran-018
dom initializations. At the same time, we find019
that little of the fairness variation is explained020
by model size, despite claims in the literature.021
To improve model fairness without retraining,022
we show that two post-processing methods de-023
veloped for structured, tabular data can be suc-024
cessfully applied to a range of pretrained lan-025
guage models.026

1 Introduction027

Pre-trained, bidirectional language models (Devlin028

et al., 2019; Liu et al., 2019; Radford et al., 2019;029

Clark et al., 2020; He et al., 2021)1 revolutionized030

natural language processing (NLP) research. LMs031

have provided a route to significant performance032

increases in several NLP tasks as demonstrated033

by the leaderboards (Rajpurkar et al., 2018; Wang034

et al., 2019a,b; AI2, 2021). More importantly, LMs035

have been applied to practical problems, leading036

to improved results for web search (Nayak, 2019)037

and have become an asset in fields such as medi-038

cal evidence inference (Lehman et al., 2019; Sub-039

ramanian et al., 2020) and chemistry (Schwaller040

1We use the acronym LM(s) to refer to language model(s)
throughout the paper

et al., 2021). While the progress in NLP tasks due 041

to LMs is clear, the reasons behind this success 042

are not as well understood (Rogers et al., 2021; 043

McCoy et al., 2019), and there are also important 044

downsides. In particular, several studies have docu- 045

mented the bias of LM-based models (Bolukbasi 046

et al., 2016; Hutchinson et al., 2020; Webster et al., 047

2020; Borkan et al., 2019; de Vassimon Manela 048

et al., 2021) and others discuss potential societal 049

harms (Blodgett et al., 2020; Bender et al., 2021) 050

for individuals or groups. We use the term bias 051

to refer to systematic disparity in representation 052

or outcomes for individuals based on their mem- 053

bership in certain protected groups such as gender, 054

race, and ethnicity. 055

In this work, we focus on one important applica- 056

tion of fine-tuned LMs, toxic text classification. 057

Text toxicity predictors are already used in de- 058

ployed systems (Perspective, 2021) and they are 059

a crucial component for content moderation since 060

online harassment is on the rise (Vogels, 2021). In 061

downstream applications such as toxic text classifi- 062

cation, it is important to examine the behavior of 063

LMs in terms of measures other than task-specific 064

accuracy. This provides a more holistic understand- 065

ing of model performance, leading to improved in- 066

sights into appropriate uses of LMs for these tasks. 067

As a first step toward this goal, we provide herein 068

an empirical characterization of LMs for the task 069

of toxic text classification using a combination of 070

accuracy and bias measures, and study two post- 071

processing methods for bias mitigation that have 072

proved successful for structured, tabular data. 073

One aspect of LMs that is hard to ignore is the 074

increase in their size, as measured by the number 075

of parameters in their architectures. In general, 076

larger LMs seem to perform better on NLP tasks 077

as they have the capacity to capture more complex 078

correlations present in the training data. (Bender 079

et al., 2021) claim that this same property may also 080

lead to more pronounced biases in their predictions, 081
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as the large data that LMs are trained on is not082

curated. On the other hand, for image classification083

models that use large neural networks, (Hooker084

et al., 2020) discuss how model pruning can lead to085

more biased predictions. In this work, we consider086

a wide variety of model architectures and sizes.087

We acknowledge that size is relative and what we088

consider large in this paper may not be considered089

as such in a different context.090

We address the following questions regarding091

the effect of various factors on model performance:092

1. Model size: Building on the work of (Bender093

et al., 2021) and (Hooker et al., 2020), how do094

the accuracy and group fairness of fine-tuned095

LM-based classifiers vary with their size?096

2. Random seeds: LMs that start from different097

random initializations can behave differently098

in classification. What is the effect of random099

seeds on the accuracy-fairness relationship?100

3. Data size: The size of fine-tuning data is also101

an important dimension alongside model size.102

What happens to accuracy and fairness when103

more/less data is used for fine-tuning?104

4. Bias mitigation via post-processing: Given105

the expense of training and fine-tuning large106

LMs, to what extent can we correct bias by107

only post-processing LM outputs?108

We study the accuracy-fairness relationship in109

more than a dozen fine-tuned LMs for two different110

datasets that deal with prediction of text toxicity.111

The key contributions of our analysis are:112

1. We empirically show that no blanket state-113

ment can be made regarding the fairness char-114

acteristics of fine-tuned LMs with respect to115

their size. It really depends on the combina-116

tion of LM, task, and dataset.117

2. We find that optimizing for accuracy measures118

alone can lead to models with wide variation119

in fairness characteristics. Specifically:120

(a) While increasing data size for fine-tuning121

does not improve accuracy much beyond122

a point, the improvement in fairness is123

more significant and may continue after124

the improvement in accuracy has stopped125

for certain datasets and tasks. This sug-126

gests that choosing data size based on127

accuracy alone could lead to suboptimal128

performance with respect to fairness.129

(b) While accuracy measures are known to 130

vary (Dodge et al., 2020) with different 131

random initializations, the variation in 132

fairness measures can be even greater. 133

3. We demonstrate that post-processing bias mit- 134

igation is an effective, computationally afford- 135

able solution to enhance fairness in fine-tuned 136

LMs. In particular, one of the methods we 137

experimented with allows for a large accuracy- 138

fairness tradeoff space, leading to relative im- 139

provements of 50% for fairness, as measured 140

by equalized odds, while reducing accuracy 141

only by 2% (see Figure 8 religion group). 142

Our observations strengthen the chorus of recent 143

work addressing bias mitigation in NLP in calling 144

for a careful empirical analysis of fairness with 145

fine-tuned LMs in the context of their application. 146

2 Background and related work 147

Fairness in machine learning As machine learn- 148

ing models have become routinely deployed in 149

practice, many studies noticed their tendency to 150

perform unfairly in various contexts (Angwin et al., 151

2016, 2017; Buolamwini and Gebru, 2018; Ben- 152

der et al., 2021; Park et al., 2021). To understand 153

and measure model bias, researchers have proposed 154

many definitions of algorithmic fairness. Broadly 155

speaking, they fall into two categories: group fair- 156

ness (Chouldechova and Roth, 2018) and individ- 157

ual fairness (Dwork et al., 2012). At a high level, 158

group fairness requires similar average outcomes 159

on different groups of individuals considered, for 160

example comparable university acceptance rates 161

across ethnicities. Individual fairness requires sim- 162

ilar outputs for similar individuals, e.g. two uni- 163

versity applicants with similar credentials, but dif- 164

ferent ethnicity, gender, family background, etc., 165

should either be both accepted or both rejected. In 166

this paper we consider group fairness, noting that 167

both have their pros and cons (Chouldechova and 168

Roth, 2018; Dwork et al., 2012). 169

There are many definitions of group fairness and 170

we refer to Verma and Rubin (2018) for a compre- 171

hensive overview. Statistical parity (SP) is one of 172

the earlier definitions which requires the output of 173

a model to be independent of the sensitive attribute, 174

such as race or gender. In other words, the average 175

outcome (e.g. prediction) across groups defined 176

by the sensitive attribute needs to be similar. An 177

alternative measure is equalized odds (EO) (Hardt 178
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et al., 2016), which requires the model output con-179

ditioned on the true label to be independent of the180

sensitive attribute. The violation of conditional181

independence for a given label (positive or nega-182

tive) can be measured by the difference in accuracy183

across sensitive groups conditioned on that label.184

Taking the maximum or an average (average EO)185

of these label-specific differences quantifies the186

overall EO violation.187

Many methods for achieving group fairness have188

been proposed. These methods are typically cate-189

gorized as follows: (a) modifying the training data190

(pre-processing), (b) incorporating fairness con-191

straints while training the model (in-processing),192

and (c) transforming the model output to enhance193

fairness (post-processing). A summary and im-194

plementation of group bias mitigation approaches195

are discussed in (Bellamy et al., 2019). In this196

study, we investigate the use of post-processing197

methods to enhance fairness in classification tasks.198

We chose post-processing approaches since they do199

not require modification of training data or model200

training procedures, and hence can be efficiently201

applied to all LMs we consider. In addition, post-202

processing approaches could minimize the environ-203

mental impact of re-training/fine-tuning LMs (Ben-204

der et al., 2021; Patterson et al., 2021). We consider205

two post-processing approaches proposed by (Wei206

et al., 2020) and (Hardt et al., 2016), which have207

shown considerable success in mitigating bias for208

tabular data. (Wei et al., 2020) optimize a score209

(predicted probability) transformation function to210

satisfy fairness constraints that are linear in condi-211

tional means of scores while minimizing a cross-212

entropy objective. (Hardt et al., 2016) propose to213

solve a linear program to find probabilities with214

which to change the predicted output labels such215

that the equalized odds violation is minimized.216

Fairness in Natural Language Processing In217

NLP systems, bias is broadly understood in two218

categories, intrinsic and extrinsic. Intrinsic bias219

refers to bias inherent in the representations, e.g.220

word embeddings used in NLP (Bolukbasi et al.,221

2016). Extrinsic bias refers to bias in downstream222

tasks, such as disparity in false positive rates across223

groups defined by sensitive attributes in a specified224

application. The concepts of intrinsic and extrinsic225

bias also correlate well with the notions of repre-226

sentational and allocative harms. While allocative227

harms correspond to disparities across different228

groups in terms of decisions that lead to alloca-229

tion of benefits/harms, representational harms are 230

those perpetuated by representation of individuals 231

in the feature space (Crawford, 2017). (Abbasi 232

et al., 2019) discuss how harms from stereotypical 233

representations manifest as allocative harms later 234

in the ML pipeline. However, probably because of 235

their complexity, measuring intrinsic bias in the rep- 236

resentations created by LMs may not necessarily 237

reflect the behavior of models built by fine-tuning 238

LMs. (Goldfarb-Tarrant et al., 2021) discuss how 239

intrinsic measures of bias do not correlate with ex- 240

trinsic, application-specific, bias measures. Since 241

we are concerned with the application of LMs to the 242

specific task of toxic text classification, we restrict 243

our focus to group fairness measures, which fall 244

under the category of extrinsic bias. Previous work 245

on bias mitigation in NLP has been focused on 246

pre- and in-processing methods (Sun et al., 2019; 247

Ball-Burack et al., 2021) and to the best of our 248

knowledge, we are the first to use post-processing 249

methods with NLP tasks. 250

3 Methodology 251

We are interested in studying how group fairness 252

varies across different fine-tuned language models 253

for binary classification. We choose to focus on text 254

toxicity as the prediction task. Due to an increase 255

in online harassment (Vogels, 2021) and the po- 256

tential of both propagating harmful stereotypes of 257

minority groups and/or inadvertently reducing their 258

voices, the task of predicting toxicity in text has 259

received increased attention in recent years (Kir- 260

itchenko et al., 2021). While we acknowledge that 261

text toxicity presents different complex nuances 262

(e.g., offensive text, harassment, hate speech), we 263

focus on a binary task formulation. We adopt the 264

definition of toxicity described in Borkan et al. 265

(2019) as anything that is rude, disrespectful, or 266

unreasonable that would make someone want to 267

leave a conversation. 268

Datasets We used two datasets that deal with 269

toxic text classification: 1) Jigsaw, a large dataset 270

released for a Kaggle competition (Jigsaw, 2019) 271

that contains online comments on news articles, 272

and 2) HateXplain, a dataset recently introduced 273

with the intent of studying explanations for offen- 274

sive and hate speech in Twitter and Twitter-like data 275

(i.e., gab.com). Both datasets have fine-grained 276

annotations for religion, race and gender. We used 277

as sensitive groups the coarse-grained groups (e.g., 278

religion) as opposed to the finer-grained annota- 279

3

gab.com


tions (e.g., Muslim, see below). Details about the280

sizes of the datasets, the splits we used and exam-281

ples of text can be found in Appendix A.1.282

Language models We consider more than a283

dozen LMs that cover a large spectrum of sizes. We284

selected the models to not only represent various285

sizes but also different styles of architecture and286

training. The models in our study are shown in Ta-287

ble 8 along with the number of parameters and the288

size of the PyTorch (Paszke et al., 2019) model on289

disk. If not specified, the version of the model used290

is base. For all our experiments, we used the Hug-291

ging Face implementation of Transformers (Wolf292

et al., 2020) and the corresponding implementa-293

tions for all LMs in our study. In particular, we294

use the text sequence classifier without any mod-295

ifications to increase reproducibility. For details296

on model sizes, fine-tuning and hyper-parameter297

tuning, as well as the computational infrastructure298

and costs, we refer the reader to Appendix A.2.299

Sensitive groups and fairness measures In all300

our measurements, we considered the following301

topics as sensitive: religion, race and gender. We302

categorize a text sample as belonging to a sensitive303

group if it mentions one of these topics (e.g., reli-304

gion), and otherwise to the complementary group305

(no religion). Except in Section 5.5, we do not306

analyze finer-grained subgroups (e.g., Jewish), but307

consider larger groups (any mention of religion,308

such as Muslim, Jewish, atheist). There are several309

reasons that justify this choice. First, unlike tabular310

data where each sample corresponds to an individ-311

ual belonging to one identity (e.g., either female312

or male), we do not have information on the de-313

mographics of the person producing the text. Our314

categorization is based on the content. In addition,315

for the datasets we used, most subgroups account316

for significantly less than 1% of the data. Moreover,317

there is considerable overlap between subgroups.318

For example, in the test split for Jigsaw, 40% of319

the text belonging to the male subgroup also be-320

longs to the female subgroup. To summarize, we321

analyze the bias/fairness of toxic text prediction in322

the presence or absence of information that refers323

to religion, race or gender, respectively. The intent324

is to not have the performance of the predictor be325

influenced by these sensitive topics.326

We use equalized odds as the group fairness mea-327

sure. Equalized odds is defined as the maximum328

of the true positive rate difference and false pos-329

itive rate difference, where these differences are330

between a sensitive group and its complementary 331

group. In toxic text classification, a true positive 332

means that a toxic text is correctly identified as 333

such, while a false positive means that a benign 334

piece of text is marked as toxic. In terms of harms, 335

a false negative (toxic text that is missed) may 336

cause individuals to feel threatened or disrepected, 337

while a false positive may be seen as censoring, 338

which is particularly problematic if it reduces the 339

voices of minority protected groups from online 340

conversations. By using the sensitive groups of 341

religion/race/gender mentioned above, we aim to 342

reduce the effect of the presence or absence of re- 343

ligion/race/gender terms on the false negative and 344

false positive rates. By taking the maximum, we 345

are emphasizing the larger discrepancy as opposed 346

to other studies that take the average of the two rate 347

differences (average equalized odds). Note that 348

unlike statistical parity, equalized odds does allow 349

the sensitive (e.g., mention of religion) and com- 350

plementary (no religion) groups to have different 351

toxicity (positive prediction) rates. 352

4 Bias mitigation post-processing 353

We investigated the use of post-processing methods 354

to mitigate violations of equalized odds. By post- 355

processing, we mean methods that operate only 356

on the outputs of the fine-tuned LMs and do not 357

modify the models themselves.2 The ability to 358

avoid retraining models is a major advantage of 359

post-processing due to the large computational cost 360

of fine-tuning LMs. Post-processing also targets 361

unfairness at a point closest to deployment and 362

hence can have a direct impact on downstream 363

operations that use the model predictions. 364

Hardt et al. (2016) The first post-processing 365

method that we consider is by Hardt et al. (2016) 366

(abbreviated HPS), who were the original proposers 367

of the equalized odds criterion. We used the open- 368

source implementation of their method from Bel- 369

lamy et al. (2019), which post-processes binary 370

predictions to satisfy EO while minimizing clas- 371

sification loss. While this method is effective in 372

enforcing EO, one limitation is that it does not offer 373

a trade-off between minimizing the deviation from 374

EO and reducing the loss in accuracy. 375

Fair Score Transformer (FST) We also consid- 376

ered the FST method of Wei et al. (2020), in part 377

2This is not to be confused with the post-processing of LM
embeddings, before they are passed to classification layers. In
this case, the classification layers must be retrained to account
for the modified embeddings.
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to provide the above-mentioned trade-off, and in378

part because it is a recent post-processing method379

shown to be competitive with several other methods380

(including in-processing).381

FST takes predicted probabilities (referred to as382

scores) as input and post-processes them to satisfy383

a fairness criterion. We choose generalized equal-384

ized odds (GEO), a score-based variant of EO, as385

the fairness criterion and then threshold the output386

score to produce a binary prediction. The appli-387

cation of FST required attention to three issues:388

1) the provision of input scores that are indeed389

calibrated probabilities; 2) the choice of fairness390

parameter ε, which bounds the allowed GEO on the391

data used to fit FST; 3) the choice of binary classi-392

fication threshold t. We consider a range of ε and393

t values to explore the trade-off between EO and394

accuracy. Due to numerical instability of the FST395

implementation in the original paper (occasional396

non-convergence in reasonable time for the Jigsaw397

dataset), we obtained a closed-form solution for398

one step in the optimization that leads to a more399

efficient implementation, running in minutes for400

all models and all datasets considered. More de-401

tails on this implementation and the tuning of the402

parameters can be found in Appendix A.4.403

Threshold post-processing We also tested the404

effect of thresholding alone, without fairness-405

enhancing transformation. We refer to this406

as threshold post-processing (TPP). This simple407

method corresponds to FST without calibrating the408

LM outputs, choosing ε large enough so that FST409

yields an identity transformation, and thresholding410

at level t.411

5 The accuracy-fairness relationship in412

toxic text classification413

We report on our study of the performance and414

fairness characteristics of several language models415

while varying parameters such as random seeds and416

the amount of training data. We also experiment417

with two post-processing methods for group bias418

mitigation and show that it is possible to reduce419

some of the bias presented by these models.420

5.1 Characterization of language models of421

varied sizes422

The first set of experiments show how performance423

and fairness measures vary across models. In Fig-424

ure 1 we show the performance as measured by425

Jigsaw HateXplain

religion

race

gender

Figure 1: Balanced accuracy versus equalized odds for
fine-tuned LMs on the Jigsaw and HateXplain datasets.

balanced accuracy3 and the group fairness as mea- 426

sured by equalized odds on the x-axis (lower EO 427

is better). The models are color-coded by their size 428

- dark blue for small models, orange for regular 429

size models and light blue for large models. The 430

figure shows that the variation in balanced accu- 431

racy is not as wide as the variation in equalized 432

odds. For the HateXplain dataset, the gap between 433

balanced accuracy and fairness variability is more 434

prominent. In terms of accuracy (not balanced), the 435

models perform even closer as shown in the plots 436

in Appendix A.3. For EO, the spread is significant, 437

with gaps of 0.10 between the largest and smallest 438

values for Jigsaw, and 0.15 for HateXplain. De- 439

pending on the dataset and sensitive group, some 440

larger models seem to lead to lower EO; for exam- 441

ple, ELECTRA-large achieves best accuracy-EO 442

results for religion as sensitive group (Jigsaw). For 443

race, SqueezeBERT, which is one of the small mod- 444

3We use balanced accuracy as a measure for performance
as it is more honest, especially for the imbalanced Jigsaw
dataset where a trivial predictor that always outputs the label
“normal” would achieve ∼92% accuracy.
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els in the study, achieves one of the best balanced445

accuracy-EO operating points (Jigsaw), hinting that446

size is not really correlated with the fairness of the447

model. Similarly, for HateXplain with religion448

as the sensitive group, DistilBERT, again a small449

model, obtains the best balanced accuracy-EO op-450

erating point. In the next section, we show models451

trained using various random seeds and show a low452

correlation between EO and model size.453

These results strongly suggest that fairness mea-454

sures should be included in the evaluation of lan-455

guage models. In the next sections, we show that,456

if fairness is not carefully considered, we can end457

up with models with widely varying fairness char-458

acteristics depending on the training conditions.459

5.2 The influence of random seeds460

Fine-tuning LMs depends on a random seed used461

for mini-batch sampling and for initializing the462

weights in the last layers of the network responsible463

for the binary classification. It is well documented464

in the literature that this random seed may influ-465

ence the accuracy of the resulting model (Dodge466

et al., 2020). In Figure 2 we show that while bal-467

anced accuracy is somewhat stable, fairness can468

vary widely by only changing the random seed.469

In fact, if we were to plot the accuracy instead470

of the balanced accuracy, all points would be vir-471

tually on a horizontal line for Jigsaw, as shown472

in Figure A.3. There are larger variations for EO.473

For Jigsaw, we observe a variation of up to 0.05474

in equalized odds for some cases. In the case of475

HateXplain, the variation is considerably larger,476

with several models corresponding to a spread of477

0.15 for the sensitive group of religion. The results478

in our experiments align with the ones shown in479

a recent study on underspecification in machine480

learning (D’Amour et al., 2020), where different481

random seeds lead to small variations in accuracy,482

but considerable variations in intrinsic bias as mea-483

sured by gendered correlations.484

To further probe whether there is a correlation be-485

tween fairness and model size, we used the results486

for random seeds to compute the Pearson’s coef-487

ficient of correlation. These values are -0.357 for488

Jigsaw and -0.188 for HateXplain, with p-values489

of .000005 and 0.017, respectively. These results490

show a low correlation between fairness as mea-491

sured by EO and model size.492

Jigsaw HateXplain

religion

race

gender

Figure 2: Balanced accuracy versus equalized odds for
several fine-tuned LMs when varying only the random
seed used in fine-tuning.

5.3 Low data regime 493

In general, it is known that more training data 494

improves model accuracy. We experiment with 495

training the models using a fraction of the training 496

dataset, while keeping the test set the same. When 497

the smaller datasets are subsampled from the orig- 498

inal dataset, we ensure that the larger datasets in- 499

clude the smaller ones to simulate situations when 500

more data is collected and used for training. The 501

results are shown for one small/regular/large model 502

in Figure 3. Each data point in the graph represents 503

the average of eleven runs performed with different 504

random seeds, one for each run. In very few cases, 505

the random seed led to a degenerate model and we 506

did not include these runs in the averaged results. 507

Overall, there were about five degenerate runs for 508

each dataset. 509

We observe that in the case of Jigsaw, equalized 510

odds generally keeps improving even when the 511

accuracy plateaus, suggesting that, from a fairness 512

point of view, it may be beneficial to collect more 513
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data for training. This does not seem to be the514

case for the HateXplain dataset, where the accuracy515

does not plateau and the fairness measure oscillates.516

A reason could be that HateXplain is much smaller517

in size than Jigsaw and hence Jigsaw’s training is518

more stable. Similar trends are observed for the519

rest of the models in our study.520

Jigsaw HateXplain

DistilBERT

BERT

ELECTRA-large

Figure 3: Accuracy, balanced accuracy and equalized
odds (religion) for fine-tuned LMs when varying the
amount of fine-tuning data and the random seeds. Error
bars denote ±1 SE (standard error) of the mean.

5.4 Bias mitigation through post-processing521

In this section we experiment with applying post-522

processing methods for group bias mitigation. We523

first discuss the results of parameter tuning for Fair524

Score Transformer (FST) (Wei et al., 2020). More525

details can be found in Appendix A.4. The FST526

method has one parameter, ε, that can be tuned.527

Using the transformed scores from FST, we also528

investigate tuning the threshold used in the binary529

classifier, instead of using the default value of 0.5,530

as explained in Section 4. Figure 4 depicts the data531

points obtained by varying ε and the classification532

threshold. 4 When choosing an operating point, 533

the points on the black Pareto frontier are the most 534

interesting points: highest balanced accuracy and 535

lowest equalized odds. For reference, we also show 536

the baseline points without bias mitigation for the 537

dev and test sets. All data points are plotted for 538

fine-tuned BERT. Similar trends are observed for 539

the rest of the models considered in this study and 540

for the HateXplain dataset. 541

Figure 4: FST tuning for BERT: Balanced accuracy ver-
sus equalized odds on the Jigsaw dataset when varying
epsilon and the threshold for binary classification for
the FST method for group bias mitigation (religion)

Figure 5: BERT: Balanced accuracy versus equalized
odds on the Jigsaw dataset when applying the FST and
HPS methods for group bias mitigation and threshold
post-processing (TPP) alone (religion).

We also experimented with calibrating the scores 542

using logistic regression before post-processing. In 543

Figure 5, we plot the Pareto frontiers of bias miti- 544

gation when applying FST, with and without cali- 545

bration, along with the threshold post-processing 546

(TPP) method. We also show the result of HPS, 547

which yields a single operating point, as well as 548

the baselines without bias mitigation. In general on 549

the Jigsaw dataset, FST is successful in reducing 550

EO with different degrees of success depending on 551

4All points are shown for the dev set as this plot corre-
sponds to hyper-tuning FST parameters.
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Religion Christian Jewish Muslim Race White Black Gender Female Male LGBT
Baseline 0.18 0.10 0.06 0.20 0.10 0.12 0.13 0.10 0.12 0.13 0.15
FST 0.08 0.03 0.06 0.11 0.09 0.11 0.11 0.05 0.07 0.07 0.15

Table 1: BERT: Equalized odds before and after applying FST for all sensitive groups and their subgroups

the model/group (see Appendix A.5 for additional552

plots). It thus offers an interesting set of points553

with different accuracy-EO trade-offs. For refer-554

ence, we show the corresponding point for the test555

set (orange x) for the operating point in dev that556

achieves an equalized odds of at most 0.05 (orange557

square). In certain cases, FST manages to lower558

the equalized odds with minimal or no decrease in559

accuracy, as seen for religion in Figure 5. Note that560

all points in the plots except for the x points are561

plotted using the dev dataset split.562

In comparison, HPS seems particularly effective563

in lowering the equalized odds and thus improv-564

ing the fairness of the model, with some penalty565

on the accuracy. For Jigsaw, applying only TPP566

(i.e., tuning the threshold used in the binary clas-567

sification) also offers some interesting operating568

points. TPP has a small search space compared to569

FST and sometimes the Pareto frontier is reduced570

to one point, as is the case for the religion group.571

In general, FST has superior Pareto frontiers com-572

pared to TPP alone. In addition, as we discuss573

in Appendix A.5, TPP proved inefficient for the574

HateXplain dataset. Last, using score calibration575

before feeding the scores to FST does not seem to576

offer significant improvements. Similar trends can577

be observed for the rest of the models.578

Overall, we find the post-processing methods579

for bias mitigation worth considering. They are580

straightforward to apply, run in the order of seconds581

or minutes on the CPU of a laptop and they offer in-582

teresting operating points when other methods for583

bias elimination would incur a significant computa-584

tional cost, such as pre-processing or in-processing585

techniques. Obtaining the Pareto frontiers is instan-586

taneous as the search space for FST is not that large.587

For more results and discussion for bias mitigation,588

we refer the reader to Appendix A.5.589

5.5 Sensitive groups and subgroups590

In our analysis so far, we looked at sensitive groups591

that refer to religion, race and gender. In this sec-592

tion we use the Jigsaw dataset to zoom in and ana-593

lyze the equalized odds for a sensitive group and594

its constituent subgroups. We select all subgroups595

that have at least 100 samples in the test split. We596

continue to apply FST only at the larger group level 597

(e.g., religion) and examine its effect on subgroups. 598

In Table 1, we show the EO measure for BERT be- 599

fore and after applying FST for all sensitive groups 600

and subgroups. FST consistently manages to lower 601

EO for individual subgroups, without overly favor- 602

ing one subgroup over another. There are a few 603

instances that do not observe any change, mostly 604

the smallest subgroups. Note that subgroups can 605

be overlapping since they do not represent iden- 606

tities of individuals, instead they derive from the 607

text which may mention multiple subgroups. One 608

notable example is that male and female subgroups 609

have similar EO, both baseline and after FST. This 610

justifies using larger sensitive groups for fitting FST 611

since it seems the discussion of gender overall is 612

problematic as opposed to one gender in particular. 613

6 Limitations and Conclusions 614

We presented a comprehensive study of language 615

models and their performance/fairness relationship. 616

We chose several models to cover different sizes 617

and different architectures. While we did not con- 618

sider some of the largest recent models available, 619

we believe we have experimented with a wide va- 620

riety of models that have been discussed well in 621

the literature. Using A100 GPUs, we were able to 622

finish fine-tuning for our largest models in at most 623

24 hours. One important aspect we would like to 624

emphasize is that identifying toxic text is not an 625

easy task, not even for humans. As such, we expect 626

the datasets to be noisy and contain samples that 627

are not annotated correctly. Upon manual inspec- 628

tion, we could identify some samples for which we 629

did not agree with their labels. As a consequence, 630

while we expect the trends shown in this paper to 631

hold, the actual absolute numbers may vary with 632

datasets. We hope that this study can drive the 633

following point across: we cannot make a blanket 634

statement on the fairness of language models with 635

respect to their size or architecture, while training 636

factors such as data size and random seeds can 637

make a large difference. This makes it all the more 638

important for researchers/practitioners to make fair- 639

ness an integral part of the performance evaluation 640

of language models before deployment. 641
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7 Reproducibility Statement642

The data processing we performed for the datasets643

we used is briefly explained in Appendix A.1. In644

all our experiments we used unmodified versions645

of the model implementations from the Hugging646

Face transformers library and the main scripts647

to tune the models are modified versions of the648

sequence text classification examples accompaying649

the library. The hyper-parameter tuning we650

performed was minimal (varying the epochs size651

1-3, two values for learning rates, 11 values for652

random seeds). More details on the experimental653

infrastructure can be found in Appendix A.2.654

The limiting factor in reproducing these results655

is having access to GPUs such as the V100 and656

A100. We could not find a public implementation657

for FST. We provide details on our implementation658

in Appendix A.4. HPS is open source and659

can be found at https://github.com/660

Trusted-AI/AIF360/blob/master/661

aif360/algorithms/postprocessing/662

eq_odds_postprocessing.py.663

8 Ethics Statement664

In this work, we attempted to address the following665

research questions for language models: how do666

model size, training size, random seeds affect the667

relationship between performance and fairness (as668

measured by equalized odds)? Can post-processing669

methods for bias mitigation lead to better operating670

points for both accuracy and fairness? We find671

these questions important to ask in the context of672

the ethics of using language models in text toxicity673

prediction, in particular, and in NLP research, in674

general. This study used a considerable amount675

of computational resources and this is our main676

ethics concern for conducting this study. We did677

try to keep the number and the size of models we678

experimented with limited to reduce the carbon679

footprint of the study. We hope the results we show680

in this paper are worth the computational resources681

used to perform the experiments.682

Bias mitigation can lead to undesirable outcomes.683

For example, one aspect we did not look into is684

what happens with other groups when the mitiga-685

tion is applied only for one of the groups. Similarly,686

we did not consider intersectionality. We focused687

only on group fairness and do not provide any in-688

sights into individual fairness. Last, but not least,689

abstract metrics have limitations and the societal690

impacts resulting from bias mitigation are not well691

understood (Olteanu et al., 2017). These issues 692

are universal to bias mitigation techniques and not 693

particular to our use case. 694
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A Appendix 1068

In this section, we discuss all aspects related to 1069

the methodology of the experiments we performed, 1070

include additional experimental results and provide 1071

more details on post-processing methods for bias 1072

mitigation. 1073

A.1 Datasets 1074

A.1.1 Jigsaw Unintended Bias in Text 1075

Toxicity Classification 1076

In 2019, Jigsaw released a large dataset as part of 1077

a public Kaggle competition (Jigsaw, 2019). The 1078
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dataset is a collection of roughly two million sam-1079

ples of text from online discussions (Bogdanoff,1080

2017). The samples are rated for toxicity and anno-1081

tated with attributes for sensitive groups. Table 21082

shows the groups we considered in our analysis and1083

the available fine-grained group annotations. Note1084

that we considered the coarser groups; a sample1085

text belongs to a sensitive (coarse) group if any1086

(fine-grained) annotation for the sample text exists.1087

We used the original training dataset split in a 80/201088

ratio for training and development (dev) tuning, re-1089

spectively. For reporting test results, we used the1090

private test split released on Kaggle. Statistics for1091

the dataset splits are shown in Table 4. Each sample1092

in the dataset (see Table 3 for a few samples from1093

the dataset) has a toxicity score and we consider1094

anything higher than 0.5 to be toxic.1095

Table 2: The sensitive groups for Jigsaw dataset with
their corresponding fine-grained annotations.

Group Fine-grained annotation
religion atheist, buddhist, christian,

hindu, jewish, other religion
race white, asian, black, latino,

other race or ethnicity
gender and sex-
ual orientation

bisexual, female, male, hetero-
sexual, homosexual gay or les-
bian, transgender, other gen-
der, other sexual orientation

A.1.2 HateXplain: Toxic text in Twitter and1096

Twitter-like text1097

HateXplain (Mathew et al., 2021) was recently in-1098

troduced with the intent of studying explanations1099

in offensive and hate speech in Twitter and Twitter1100

like data (i.e., gab.com). For the purposes of our1101

study, we collapse the annotations for offensive and1102

hate speech into one class of toxic text. Similar to1103

the Jigsaw dataset, HateXplain samples have fine-1104

grained annotations for sensitive groups. We use1105

as groups the coarse-level annotations, as we did1106

for the Jigsaw dataset. The groups that we consider1107

are presented in Table 5 and a few examples from1108

the dataset are shown in Table 6. Note the text in1109

each sample is represented in the dataset as a list1110

of tokens; in the table, we concatenated them with1111

spaces and this is the way we use them as inputs1112

for the classifiers as well. We used the splits as1113

provided in the dataset; dataset statistics are shown1114

in Table 7.1115

A.2 Language models and computation 1116

infrastructure used in tuning 1117

We consider more than a dozen language models 1118

that cover a large spectrum of sizes. We selected 1119

the models covering not only various sizes, but 1120

also different styles of architecture and training. 1121

The models we included in our study are shown in 1122

Table 8 along with the number of parameters and 1123

the size of the PyTorch (Paszke et al., 2019) model 1124

on disk. If not specified, the version of the model 1125

used is base. 1126

For all our experiments, we used the Hugging 1127

Face implementation of Transformers (Wolf et al., 1128

2020) and the corresponding implementations for 1129

all the language models used in our study. In partic- 1130

ular, we use the text sequence classifier without any 1131

modifications to increase the reproducibility of this 1132

study. For most experiments, we run model fine- 1133

tuning for 1-3 epochs and choose the best model 1134

based on the highest accuracy obtained on the dev 1135

split. When presenting experimental results, we 1136

focus on balanced accuracy as the Jigsaw dataset 1137

is imbalanced and looking only at accuracy results 1138

may be misleading. In general, higher accuracy 1139

leads to higher balanced accuracy, with the excep- 1140

tion of two models – GPT2 and SqueezeBERT. For 1141

these two, the best balanced accuracy is less than 1142

2 percentage points higher than the balanced accu- 1143

racy corresponding to the highest overall accuracy 1144

across the various hyper-parameter runs. We also 1145

experiment with two learning rates and observe 1146

that the large models tend to prefer smaller learn- 1147

ing rates, degenerating for lower learning rates. For 1148

large models with Jigsaw we fine-tune only for one 1149

epoch to keep the compute time under 24 hours. 1150

The model accuracy we obtained are in line with 1151

state-of-the-art results for these types of tasks. 1152

The large models are fine-tuned using the A100 1153

Nvidia GPUs, while the rest of the models are fine- 1154

tuned on V100 Nvidia GPUs. The experiments for 1155

HateXplain dataset run from 10 minutes to under 1156

an hour, while the experiments for the large models 1157

with the Jigsaw dataset can take up to 24 hours. 1158

A.3 The influence of random seeds on 1159

accuracy and equalized odds 1160

In this section we present graphs similar to the 1161

ones in Section 5.2 using accuracy as a measure of 1162

performance instead of balanced accuracy. These 1163

plots makes it obvious how close in performance 1164

all models are and emphasize the gap in fairness 1165
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Table 3: Jigsaw dataset samples

Comment text Toxicity Group
The Atwood fable is Donald, is it? My impression of this noise (over
Atwood) is that it’s a gimmick by Atwood and her publisher to cash in
on the Donald effect. As if we needed slaves in bonnets to remind us that
Donald is a jerk (and where was Atwood’s novel when Monica was being
pawed over?). A word to defenders of women: don’t spend your political
capital on stupid analogies.

Toxic Gender

I got a question for you, dear, and it is a fair question: We all know what is
happening in Syria; where are all the women’s marches over the slaughter
in that country?. And, why has Trudeau been silent, like his pal Barry
Obama, on taking effective military action against Syria? All you lefties
are the same: you have no side vision.

Normal Gender

Table 4: Jigsaw dataset statistics: sample counts per
dataset split and sensitive group

Split Total Religion Race Gender
Train 1443899 50748 31022 70703
Dev 360975 12769 7999 17869
Test 97320 3316 1911 4367

Table 5: The sensitive groups for HateXplain dataset
with their corresponding fine-grained annotations.

Group Fine-grained annota-
tion

race African, Arab, Asian,
Caucasian, Hispanic

religion Islam, Buddhism, Jew-
ish, Hindu, Christian

gender Men, Women

measure observed across different random seeds1166

for each fine-tuned model. The results are shown1167

in Figure 6. Note that all Jigsaw models get an1168

accuracy in performance of approximately 95%1169

with a gap of approximately .05 for equalized odds.1170

HateXplain models exhibit a higher variance in1171

accuracy (4-5%) with an even larger gap of .15 for1172

equalized odds for most models.1173

A.4 Fair Score Transformer (FST)1174

FST takes predicted probabilities (referred to as1175

scores) as input and outputs scores satisfying a1176

fairness criterion. We choose generalized equal-1177

ized odds (GEO), a score-based variant of EO, as1178

the fairness criterion and then threshold the output1179

score to produce a binary prediction. Instead of1180

rages, GEO is computed as the maximum between 1181

the group-wise difference in the scores for the true 1182

positive and the false positive, respectively, where 1183

instead of the predicted label, the corresponding 1184

probability for the label is used instead. 1185

The application of FST requires attention to 1186

three issues: 1) the provision of input scores that 1187

are indeed calibrated probabilities; 2) the choice 1188

of fairness parameter ε, which bounds the allowed 1189

GEO on the data used to fit FST; 3) the choice of 1190

binary classification threshold t. 1191

Regarding issue 1), we found that the distribu- 1192

tions of softmax outputs of the tested LMs are bi- 1193

modal and highly concentrated near values of 0 1194

and 1 (as commonly observed with deep neural net- 1195

works). Such skewed distributions appear to violate 1196

FST’s assumption of probabilities as input and are 1197

typically not encountered on tabular datasets on 1198

which FST was previously tested. Thus we experi- 1199

mented with calibrating the LM outputs. We con- 1200

sidered both logistic regression of the class label 1201

on the logit outputs of the LMs (a generalization of 1202

temperature scaling (Guo et al., 2017)), as well as 1203

linear regression on the logit outputs followed by 1204

clipping of the resulting values to the interval [0, 1]. 1205

In general, logistic regression proved somewhat 1206

beneficial for the Jigsaw dataset and we included it 1207

in our results. 1208

Regarding issue 2), we found, as noted by Wei 1209

et al. (2020), that while the parameter ε controls the 1210

deviation from GEO (i.e. the “GEO difference”), 1211

this is not always correlated with the EO difference, 1212

which is a function of the output after thresholding. 1213

Regarding 3), we found that varying the threshold 1214

t can significantly affect equalized odds as well 1215

14



Table 6: HateXplain dataset samples

Text Toxicity Group
why is anna acting like she black Normal Race
like brazil many are descendants of west africa social constructs labels
classifications have ruined a many people who falsely self identify as
white or just do not even know abt their native land all b c of them bum
ass caucazoids aka caucasians

Toxic Race

Jigsaw Dataset

HateXplain Dataset

a) religion b) race c) gender

Figure 6: Accuracy versus equalized odds for several fine-tuned LMs when varying only the random seed used in
fine-tuning.

Table 7: HateXplain dataset statistics: sample counts
per dataset split and sensitive group

Split Total Religion Race Gender
Train 15383 3924 5418 3102
Dev 1922 481 672 396
Test 1924 468 685 375

as accuracy and balanced accuracy, and can some-1216

times even produce a reasonable trade-off between1217

them. For this reason, we included a version of1218

post-processing (see “Threshold post-processing”1219

in Section 4. This effect of the prediction threshold1220

on fairness has not been explored in previous work1221

to our knowledge.1222

As a result of our observations regarding 2) and1223

3), we used the following procedure to select a1224

set of (ε, t) pairs to map out a trade-off between 1225

fairness and performance. The training set used to 1226

fine-tune the LMs is never seen by FST. The de- 1227

velopment dataset (“dev”) is used to both tune the 1228

FST parameters and evaluate the resulting transfor- 1229

mation. As such, the dev dataset was further split 1230

into a dev-train set and a dev-eval set. Given an ε 1231

value, FST was fit on the dev-train set to ensure a 1232

GEO difference of at most ε. Then on the dev-eval 1233

set, given ε and t, scores were transformed by FST 1234

with parameter ε, thresholded at level t to produce a 1235

binary label, and finally evaluated for both fairness 1236

and performance. Each (ε, t) pair thus yields one 1237

point in the equalized odds-performance plane, as 1238

seen in Figure 7. We selected (ε, t) pairs that are 1239

Pareto-efficient on the dev-eval set, to ensure the 1240

best fairness-accuracy trade-off. 1241

This is the first time FST is used with unstruc- 1242
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Table 8: The size (number of parameters, size on disk) for the language models considered in this study.

Group Size Language Model # of parameters Size on disk

Small

ALBERT (Lan et al., 2020) 12M 45MB
MobileBERT (Sun et al., 2020) 25.3M 95MB
SqueezeBERT (Iandola et al., 2020) 51M∗ 196MB
DistilBERT (Sanh et al., 2020) 66M 256MB

Regular

BERT (Devlin et al., 2019) 110M 418MB
ELECTRA (Clark et al., 2020) 110M 418MB
Funnel (small) (Dai et al., 2020) 117M∗ 444MB
RoBERTa (Liu et al., 2019) 125M 476MB
GPT2 (Radford et al., 2019) 117M 487MB
DeBERTa (He et al., 2021) 140M 532MB

Large

ELECTRA-large 335M 1.3GB
BERT-large 340M 1.3GB
RoBERTa-large 355M 1.4GB
DeBERTa-large 400M 1.6GB

∗Approximate number of parameters, as exact parameter size could not be found.

tured, text data and with large datasets in the order1243

of millions of samples. First, we implemented FST1244

following the proposed implementaiton in Wei et al.1245

(2020). This first implementation ended up with1246

numerical instabilities that lead to either slow run-1247

ning times (in the order of hours) or even situation1248

when the method did not converge. We managed1249

to improve upon the computational cost of FST,1250

which was instrumental in scaling to the large Jig-1251

saw dataset and allowing rapid experimentation.1252

Specifically, in the dual ADMM algorithm of Wei1253

et al. (2020), the first step (eq. (14) therein) consists1254

of n parallel optimizations, each involving a single1255

variable. We observed that these optimizations can1256

be done in closed form by solving a cubic equation.1257

The replacement of an iterative optimization with1258

a closed-form solution greatly reduces the compu-1259

tational cost of FST. FST runs in the order of 1-21260

minutes for the Jigsaw dataset and in seconds for1261

HateXplain. Equally important, it also eliminates1262

instances of the iterative optimization failing to1263

converge.1264

A.5 Bias mitigation through post-processing1265

methods1266

In this section we experiment with applying post-1267

processing methods for group bias mitigation. We1268

first discuss the results of parameter tuning for Fair1269

Score Transformer (FST) (Wei et al., 2020). More1270

details can be found in the appendix A.4. The FST1271

method has one parameter, ε, that can be fine-tuned.1272

Using the transformed scores from the FST, we1273

also investigate tuning the threshold used in the 1274

binary classifier, instead of using the default value 1275

of 0.5, as explained in Section 4. Figure 7 depicts 1276

the data points obtained by varying epsilon and 1277

for each epsilon value, varying the classification 1278

threshold. 5 When choosing an operating point, 1279

the points on the black Pareto frontier are the most 1280

interesting points: highest balanced accuracy and 1281

lowest equalized odds. For reference, we also show 1282

the baseline points without bias mitigation for the 1283

dev and test sets. All data points are plotted for 1284

fine-tuned BERT. Similar trends are observed for 1285

the rest of the models considered in this study and 1286

for the HateXplain dataset. 1287

We also experimented with calibrating the scores 1288

using logistic regression before post-processing. In 1289

Figure 8, we plot the Pareto frontiers of bias miti- 1290

gation when applying FST, with and without cali- 1291

bration, along with the threshold post-processing 1292

(TPP) method. We also show the result of HPS, 1293

which yields a single operating point, as well as 1294

the baselines without bias mitigation. In general on 1295

the Jigsaw dataset, FST is successful in reducing 1296

EO with different degrees of success depending on 1297

the model/group. It thus offers an interesting set of 1298

points with different accuracy-EO trade-offs. For 1299

reference, we show the equivalent point for the test 1300

set (orange x) for the operating point in dev that 1301

achieves an equalized odds of at most 0.05 (orange 1302

5All points are shown for the dev set as this plot corre-
sponds to hyper-tuning FST parameters.
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religion race gender and sexual orientation

Figure 7: BERT: Balanced accuracy versus equalized odds for several fine-tuned LMs on the Jigsaw dataset when
varying epsilon and the threshold for binary classification after applying the FST method for group bias mitigation.

religion race gender and sexual orientation

Figure 8: BERT: Balanced accuracy versus equalized odds on the Jigsaw dataset when applying the FST and HPS
methods for group bias mitigation and threshold post-processing (TPP) alone.

square). In certain cases, FST manages to lower the1303

equalized odds with minimal or no decrease in ac-1304

curacy, as seen in the religion and gender columns1305

in Figure 8. Note that all points in the plots except1306

for the x points are plotted using the dev dataset1307

split, the x points are test points corresponding to1308

dev points that obtain an EO of at most 0.05.1309

In comparison, HPS seems particularly effective1310

in lowering the equalized odds and thus improv-1311

ing the fairness of the model, with some penalty1312

on the accuracy. For Jigsaw, applying only TPP1313

(i.e., tuning the threshold used in the binary clas-1314

sification) also offers some interesting operating1315

points. TPP has a small search space compared to1316

FST and sometimes the Pareto frontier is reduced1317

to one point, as is the case for the religion group.1318

In general, FST has superior Pareto frontiers com-1319

pared to TPP alone. In addition, as we will discuss1320

shortly, TPP proved inefficient for the HateXplain1321

dataset. Last, using score calibration before feeding1322

the scores to FST does not seem to offer significant1323

improvements. Similar trends can be observed for1324

the rest of the models.1325

In Figure 9, we show the results of applying bias1326

mitigation techniques for a few LMs, one for each1327

size category, on the HateXplain dataset with re-1328

ligion as the sensitive group. Unlike Jigsaw, the 1329

results of the bias mitigation techniques follow dif- 1330

ferent trends. HPS still manages to substantially 1331

reduce the EO for all models, but with a consider- 1332

able decrease in balanced accuracy (in some cases, 1333

more than six percentage points). For FST, the fine- 1334

tuning for epsilon and classification threshold does 1335

not lead to a large search space as observed in the 1336

Jigsaw case. Moreover, the reduction in EO is more 1337

limited and sometimes the improvement observed 1338

for the dev set disappears in test. There are cases, 1339

though, such as BERT, where FST successfully re- 1340

duces EO and the reduction is maintained or even 1341

improved in test. Across the board, tuning only the 1342

threshold used in classification (TPP) did not lead 1343

to improved results and we omit showing them in 1344

the plots. 1345

Overall, we find the post-processing methods 1346

for bias mitigation worth considering. They are 1347

straightforward to apply, run in the order of sec- 1348

onds or minutes on the CPU of a laptop and they 1349

offer interesting operating points when other meth- 1350

ods for bias elimination would incur a significant 1351

computational cost, such as pre-processing or in- 1352

processing techniques. Obtaining the Pareto fron- 1353

tiers is instantaneous as the search space for FST 1354
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Figure 9: Balanced accuracy versus equalized odds for xseveral fine-tuned LMs (religion group) on the HateXplain
dataset when applying the FST and HPS methods for group bias mitigation and threshold post-processing (TPP)
alone.

is not that large.1355

A.6 Post-processing methods for bias1356

mitigation1357

In addition to the two post-processing methods that1358

we considered in our study, other post-processing1359

methods for bias mitigation include assigning fa-1360

vorable labels to unprivileged groups in regions of1361

high classifier uncertainty (Kamiran et al., 2012),1362

minimizing error disparity while maintaining clas-1363

sifier calibration (Pleiss et al., 2017), a relaxed1364

nearly-optimal procedure for optimizing equalized1365

odds (Woodworth et al., 2017), shifting the deci-1366

sion boundary for the protected group (Fish et al.,1367

2016), iterative post-processing to achieve unbi-1368

ased predictions on every identifiable subpopula-1369

tion (Kim et al., 2019), recalibrating a classifier us-1370

ing a group-dependent threshold to optimize equal-1371

ity of opportunity (defined as the difference be-1372

tween the group-wise true positive rates) (Chzhen1373

et al., 2019), using optimal transport to ensure sim-1374

ilarity in group-wise predicted score distributions1375

(Jiang et al., 2020), and a plug-in approach for1376

transforming the predicted probabilities to satisfy1377

fairness constraints (Yang et al., 2020).1378
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A.7 Mathematical definitions for the measures used
Accuracy

accuracy =
number of samples predicted correctly

total number of samples

Balanced accuracy

balanced accuracy =

true negatives
total number of negative samples +

true positives
total number of positive samples

2

Equalized odds

TPR =
number of samples predicted correctly as positive

total number of positive samples

FPR =
number of samples predicted incorrectly as positive

total number of negative samples

EO = max(abs(TPRprotected group − TPRunprotected group), abs(FPRprotected group − FPRunprotected group))

Generalized equalized odds

generalized TPR = genTPR =
sum of predicted probabilities for positive samples

total number of positive samples

generalized TNR = genTNR =
sum of predicted probabilities for negative samples

total number of negative samples

generalized EO = max(abs(genTPRprotected−genTPRunprotected), abs(genTNRprotected−genTNRunprotected))

1379
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