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Abstract

In electronic trading markets, limit order books (LOBs) provide information about
pending buy/sell orders at various price levels for a given security. Recently, there
has been a growing interest in using LOB data for resolving downstream machine
learning tasks (e.g., forecasting). However, dealing with out-of-distribution (OOD)
LOB data is challenging since distributional shifts are unlabeled in current publicly
available LOB datasets. Therefore, it is critical to build a synthetic LOB dataset
with labeled OOD samples serving as a testbed for developing models that general-
ize well to unseen scenarios. In this work, we utilize a multi-agent market simulator
to build a synthetic LOB dataset, named DSLOB, with and without market stress
scenarios, which allows for the design of controlled distributional shift benchmark-
ing. Using the proposed synthetic dataset, we provide a holistic analysis on the
forecasting performance of three different state-of-the-art forecasting methods. Our
results reflect the need for increased researcher efforts to develop algorithms with
robustness to distributional shifts in high-frequency time series data.

1 Introduction

Increasingly large market volumes are traded today electronically across multiple asset classes.
Electronic trading is typically facilitated by limit order books (LOBs) - which present the list of
orders that is maintained by a trading venue to indicate the “buy” and “sell” interest of market
participants for a given security. Specifically, LOBs dynamically record volume and price information
about the buy and sell orders that are being placed in the market at different times [3]. LOBs present
highly complex and noisy environments which enable multiple market participants to trade. In
addition, trading is usually performed using automated trading algorithms - part of which assumes
the ability to forecast LOB prices and volumes [1, 30].

Distributional shift refers to the fundamental issue that the underlying distributions of training
and testing datasets are different from each other, which often causes machine learning systems
to fail in handling out-of-distribution (OOD) inputs [36, 14]. For example, financial downstream
tasks involving time series data can suffer from OOD inputs over time as a result of exogenous
factors (e.g., macro shocks, earnings announcements, global pandemic, etc.). Moreover, such sudden
distributional shifts can affect the LOB trading algorithms, specifically their price and volume
prediction components.

Different from the computer vision (CV) and natural language processing (NLP) downstream tasks,
where one can easily confirm whether the data suffers from distributional shift [22, 16, 28, 20], the
correlation structure of multivariate time series data is inherently different than that of images and
text. Therefore, previous distributional shift algorithms applied to the CV and NLP domains are not
necessarily suitable for the time series domain. Furthermore, publicly available datasets typically
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used for benchmarking forecasting algorithms are difficult to be used directly to verify whether a
particular model has the ability to handle OOD [5, 43]. There are two major reasons: (1) free access
to publicly available LOB data is limited, and (2) distributional shifts (e.g., market shocks) are not
labeled in real data, making the assessment of a model’s ability to account for distributional shifts
difficult.

Typically, test performance on OOD inputs is worse than that of test inputs following the same
distribution, i.e., independent and identically distributed (IID), as the training data. The over-reliance
on IID inputs makes machine learning systems challenging to deploy in real-world settings, where
distributional shifts are common [38, 26]. However, to the best of our knowledge, distributional shifts
on financial market data have not been thoroughly explored, despite the fact that they are common
in real-world financial markets. In this work, we aim to consider a domain adaption task on LOBs,
where training and testing data are generated from related but different domains via a multi-agent
market simulator. To this end, we propose a synthetic dataset named DSLOB, which can be used to
benchmark forecasting algorithms on a variety of different downstream tasks, e.g., mid-price trend
prediction under distributional shifts. Our proposed dataset can test the OOD adaption capabilities
of state-of-the-art forecasting models, which should be expected to generalize to unseen samples
in spite of the occurrence of a distributional shift. Specifically, we utilize the multi-agent limit
order book market simulator called ABIDES [4] to build a synthetic LOB dataset, where randomly
introduced shock are utilized to construct distributional market shifts (i.e., OOD inputs)[35]. Since
the LOB dataset is generated in a controlled manner, each snapshot of the LOB is labeled, allowing
for straightforward benchmarking on IID vs. OOD inputs. Furthermore, our proposed configuration
of the simulator allows for the parametric characterization of multiple types of shocks (e.g., shocks of
different magnitudes), which can be used to understand the robustness of each forecasting algorithm
as a function of shock parameters.

Contributions: We summarize the main contributions as follows:

• To facilitate research in both machine learning and finance communities, we propose the
DSLOB that allows us to model distributional shifts due to market shocks in LOBs data
using a bottom-up multi-agent approach. This approach allows for easy adjustment of the
parameters of the market agents to model a wide spectrum of counterfactual shock scenarios.

• To apply a rigorous comparison on the proposed synthetic dataset, we choose three categories
of time series forecasting algorithms including (1) AdaRNN-based method focusing on
distributional shift problem of time series data; (2) transformer-based method dealing with
traditional time series prediction task with long term dependencies; and (3) DeepLOB
specializing in high-frequency LOB data.

• Evaluation results on both IID setting and OOD setting support two primary conclusions:
(1) domain shifts can cause algorithms without considering OOD generalization fail to work;
(2) there is significant room for improvement in machine learning solutions focusing on
time series with OOD samples.

2 Limit Order Book Data
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below in the case of a sell order (ask). A limit order queues a resting
order in the LOB at the corresponding side of the book. Placing a
limit order at a certain price level is sometimes referred to as placing
a quote. A market order indicates that the trader is willing to accept
the best price available immediately. A diagram illustrating LOB
structure is provided in Figure 1.
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Figure 1: Visualization of the LOB structure.

1.3 Stylized facts
Many of the metrics we present below are derived from observation
of the market over time. Properties of market behavior that are
repeated across a wide range of instruments, markets and time
periods are referred to as stylized facts [18].

Evaluating stylized facts for simulated data and comparing to
those generated from real historical data allows us to infer the
level of �delity of a simulation. The question of whether stylized
facts originate from traders’ behavior, or if they are a natural con-
sequence of order book market matching mechanisms has been
widely discussed in the literature. If certain stylized facts can be de-
rived from markets populated only by zero intelligence (ZI) agents
which make decisions without the knowledge of market microstruc-
ture, then these facts must originate from the mechanism that is
governing the markets and not from strategic agent behavior. For
example, Farmer et al. [22] showed that a market simulation that
consists only of ZI agents is able to reproduce price and spread
dynamics as well as market impact. The ability of ZI agents to
reproduce fat tails and long range dependence was shown in [42].

In this paper, we list multiple measurable stylized facts of LOB
markets known in the literature. We apply these stylized facts as a
metric of realism to data from real markets and compare the results
to data arising from simulated markets. We further provide �ve
di�erent simulated market con�gurations – four that are based
on IABS which combine ZI agents with limited strategic behavior
agents; and one market replay con�guration that is commonly
used in practice due to its simplicity but does not constitute a true
IABS as interactions between multiple market participants are not
present. Our simulated agents rely on an internal “oracle” that
provides a fundamental value for the asset – we consider random
and historical fundamental models. We describe the con�gurations
and agent types in detail in Sections 3.2 and 3.3.

1.4 Related work on market simulation
Market simulation is an increasingly important technique for eval-
uating trading strategies and testing “what if” market scenarios.

The extent to which results from such simulations can be trusted
depends on how accurately they emulate real world environments.

IABS methods allow us to study phenomena that emerge as a
consequence of multiple participant interactions which are di�cult
to model otherwise. Examples of such complex phenomena include
both routine market microstructure events such as market response
to an individual participant’s trading [19] and rare events such as
�ash crashes [16, 31, 41] as well as extreme market shocks.

In the �nancial literature there are examples of simulators that
use learning behaviors with di�ering views of past data [27, 32].
Wellman helped establish an empirical approach to the study of
markets using simulated multi-agent systems [52] using a tech-
nique known as Empirical Game Theoretic Analysis (EGTA). Levy
et al. [34] and Wah and Wellman [49] take a synchronous approach
to simulation, wherein time is discretized between the start and
end of simulation and each step is individually simulated. Jacobs et
al [28, 29] introduced an asynchronous �nancial simulation frame-
work called JLMSim. NASDAQ researchers experimentally demon-
strated using IABS that under some agent scenarios reducing tick
size would lead to increased spreads (an undesirable property) and
would negatively impact price discovery [7, 21].

In real-time trading, injecting orders to the market induces other
market participant activity that typically drives prices away from
the agent. This activity is known as market impact [2, 3]. Presence of
market impact in real time implies that a realistic trading strategy
simulation should include deviation from historical data. In the
literature, it is common to make an assumption of negligible market
impact given the size of agent orders is small and su�cient amount
of time is allowed between consecutive trades [46]. A simple two-
agent simulated market environment that consists of an algorithmic
trading agent and the rest of the market with partial deviation from
historical prices is presented in [48]. This model is however only
suited for small order placement, and is unable to capture more
complex dynamics of transient price impact [10, 23].

While modeling the market as an interplay of multiple agents
seems a natural approach to mimic real market collective emergent
behavior, justifying the realism of such approach for validating new
trading strategies is di�cult. Agent-based modeling typically relies
on common sense hand-crafted rules (e.g., [42]), which can be di�-
cult to calibrate as historical data labeled with details about each
individual constituent agent behavior is typically not available for
public use. Several calibration approaches—e.g. error minimization
to �nd parameters for the asset pricing model with heterogeneous
beliefs [47] and using Bayesian techniques—have been introduced
[25]. When individual agent- or execution strategy-speci�c data is
available to the researcher, it can be used for the simulator calibra-
tion (e.g., [48, 53]). Multi-agent LOB environments can be viewed
as a non-cooperative games in which every agent pursues their
own goal and there is no communication between the agents [26].
Agents that learn to maximize their long term rewards by reinforce-
ment from empirical equilibrium environments have been discussed
in [44].

Other approaches to IABS realism can include inverse learning
agents’ rewards from the market [53]; generating synthetic LOB
data using Generative Adversarial Networks [35]; incorporating

Figure 1: A example of LOB data

As shown in Figure. 1, a LOB record represents a
snapshot of the supply and demand for a given se-
curity at a given time instance. It serves as a record
of all the outstanding buy (ask)/sell (bid) orders or-
ganized by price levels. Additionally, LOBs provide
information about the order size (volume) at each
price level. Mathematically speaking, one can regard
a snapshot of a LOB as a matrix, where each row
vector corresponds to the associated price and order
size of the traded asset at a particular level. In LOBs,
order types can either be limit orders or market orders.
A limit order specifies a price level at which a trader
is willing to buy or sell the asset of interest. In other
words, limit orders are passive orders in the LOB on
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the side of the book of the market participant (buy
or sell side). In contrast, when a trader places a market order, it indicates that they are willing to
buy or sell the asset at the best available price. In this work, we use 100 most recent LOB records
with 40 features as the input X = [x1, x2, . . . , x100]

T , where xt = [pia(t), v
i
a(t), p

i
b(t), v

i
b(t)]

n=10
i=1 .

In addition, for the given LOB data at time t, pi denotes the price and vi denotes the volume size at
i-th level on both ask side (pia) and bid side (pib). Therefore, the mid-price pt =

p1
a(t)+p1

b(t)
2 can be

used to create the label yt = pt for price forecasting.

2.1 Generation of LOB Data Using Multi-Agent Market Simulation

The synthetic dataset used for benchmarking purposes was generated using a multi-agent limit order
book market simulator called ABIDES [4]. ABIDES is an event-based simulation environment that is
composed of a simulation kernel, a single exchange, and various market participants. The simulation
kernel manages the flow of time and handles all inter-agent communication. For example, all
requests/orders completed by background agents (e.g., placing limit and market orders) are managed
via the simulation kernel. The exchange is a NASDAQ-like exchange agent that lists security for
trade against a LOB with FIFO matching rules. The market participants are so-called background
agents that represent market agents with different types of trading strategies.

2.1.1 Background Agents Descriptions for ABIDES

In this work, we mainly looked at the following types of background agents:

• Noise agents are non-strategic agents that do not base their trading actions on intelligent
strategies. In particular, noise agents place limit orders of random size (volume) and of
random direction (buy or sell) with interarrival times independently sampled from a discrete
uniform distribution from 1 to 100 nanoseconds.

• Momentum agents are agents that place market orders based on mid-price trends. More
precisely, given lookback periods Tmin and Tmax where Tmax > Tmin, momentum agents
use a moving average filter to compute the average mid-price over each of the lookback
periods. If the mid-price based on the shorter lookback period is larger than that of the
longer lookback period, intuitively, the momentum agent believes the price is increasing
and will place a buy order of random size (or sell order in the opposite case). Unlike value
agents, momentum agents are configured to have deterministic interarrival times, i.e., they
arrive at the market every TMOM seconds.

• Market maker agents are agents that supply liquidity to the market by placing orders on
both sides of the LOB at various price levels every TMM seconds. For more information
about the market maker used in this configuration of agents, please see [32].

• Value agents are strategic agents that base their trading actions based on an internal estimate
of the fundamental value of the asset being traded obtained from some noisy observation. If
the estimate of the fundamental value implies that the price of the asset will go up, then the
agent will place a buy order. On the other hand, if the noisy observation of the fundamental
implies that the price of the asset will go down, then the agent will place a sell order. Let xt

denote the fundamental value at time t and yt denote its corresponding noisy observation.
In ABIDES, the fundamental is modeled via an Ornstein-Uhlenbeck (OU) process. An OU
process is a mean-reverting process and the probability density function fundamental value
at time t′ given the fundamental value at time t < t′ is Gaussian, i.e.,

p(xt′ |xt) = N
(
xt′ |µ+ (xt − µ)e−θ∆t ,

σ2
x

2θ
(1− e−2θ∆t)

)
, (1)

where ∆t = (t′ − t), µ is mean of the process, σx is the volatility of the process, and θ is
the mean-reversion parameter. The value agent’s observation model of the fundamental is
also Gaussian, i.e., at time t′ the value agent believes that the observed fundamental yt′ is
simply a Gaussian perturbation of the true fundamental:

p(yt′ |xt′) = N (yt′ |xt′ , σ
2
y), (2)

where σ2
y is the observation noise variance. Given the parameters of the OU process and

the observation model, value agents obtain an estimate of the fundamental using a simple
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Bayesian estimation procedure to determine an estimate of the true fundamental that is used
to drive their trading decision. The arrivals of a value agent are modeled as a Poisson process
in a standard configuration with mean arrival rate λvalue.

Given a configuration which specifies the number of each type of agent, as well as their corresponding
parameters, ABIDES can be used to simulate LOB data. Next, we will describe how distributional
shift was modeled into the LOB dataset.

2.1.2 ABIDES with Distributional Shifts

To introduce a distributional shift to LOB data, we modify the trading behavior of a type of background
agent called a value agent. Value agents are strategic agents that base their trading actions on an
internal estimate of the fundamental value of the asset of interest. Value agents derive these estimates
from noisy observations of the true fundamental (e.g., a mean-reverting process), which is managed
by ABIDES. If the estimate of the fundamental value implies that the price of the asset will go up,
then the agent will place a buy order. Similarly, if the estimate of the fundamental value implies that
the price of the asset will go down, then the agent will place a sell order. We make two important
changes to the design of value agents in order to introduce distributional shifts into our market data:

1. We introduce a Gaussian shock S to the observed fundamental that occurs at random time
Ts in a random direction ds ∈ {−1, 1}, i.e.,

S ∼ N (dsµs, σ
2
s), (3)

where µs and σ2
s denote the mean and variance of S, respectively, and P (ds = −1) =

P (ds = 1) = 0.5. Once the value agents observe the shocked fundamental, their belief
about the value of the asset will change, leading to a strong shift in their trading actions.

2. To emulate agent behavior under realistic shocks, we modify the counting process driving
the arrival of value agents. Specifically, rather than using a homogeneous Poisson process to
model value agents arrivals, we consider a non-homogeneous Poisson process with arrival
rate function λvalue(t). In the presence of a shock, agents arrive at a higher rate, where in
this work, we consider the following arrival rate function:

λvalue(t) =

{
λ̄value, t < Ts

λ̄value(1 +As exp(−θs(t− Ts)), t ≥ Ts
, (4)

where As is a hyperparameter controlling the scaling factor of the arrival rate and θs controls
the reversion of the arrival rate to the mean value λ̄value. Intuitively, agent arrivals will
arrive with a constant arrival rate λ̄value before the shock occurs. Once the shock occurs, the
arrival rate spikes to a value of (1 +As)λ̄value and decays at exponential rate θs to λ̄value at
t → ∞.

We provide a more detailed configuration in Appendix C.1, as well as the parameter settings utilized
to generate the synthetic LOB dataset used in the experiments of this work.

3 Deep Learning Benchmarks and Evaluation

In this work, we can define the distributional shift on LOB data according to the definition of temporal
covariate shift [10]: Given a LOB dataset D with n labeled segments according to the type of shocks,
i.e., D = {Di, . . . , Dn}, the distributional shift is referred to the case that all the segments under the
same type of shock’s influence follow the same data distribution PDi(x, y), while for different types
of shocks where 1 ≤ i ̸= j ≤ n , marginal probability distributions are different, and the conditional
distributions are the same, i.e., PDi

(x) ̸= PDj
(x) and PDi

(y|x) = PDj
(y|x).

We plot the time series mid-price data derived from the generated LOB dataset with a distributional
shift in Figure. 4 and 5 as well as the IID data in Figure. 3 (Refer to Appendix). After generating this
dataset, we adapt three baseline algorithms to the mid-price prediction under the distributional shifts
task. Specifically, these baseline algorithms include (1) AdaRNN [10], which is a deep learning model
fits for time series distribution-shift problem; (2) Transformer [41], which is proved the effectiveness
of processing time series [6, 23] and (3) DeepLOB [44], which dedicates to handle LOB data.
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IID Small Shock Large Shock
AdaRNN 1.02 ± 2.24e-4 1.00 ± 8.07e-5 0.99 ±3.58e-5
Transformer 0.87 ± 1.98e-3 1.02 ± 6.29e-3 1.08 ± 0.01
DeepLOB 0.66 ± 0.11 1.08 ± 0.07 2.25 ± 0.15

Table 1: RMSE results on synthetic LOB dataset.
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Figure 2: Results on distributional shifts according to the shock type.

We first use independent and identically distributed (IID) data with no shock coming up, training
the baseline models, then we build two settings including the IID set using the test data before
the shock appears and the OOD set using the data after the shock appears with the distributional
shift. Experimental results are shown in Table 1, where we can find that models without any special
treatment on OOD problem (Transformer and DeepLOB) suffer from performance degradation
against models dedicated to dealing with distributional shift (AdaRNN). In addition, DeepLOB,
which is specifically designed to analyze LOB data, achieves the best performance dealing with IID
high-frequency trading data. We further analyze how shocks of different magnitudes impact each
model’s performance. We plot the performance metrics for Transformer and DeepLOB applied to
small and large shocks before and after the shock in Figure. 2. We find that for a drastic distributional
shift (large shock), the performance of the model relying only on the training data degrades more
than for the case of a smaller shock. These experimental results suggest that our synthetic dataset can
be used to guide the building of machine learning models that are more robust to distributional shifts.

4 Conclusions

This work builds a synthetic financial LOB dataset, named DSLOB, which has distributional shifts
after some random shocks happen and can be used to verify machine learning benchmarks for financial
trend prediction tasks. Next, we evaluate this dataset on three different types of forecasting models
and show that considering both distributional shifts and inherent dependencies are still challenging
for current machine learning models. In the future, we plan to refine our agent-based model for shock
events to cover more granular stress scenarios.
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Figure 3: Examples of training data’s mid-price.

A Related Work on Financial Datasets.

There are no unifying benchmark datasets for financial tasks. For instance, S&P 500 [7]: Standard &
Poor’s 500 Index is a market-capitalization-weighted index of the 500 largest U.S. publicly traded
companies. NASDAQ index [11]: The NASDAQ is the world’s fast electronic stock exchange which
operates through computers and telephones, as opposed to traditional methods. NASDAQ lists
only technology-based companies. Shanghai stock exchange [9]: The Shanghai Stock Exchange
(SSE) represents the largest stock exchange in China. It is a non-profit organization run by the
China Securities Regulatory Commission (CSRC). Stocks, funds, bonds, and derivatives are all
traded on the exchange. Without the definition of a unique dataset and appropriate performance
indicators, researchers cannot make a complete comparison between the proposed studies in order
to select a suitable solution for a specific problem. Also, the majority of investigated primary
studies provide different evaluation metrics for time-series forecasting. However, most of them
are extracted individually by authors using different splits and date ranges, which may introduce
annotators bias [12]. Thus, there is an urgent need for a comprehensive suite of real-world tasks that
combine a diverse set of datasets of various sizes coming from financial institutions. Data split as well
as evaluation metrics are important so that progress can be measured in a consistent and reproducible
way.

LOB for a given asset are dispersed across several exchanges, creating a fragmentation of liquidity,
which poses a problem for empirical studies. As [13] points out, differences between matching rules
and transaction costs of different trading platforms complicate comparisons between different limit
order books for the same asset. However, these issues related to fragmentation are not present in the
data obtained from the less fragmented Nasdaq Nordic market. In addition, the Helsinki Exchange
is a pure limit order market in which market makers have a limited role. For research purposes, the
FI-2020 dataset [24] collects high-frequency limit order data of five stocks from the Nasdaq Nordic
stock market in 10 consecutive days. [2] show that the Interactive Agent-based Simulation (IABS)
market environment can be adapted for using as a backtester. LOB-ITCH [25] includes 5 assets over
10 trading days from Nasdanq Helsinki SE, 4,000,000 observations. The proposed task of LOB-ITCH
is a classification of mid-price movements for 1, 2, 3, 5, and 10 predicted horizons. [25] uses ridge
regression and MLP-like network regression methods to verify the quality of LOB-ITCH.

B Related work on Distributional Shift Downstream Tasks

As a way to capture this failure of machine learning models on distributional shifts, many works have
been done to find and normalize datasets with out-of-distribution samples [19, 40]. According to the
availability information from the target domain, we can split the distributional shifts tasks into domain
adaptation [33, 37, 17] and domain generalization [8, 46, 18], where the test domains can be visible
during the training process of the former, while they are not available during the training of the latter.
Previous work uses deep auto-regressive generative models [27] or GANs [34] to deal with OOD
samples. Specifically, they propose scoring metrics, such as likelihood estimation, to obtain good
OOD detectors. Those models have been shown to be effective in evaluating the likelihood of input
data and estimating data distributions. For the time series domain, anomaly detection (AD) setting can
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(b) Day 120 with small shock coming

Figure 4: Examples of distributional shift (small shock) on synthetic data’s mid-price.
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Figure 5: Examples of distributional shift (large shock) on synthetic data’s mid-price.

be used to solve OOD problems [29, 39, 45]. However, AD is different from OOD in the following 2
aspects: first, OOD samples cannot be used as labeled examples during the training process in AD as
the distribution of OOD space is ambiguous; second, AD assumes that the observations of normal
samples are homogeneous which will fail to detect OOD samples. For the time series dataset, [42]
used in-hospital death records and lung x-rays to build distributional shift in the clinical setting, and
[15] used patient health records from the ICU in grouping according to a year of data collection.
Besides, [21] investigate temporal shifts in a large number of weather data. The general framework
for working with distributional shift problems was developed in [14]. Several classes of approaches
to solving distributional shift problems were tested in [35].

C LOB data

C.1 Configuration Parameters for Synthetic LOB Dataset

Using ABIDES, we simulate Ndays = 365 trading days worth of data of which 50% are under ordinary
market conditions (no market shocks), and the other 50% are days that experience a market shock of
random magnitude/direction. The configuration includes background agents, of which Nnoise = 50
are noise agents, Nvalue = 100 are value agents with mean arrival rate λ̄value = 0.005 seconds,
Nmomentum = 10 are momentum agents with lookback parameters Tmin = 20 and Tmax = 50, and
NMM = 1 are market makers with wake-up period TMM = 5 seconds. For all trading days, the
parameters of the fundamental are given by: µ = 100000 and σ2 = 1× 10−12. In total, our synthetic
dataset simulates three different scenarios corresponding to both IID and OOD settings:

• Ordinary market conditions: This comprises 50% of the simulated data, where no shock
is introduced to the fundamental. Under this setting, the mean-reversion parameter of the
OU process in this configuration is θ = 1× 10−12. The data produced from this setting are
used as the training data for the forecasting algorithms (IID).
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• Small shock: This comprises 25% of the simulated data and assumes a reversion rate of
θ = 1× 10−12 on the fundamental. For the shock, we model the shock time according to
a uniform distribution Ts ∼ U(1 hours, 2 hours) after the market opens with shock mean
and variance as µs = 200 and σ2

s = 400, respectively. Furthermore, after the shock occurs,
value agent arrivals are governed by the amplification rate As = 2 and arrival rate reversion
parameter θs = 1 × 10−12. The data produced from this scenario are considered OOD
inputs.

• Large shock: This comprises 25% of the simulated data and assumes a reversion rate of
θ = 5 × 10−13 on the fundamental. For the shock, we model the shock time according
to a uniform distribution Ts ∼ U(1 hours, 2 hours) after the market opens with shock
mean and variance as µs = 400 and σ2

s = 1600, respectively. Furthermore, after the shock
occurs, value agent arrivals are governed by the amplification rate As = 3 and arrival rate
reversion parameter θs = 1× 5−13. This scenario corresponds to OOD setting, where the
distributional shift is larger than that of the small shock scenario. Since the reversion rate
of the fundamental and arrival rate amplification are smaller in this setting, the simulated
market shock also lasts longer.

D Benchmarks

AdaRNN is the specific model dealing with the problem of the distributional shift where statistical
properties of time series can change over time. The first module of AdaRNN, called Temporal
Distribution Characterization (TDC), aims to better characterize the distribution information in the
time series. The second module is Temporal Distribution Matching (TDM), which uses a boosting-
based procedure to learn the hidden representation and to reduce distribution mismatch in time
series. By combining TDC and TDM, AdaRNN can utilize the common knowledge by matching
the distribution to learn the efficiency representation and then finish the prediction task with that
representation.

The transformer is an encoder and decoder structure to process sequence data, which has achieved
excellent performance in several time series tasks with the ability to handle long-term dependence.
Each encoder/decoder block consists of a multi-head self-attention module and a position-embedding
neural network. In addition, each decoder module inserts a cross-attention module between the
multi-head self-attention module and the position-embedding neural network. Unlike LSTM or RNN,
the transformer uses positional encoding to embed positional information for the input instead of any
iterative or convolutional operations. In the task of mid-price prediction under distributional shifts,
we use a simple encoder model with an attention layer for learning representations, and the FFN layer
is used to predict the final price.

DeepLOB is a deep neural network architecture containing convolutional layers as well as long
short-term memory (LSTM) units for predicting future stock price movements in large-scale high-
frequency LOB data. DeepLOB contains three modules, where the CNN module with convolutional
and pooling layers extracts features automatically to avoid the limitations of hand-crafted features,
then the Inception module [31] helps to infer local interactions over different time scales. After that,
the resulting feature maps are passed to an LSTM unit that captures the dynamic temporal behavior.
In this work, we will use our synthetic data to verify the stability of DeepLOB in the face of OOD
problems.
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