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1 Introduction
For many decades, much of the scientific knowledge of physics and engineering has been expressed
via differential equations. These differential equations describe the underlying phenomena and the
relations between different interpretable quantities. Therefore, differential equations are a promising
approach to incorporate prior knowledge in machine learning models to obtain robust and inter-
pretable models. Especially, deep networks and differential equations fit naturally as deep networks
are differentiable and enable the computation of the partial derivatives in closed form at machine pre-
cision (Raissi & Karniadakis, 2018). Therefore, combining deep networks and differential equations
is a promising approach to constrain deep networks to learn meaningful representations.

In this paper, we summarize a straight forward approach to incorporate deep networks in differential
equations and solve first-order non-linear differential equations by minimising the residual. We
describe the deep differential network that computes the functional value and smooth Jacobians in
closed form. Afterwards, we summarize two robotics applications that use differential equations
as model prior for deep networks to achieve model learning and optimal feedback control. In
contrast to prior work, which focused on the specific application, this paper focuses on the technical
requirements for deep networks and differential equations and we present open questions that we
encountered during our research.

2 Deep Differential Network
To embed a deep network within a first order differential equation and achieve fast training of the
network parameters, one requires to compute the Jacobian w.r.t. the network input efficiently. The
deep differential network extends the standard feed-forward deep network compute the Jacobian
efficiently using a single feed-forward pass. When the softplus activation is used, this network
architecture yields good approximations of the Jacobian. The computational graph of the deep
differential network (Figure 1) is extended such that each network layer computes the partial derivative
w.r.t. the previous layer, i.e. ∂hi/∂hi−1. Chaining these partial derivatives computes the Jacobian in
closed form. Let deep network with N layers model the function f (x;θ) : Rn→ Rm and each layer
be an affine transformation of the output of the previous layer hi−1 with a subsequent non-linearity
g, i.e., hi = g(WT

i hi−1+bi). Then partial derivative of each layer and the Jacobian are described by

∂hi

∂hi−1
= diag

(
g′(WT

i hi−1+bi)

)
Wi

∂ f
∂x
=
∂h1
∂x

∂h2
∂h1

· · ·
∂hN−1
∂hN−2

∂y
∂hN−1

. (1)

A PyTorch implementation is available at (non-anonymous repository added after double blind
review). We explicitly encode forward-mode automatic differentiation within the feed-forward
network as this is favorable compared to the reverse-mode automatic differentiation implemented in
major deep learning frameworks including PyTorch and Tensorflow. These frameworks use reverse-
mode automatic differentiation as this mode is more efficient for computing the gradient for a scalar
loss (i.e., m � n ), which is the main use-case for optimizing deep network parameters. While
both modes yield the identical derivatives, forward-mode automatic differentiation is favorable for
Jacobians, wherem ≈ n, (Baydin et al., 2017) and this computation requires only a single forward pass
through the network while the reverse mode must perform a forward and backward pass. Therefore,
this explicit computation is more efficient and this decreased computational complexity is essential
to enable real-time control loops required by many robotics applications.
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Figure 1: Computational graph of the deep differential network. The standard feed-forward network
is extended to compute the Jacobian ∂ f /∂x in closed form and a single forward pass.

2.1 Evaluating Jacobians
To solve differential equations with a deep differential network, the Jacobian ∂y/∂x must achieve
a good approximation of the symbolic expression. This good approximation is not guaranteed
as f could be approximated by many step functions and the Jacobians of such representation are
undesirable for solving a differential equation. To demonstrate that the Jacobian of the network
approximates the true symbolic Jacobian, we train the network to approximate a function and
compare the approximated Jacobian to the symbolic Jacobian. In addition, we analyze the effect of
different non-linear activations. Figure 2 shows the symbolic and the approximated Jacobian using
a deep differential network with relu and softplus activations. The first row shows the true symbolic
expression, the second row shows the Jacobian trained using a loss including f and ∂ f /∂x, i.e.,
θ∗ = argmin(y− f (x;θ))2 + (∂y/∂x− ∂ f (x;θ)/∂x)2. The third row corresponds to minimizing the
loss only including y, i.e., θ∗ = argmin(y − f (x;θ))2. While both activation approximate f well,
only the softplus activation achieves smooth Jacobians that approximate the symbolic expression.
The relu activation yields non-smooth Jacobians. Even when trained only on the function f , the
Jacobian for the softplus activation matches the symbolic expression. Therefore, softplus activation
is preferable compared to the relu non-linearity.

2.2 Solving Differential Equations by Gradient Descent
To solve a first order non-linear differential equationwithout boundary constraint and unique solution,
one can simply embed the deep differential network within the differential equation and minimize the
residual of the differential equation. In the most general case this minimization problem is described
by

F
(
x, f (x;θ),

∂ f (x;θ)
∂x

)
B 0 ⇒ θ∗ = argmin

θ

N∑
i=0

F
(
xi, f (xi;θ),

∂ f (xi;θ)
∂x

)2
(2)

where F is known and x can be sampled on the complete domain Ω. This optimization problem can
be solved using the standard gradient based optimization methods of end-to-end deep learning. In
section 3 we demonstrate that this approach can be used to obtain solutions to the Euler-Lagrange
equation and the Hamilton-Jacobi-Bellman equation.

2.3 Differential Equations with Boundary Constraints
While the previously described approach is straight-forward for problems without boundary con-
straints, incorporating boundary constraints that make the solution unique is non-trivial. These
boundary constraints cannot be simply added as penalty term to Equation 2, as this penalty is only
enforced locally. The high capacity deep networks, which are local function approximator, can
be attracted to the undesired solution inside the domain and only comply with the boundary con-
straints within the vicinity of the boundary. Therefore, the learned solution is not coherent across
the complete domain and separated by borders of high residual. Furthermore, these discontinuous
loss landscapes frequently deteriorate the gradient based optimization. Therefore, incorporating
boundary constraints such that a globally coherent solution is learned is an open research question.
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Figure 2: Comparison of the symbolic Jacobian to the approximations of the deep differential network
with relu (a) and softplus (b) non-linearity. The second row corresponds to supervised training using
y and ∂y/∂x. The third row corresponds to supervised training using only y. The Jacobian of the
differential network with softplus non-linearity approximates the symbolic Jacobian while the relu
non-linearity only obtains a discontinuous and coarse approximation.

3 Robotics Applications
In the following, two robotics applications are described. First, the Euler-Lagrange differential
equation is solved to obtain physically plausible models. Second, the Hamilton-Jacobi-Bellman
differential equation is solved to obtain an optimal policy.

3.1 Euler-Lagrange Equation for Model Learning
To learn models that are physically plausible and interpretable, the Euler-Lagrange differential equa-
tion from Lagrangian mechanics can be solved. Embedding two deep differential networks within
this equation and minimizing the residual learns a model that is guaranteed to describe a mechanical
system with holonomic constraints. Furthermore, this approach enables the unsupervised learning
of the interpretable physical forces and energies, i.e., inertial forces, Coriolis forces, gravitational
forces as well as potential energy and kinetic energy. Learning these quantities is remarkable as they
cannot be directly observed and hence, previous works (Schaal et al., 2002; Nguyen-Tuong & Peters,
2011; Ledezma & Haddadin, 2017; Sanchez-Gonzalez et al., 2018) using supervised learning could
not retrieve this information.

The Euler-Lagrange differential equation is described by
d
dt
∂L
∂ Ûq
−
∂L
∂q
= τττ (3)

with the torques τττ, the generalized coordinates q, the Lagrangian L = T −V , the kinetic energy
T and the potential energy V . Representing the potential energy V(q; φ) and kinetic energy
T(q, Ûq; ψ) = ÛqTH(q; ψ) Ûq as deep differential networks and enforcing the positive definiteness con-
straint ofH(q; ψ) using the Cholesky decomposition, one guarantees that the system dynamics always
describe a mechanical system. To obtain the parameters describing the desired mechanical system,
the differential equation can be solved by minimizing the residual using stochastic gradient descent
on recorded data from the physical system. More concretely, one records a dataset containing q, Ûq,
Üq and τττ on the mechanical system and minimizes the squared residual of Equation 3 with SGD to
retrieve the energies of the mechanical system.

Figure 3 shows the learned decomposition of the torque signal into the force components as well as
the system energies for the Cartpole. The learned model recovers the energies and forces from the
super-imposed torque signal and matches the analytic model. Other experiments have shown that
this approach of Deep Lagrangian Networks can be applied to real-time energy control (Lutter &
Peters, 2019), online learning of non-linear feed-forward tracking control (Lutter et al., 2019b) and
optimal control (Gupta et al., 2019).

3.2 Hamilton-Jacobi-Bellman Equation for Optimal Control
To obtain the optimal control policy π∗ one can either use reinforcement learning, trajectory op-
timization or solve the Hamilton-Jacobi-Bellman (HJB) equation when the model is known. For
mechanical systems with holonomic constraints and a separable cost function that is strictly convex

3



Published as a workshop paper at the ICLR 2020 DeepDiffEq Workshop

t0 tN

−1.0

+0.0

+1.0

T
or

qu
e

[N
m

]

×101

J
o

in
t

0
S

im
u

la
te

d
C

ar
tp

o
le

τM

t0 tN
−7.5

−5.0

−2.5

+0.0

+2.5

+5.0

+7.5

T
or

qu
e

[N
m

]

×10−1

J
o

in
t

1

τM
t0 tN

−2.0

−1.0

+0.0

+1.0

+2.0

+3.0

A
cc

el
er

at
io

n
[m

/s
2
]

×101 q̈

t0 tN

−0.5

+0.0

+0.5

+1.0

A
cc

el
er

at
io

n
[m

/s
2
]

×102 q̈
t0 tN

−4.0

−2.0

+0.0

+2.0

+4.0

T
or

qu
e

[N
m

]

τ F

t0 tN
−7.5

−5.0

−2.5

+0.0

+2.5

+5.0

+7.5

T
or

qu
e

[N
m

]

×10−1 τ F
t0 tN

−1.0

−0.5

+0.0

+0.5

+1.0

T
or

qu
e

[N
m

]

×101 H(q)q̈

t0 tN
−7.5

−5.0

−2.5

+0.0

+2.5

+5.0

+7.5

T
or

qu
e

[N
m

]

×10−1 H(q)q̈
t0 tN

−2.0

−1.0

+0.0

+1.0

+2.0

T
or

qu
e

[N
m

]

c(q, q̇)

t0 tN
−7.5

−5.0

−2.5

+0.0

+2.5

+5.0

+7.5

T
or

qu
e

[N
m

]

×10−1 c(q, q̇)
t0 tN

−7.5

−5.0

−2.5

+0.0

+2.5

+5.0

+7.5

T
or

qu
e

[N
m

]

×10−1 g(q)

t0 tN
−7.5

−5.0

−2.5

+0.0

+2.5

+5.0

+7.5

T
or

qu
e

[N
m

]

×10−1 g(q)
t0 tN

+0.0

+2.0

+4.0

E
ne

rg
y

[J
]

×10−1 Ekin

t0 tN

−4.0

−3.0

−2.0

−1.0

+0.0

E
ne

rg
y

[J
]

×10−1 Epot

Data Analytical Model System Identification DeLaN

Figure 3: The super-imposed observed torque and the learned decomposition of the inertial-,
centrifugal-, Coriolis-, gravitational- and frictional forces as well as the kinetic and potential energy
for the swing-up of the simulated Cartpole. The learned physical quantities are learned unsupervised
by leveraging the Euler-Lagrange equation as model prior and match the analytic model.
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Figure 4: (a-c) Learned value function for the torque-limited pendulum with log-cosine cost and the
optimal trajectories for HJB control (a), multiple shooting (b) and LQR (c). (d) Cost distributions p(c)
for the sampled starting configurations. The optimal policy obtained by solving the HJB equation
with deep differential networks obtains the similar trajectories and cost distribution as multiple
shooting.

w.r.t. the actions, the HJB simplifies to a first order non-linear differential equation (Lutter et al.,
2019a). The simplified HJB is described by

ρV∗(x) = q(x)+a(x)TV∗x −g
′(−B(x)TV∗x ) (4)

with state x, action u, the partial derivative V∗x = ∂V∗/∂x, the convex conjugate g′, the non-linear
continuous time dynamics Ûx = a(x)+B(x)u and separable cost function c(x,u) = q(x)+g(u). Solving
this equation yields the optimal value function and implies the optimal control policy described
by π∗(x) = ∇g′(−B(x)TV∗x ). Simply embedding a deep differential network as value function and
minimizing the residual is not sufficient to solve this differential equation as the solution is only unique
given an additional boundary constraint. To avoid explicitly incorporating the boundary constraint,
a homotopy method is used, which anneals the discounting from short sighted, i.e., ρ =∞, to far
sighted, i.e., ρ = 0. This approach is sufficient as for this specific equation the undesired solution
diverges and the desired solution is known, i.e., V(x) = 0 ∀ x ∈ Ω. Therefore, the initial solution can
be learned and tracked when annealing ρ.

Figure 4 shows the learned value function of the torque limited pendulum and the applied optimal
policy for 300 different starting configurations. The optimal policy obtained by solving the HJB
equation achieves comparable performance as the optimal control approach of multiple shooting. In
contrast to multiple shooting, the HJB optimal policy does not need to replan for different starting
configurations and is a closed-loop policy rather than an open-loop optimal trajectory.

4 Conclusion
In this paper we described deep differential networks and the application to solving first order non-
linear differential equations without boundary constraints. In addition, we showed that the deep
differential network with softplus non-linearity achieves good approximation of the symbolic Jaco-
bian and discussed the open problem of incorporating boundary constraints. Finally, we summarized
two robotics applications that leveraged differential equations as model prior to learn physically
plausible models and optimal feedback controllers.
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