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Abstract

A way to overcome expensive and time-001
consuming manual data labeling is weak su-002
pervision - automatic annotation of data sam-003
ples via a predefined set of labeling functions004
(LFs), rule-based mechanisms that generate po-005
tentially erroneous labels. In this work, we006
investigate noise reduction techniques for weak007
supervision based on the principle of k-fold008
cross-validation. In particular, we extend two009
frameworks for detecting the erroneous sam-010
ples in manually annotated data to the weakly011
supervised setting. Our methods profit from012
leveraging the information about matching LFs013
and detect noisy samples more accurately. We014
also introduce a new algorithm for denoising015
the weakly annotated data called ULF, that re-016
fines the allocation of LFs to classes by esti-017
mating the reliable LFs-to-classes joint matrix.018
Evaluation on several datasets shows that ULF019
successfully improves weakly supervised learn-020
ing without using any manually labeled data.021

1 Introduction022

A large part of today’s machine learning success023

rests upon a vast amount of annotated training data.024

However, a manual expert annotation turns out to025

be tedious and expensive work. There are dif-026

ferent approaches to reduce this data bottleneck:027

fine-tuning large pre-trained models (Devlin et al.,028

2019), applying active (Sun and Grishman, 2012)029

and semi-supervised learning (Kozareva et al.,030

2008). However, even if in a reduced amount,031

these approaches still demand manually annotated032

data, which could be a tremendous challenge in033

some cases, such as tackling tasks with dynam-034

ically changing requirements or in low-resource035

languages.036

Another strategy that does not require any man-037

ual annotation is weak supervision (WS), which038

allows getting massive amounts of training data at039

a low cost. In a weakly supervised setting, the data040

is annotated in an automized process using one or041

Figure 1: Calculation of noisy labels Y with multiplica-
tion of a matrix with LFs matches ZN×L and a matrix
with LFs-to-class correspondings T̂L×K - an improved
version of TL×K matrix with ULF algorithm.

multiple weak supervision sources: for example, 042

external knowledge bases (Lin et al., 2016; Mintz 043

et al., 2009), manually-defined or automatically 044

generated heuristics (Ratner et al., 2017; Varma 045

and Ré, 2018), crowdsourcing annotations (Yang 046

et al., 2020; Joglekar et al., 2014; Zhang et al., 047

2014; Hovy et al., 2013). By mapping such rules, 048

or labeling functions (LFs, Ratner et al., 2017), to 049

a large unlabeled dataset, one could quickly obtain 050

weak training labels, which are, however, poten- 051

tially error-prone and need additional denoising. 052

Examples are provided in Figure 2. 053

In this work, we explore methods for improv- 054

ing the quality of weakly supervised data using 055

methods based on the principle of k-fold cross- 056

validation. The intuition behind them is the follow- 057

ing: a model, trained on the substantial part of the 058

data samples and the corresponding weak labels, 059
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Figure 2: An example of weakly supervised annota-
tion from YouTube Spam Classification dataset (Alberto
et al., 2015). In (1), both matched LFs correspond to the
SPAM class; the sample will be assigned to this class
as well. In (2), one of the matched LFs belongs to the
SPAM class, while the other - to the HAM class. The
easiest way to break the tie is to assign the sample to one
of two classes randomly. In (3), no labeling functions
matched, meaning the sample does not get any label and
may be either filtered out or assigned to a random class.

can predict for the rest of the data more reliable and060

accurate labels than the weak ones. Such labels are061

often called out-of-sample since they are calculated062

basing on the other data samples.063

The earlier approaches to data cleaning, which064

follow this idea, deal with general, non-weakly su-065

pervised data and, therefore, split the data samples066

into folds randomly (Northcutt et al., 2021; Wan067

et al., 2019). However, a direct application of these068

methods to the weakly labeled data ignores valu-069

able knowledge stemming from the weak supervi-070

sion process: for example, which LFs matched in071

each sample and what class each LF corresponds to.072

In this work, we propose extensions for these meth-073

ods that leverage this additional source of knowl-074

edge via splitting the data considering the labeling075

functions matched in samples.076

Apart from that, we propose ULF - a new077

method for Unsupervised Labeling Function cor-078

rection with k-fold cross-validation. Its primary079

goal is to improve the LFs to classes allocation080

in order to correct the systematically biased label081

assignments. ULF calculates the LFs confident ma-082

trix and estimates the joint distribution between083

LFs and output labels using the predicted class084

probabilities and the original weak labels. The085

improved allocation allows to calculate the labels086

anew and apply them in further training. Impor-087

tantly, ULF also profits from the samples with no088

LFs matched, in contrast to others that filter them 089

out (Ratner et al., 2017), and improves their labels 090

as well. 091

Overall, our contributions are: 092

• We propose extensions for CrossWeigh (Wang 093

et al., 2019b) and Cleanlab (Northcutt et al., 094

2021), originally created for denoising the 095

data using k-fold cross-validation based meth- 096

ods, for WS setting. Our methods WSCW 097

and WSCL profit from the WS-specific infor- 098

mation and make the denoising of WS data 099

more efficient. 100

• We propose our new method ULF for improv- 101

ing the LFs to classes allocation. ULF not 102

only detects the erroneous LFs to classes al- 103

locations, but also improves it, what leads to 104

more accurate labels and a better quality of 105

the trained classifier. 106

• We demonstrate the effectiveness of both pro- 107

posed extensions and ULF method compared 108

to the original methods and other baselines on 109

several weakly supervised datasets. 110

To the best of our knowledge, we are the first 111

(1) to adapt the k-fold cross-validation based noise 112

detection methods to WS domain, and (2) to refine 113

the LFs to classes allocation in WS setting. 114

2 Related Work 115

Weak supervision has been widely applied to differ- 116

ent tasks in various domains, such as text classifica- 117

tion (Ren et al., 2020; Shu et al., 2020), relation ex- 118

traction (Yuan et al., 2018; Hoffmann et al., 2011), 119

named entity recognition (Lan et al., 2020, 2019; 120

Wang et al., 2019b), video analysis (Fang et al., 121

2020; Kundu et al., 2019), medical domain (Fries 122

et al., 2021; Saab et al., 2019), image classification 123

(Li et al., 2021), and others. Weak labels are usu- 124

ally cheap and easy-to-obtain, but also potentially 125

error-prone and often need additional denoising. 126

Some denoising algorithms build a specific 127

model architecture or use the loss functions correc- 128

tion (Karamanolakis et al., 2021; Zheng et al., 2019; 129

Hedderich and Klakow, 2018; Patrini et al., 2017; 130

Goldberger and Ben-Reuven, 2017; Sukhbaatar 131

et al., 2014; Mnih and Hinton, 2012). Others profit 132

from expert annotations: for example, by adding 133

a set of manually annotated data to the weakly la- 134

beled one (Mazzetto et al., 2021; Karamanolakis 135

et al., 2021; Awasthi et al., 2020; Maheshwari et al., 136
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2020; Teljstedt et al., 2015), or learning from user137

manual correction (Hedderich et al., 2021; Boeck-138

ing et al., 2020; Saito and Imamura, 2009). All139

methods that we introduce in this paper, on the con-140

trary, do not require any manual supervision and141

can be used with any classifier. Another popular142

research direction estimates the relation between143

noisy and clean labels (Lange et al., 2019; North-144

cutt et al., 2021), but often do not provide any direct145

label correction (in contrast to our method ULF).146

There is also a group of approaches that share147

the idea of using k-fold cross-validation for denois-148

ing of manually labeled data (Wang et al., 2019a,b;149

Northcutt et al., 2021; Teljstedt et al., 2015). Wang150

et al., 2019b detect mistakes in crowdsourcing an-151

notations by training the k models on k − 1 data152

folds with one fold left for making the predictions153

by the trained model. The samples where the orig-154

inal noisy labels disagree with the predicted ones155

are downweighted for further training as unreliable.156

Northcutt et al. 2021 also make use of a cross-157

validation approach, but, instead of predicting la-158

bels in hold-out fold, they consider the confidence159

of the predicted class probabilities. The misla-160

beled samples are then identified using the ranking161

with respect to the self-confidence class-dependent162

thresholds and pruned. Both of these methods can163

be applied to any data; however, they miss a lot of164

potentially profitable information when being used165

as-is for denoising the weakly supervised data.166

3 Denoising of Weakly Supervised Data167

using Cross-validation168

In this section, we present our extension of two169

frameworks, CrossWeigh (Wang et al., 2019b),170

and Cleanlab (Northcutt et al., 2021), initially pro-171

posed for denoising the manually annotated data,172

for weakly supervised settings with leveraging the173

information about matching LFs.174

3.1 Preliminaries175

Let us introduce some formal notation used176

in the current and in the following sections.177

Given a dataset X with N data samples, X =178

{x1, x2, ..., xN}; each sample is a set of words179

(i.e., one or several sentences). This set is used180

for training a classifier with K output classes,181

K = {k1, k2, ..., kK}. In the weakly supervised182

setting, there are no known-to-be-correct true la-183

bels for training samples. Instead, we are provided184

with a set of LFs L, L = {l1, l2, ..., lL} (LFs). We185

say that a LF lj matches a sample xi if it maps this 186

sample to a label. For example, in case of keyword- 187

based LFs, some keyword is found in data sample 188

and, thus, a corresponding label is assigned to this 189

data sample. A set of LFs matched in a sample 190

xi is denoted as Lxi . In each xi there can be ei- 191

ther one LF (|Lxi | = 1), or several (|Lxi | > 1) or 192

none of them (|Lxi | = ∅) matched. This informa- 193

tion can be saved in a binary matrix ZN×L, where 194

Zij = 1 means that lfj matches in sample xi. Each 195

label function lj corresponds to some class ki. The 196

information about this correspondence is stored 197

in a binary matrix TL×K , where Tij = 1 means 198

LF li corresponds to class kj . By multiplying Z 199

and T , applying majority voting, and breaking the 200

ties, we could obtain the potentially noisy labels 201

Y = {y1, y2, ..., yn}, yj ∈ K, which can be used 202

for training a classifier with parameters θ. An il- 203

lustration of Z, T , and Y matrices is presented in 204

Figure 1 (we are not considering the denoised T̂ 205

matrix in this section yet). 206

3.2 Weakly Supervised CrossWeigh (WSCW) 207

CrossWeigh (CW, Wang et al. 2019b) was proposed 208

for tracing inconsistent labels in the crowdsourced 209

annotations for the NER task. As in the straight- 210

forward k-fold cross-validation, the data is ran- 211

domly split into k folds used to build k training 212

and hold-out sets. Importantly, the training sam- 213

ples that include the entities annotated in hold-out 214

samples are additionally filtered out, meaning each 215

of the k trained models makes predictions only for 216

the entities unseen during the training. Thus, if an 217

entity was constantly mislabeled by crowdworkers, 218

the model trained without it would be rid of this 219

confusion. 220

This approach seems to be quite promising for 221

detecting the unreliable LFs (which can be con- 222

sidered as samples’ annotators) in the weakly su- 223

pervised data as well. Indeed, if a potentially er- 224

roneous LF systematically annotates the samples 225

wrongly, a reliable model trained on data without 226

it will not make this mistake in its prediction, and, 227

thus, the error will be traced and reduced. Thus, we 228

propose a new Weakly Supervised CrossWeigh 229

method (WSCW) with splitting the data consid- 230

ering the LFs: the LFs matched in a test fold are 231

eliminated from the training folds. Thus, we refrain 232

the model from making easy predictions and let her 233

deduce the labels basing on the unseen LFs only. 234

More formally, we, firstly, randomly split LFs L 235
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into k folds {f1, ..., fk}. Then, we iteratively take236

LFs from each fold fi as test LFs and the others237

as the training LFs. So, all samples where no LFs238

from hold-out fold match become training samples,239

while the rest are used for testing.240

Xtraini = {xj |Lxj ∩ fi = ∅}241

Xtesti = X \Xtraini242

After that we train the k separate models on243

Xtraini and evaluate them on Xtesti . The same244

way as in the CrossWeigh algorithm, the labels pre-245

dicted by the trained model for the samples in the246

hold-out set ŷ are compared to the initial noisy la-247

bels y. All samples Xj where ŷj ̸= yj are claimed248

to be potentially mislabeled; their influence is re-249

duced in further training. The whole procedure of250

errors detection is performed t times with different251

partitions to refine the results. The sample weights252

wxN are then calculated as wxj = ϵcj , where cj is253

the number of times a sample xj was classified as254

mislabeled, 0 ≤ cj ≤ t, and ϵ is a weight reducing255

coefficient.256

3.3 Weakly Supervised Cleanlab (WSCL)257

The second method we introduce is Weakly Su-258

pervised Cleanlab (WSCL) - an adaptation of259

Cleanlab framework (Northcutt et al., 2021) for260

weak supervision. The Cleanlab framework al-261

lows to find erroneous labels by estimating the262

joint distribution between the noisy labels and263

out-of-sample labels calculated by k-fold cross-264

validation. In WSCL, we follow a similar ap-265

proach, but adapt it to the weak supervision the266

same way as in WSCW: the cross-validation sets267

Xtraini and Xtesti sets are built considering the268

matched LFs. These sets are used to train k mod-269

els, which predict the probability vector of class270

distribution p̂(ŷ = j;xi, θ), j ∈ K for each sample271

xi in the Xtesti . The exact labels ŷ are calculated272

later on with respect to the class expected self-273

confidence value tj (see Northcutt et al. 2021 for274

more details):275

tj :=

∑
Xj

p̂(y = j;xi, θ)

|Xj |
, (1)276

where Xj = {xi ∈ Xy=j} , 1 < j < c277

A sample xi is considered to confidently belong278

to class j ∈ K if the probability of class j is greater279

than expected self-confidence for this class tj or the280

maximal one in case of several classes are probable: 281

ŷi = argmax
j∈[K]:

p̂(y=j;xi,θ)≥tj

p̂(y = j;xi, θ) (2) 282

The samples with no probability exceeding the 283

thresholds have no decisive label and do not partic- 284

ipate in the further denoising. 285

After that, a class-to-class confident joint matrix 286

CK×K is calculated, where: 287

C[j][k] = |{xi ∈ X|yi = j, ŷi = j}| 288

Notably, C contains only the information about 289

correspondence between noisy and out-of-sample 290

predicted labels (the same way as in Northcutt et al. 291

2021). So, it only counts the samples with presum- 292

ably incorrect noisy labels y, but does not provide 293

us with any insights about what LFs assigned these 294

noisy labels and, thus, can be claimed erroneous 295

(in contrast to the ULF approach, see Section 4). 296

The confident matrix C is then calibrated and 297

normalized in order to obtain an estimate matrix of 298

the joint distribution between noisy and predicted 299

labels Q̂K×K , which determines the number of 300

samples to be pruned. We perform the pruning by 301

noise rate following the Cleanlab default setting: 302

n · Q̂, i ̸= j samples with max(p̂(y = j)− p̂(y = 303

i)) are eliminated in further training. 304

4 ULF: Unsupervised Labeling Function 305

Correction 306

In this section, we present a novel approach ULF 307

- Unsupervised Labeling Functions Correction al- 308

gorithm. As both CrossWeigh (Wang et al., 2019b) 309

and Cleanlab (Northcutt et al., 2021), it exploits the 310

idea of k-fold cross-validation training. However, 311

while those algorithms only detect the unreliable 312

annotations, ULF correct them by refining the LFs 313

to classes allocation. 314

4.1 Motivation 315

A substantial amount of noise in weakly supervised 316

annotation is produced by LFs to class allocation 317

being not accurate enough. For example, in Figure 318

2, among the LFs used to annotate the YouTube 319

Dataset, there is a LF "my" that corresponds to 320

the SPAM class. The reason for that are the of- 321

ten encountered spam messages like "subscribe 322

to my channel" or "follow my page". However, 323

such correspondence is by no means so straightfor- 324

ward and sometimes may be potentially misguid- 325

ing. Thus, a label for Sample 2, where this LF 326
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matched alongside another one from class HAM,327

cannot be defined clearly by LFs, as both classes328

gain 50% probability, which leads to random la-329

bel assignment. However, if the information about330

"my" being related to the HAM class as well were331

considered, the overall HAM probability would332

dominate, which would make this sample being333

classified to the correct HAM class.334

Algorithm 1 ULF: Unsupervised LFs Correction
Input: unsupervised training data X; LFs to

classes matrix TL×K , samples to LFs
matches matrix ZN×L

Output: a trained classifier θ
1 for t = 1, 2, ... T do
2 Calculate noisy labels Yn ← Z ∗ T
3 Randomly split

⋃
Lxi into k folds f1, ..., fk

4 for fold = 1, 2, ..., k do
5 Build Xtraini and Xtesti sets through Eq. 3
6 Train model θi using Xtraini and Yn
7 Calculate predictions p̂(ŷ = j;xi, θi)

8 Get labels ŷi (Eq. 2) using thresholds tj (Eq. 1)
9 Calculate LFs-to-class confident matrix Cl,ŷ

10 Calculate a joint matrix Q̂l,ŷ through Eq. 5
11 Recalculate T matrix through Eq. 6

12 Calculate noisy labels Yn using updates T matrix
13 Train model θ with Xtraini and Yn

4.2 Overview335

Following the notation defined in Section 3.1, the336

main goal of the ULF algorithm is to improve the337

matrix of LFs to classes assignments T . It is done338

by, firstly, calculating the reliable probabilities of339

training samples belonging to each class with k-340

fold cross-validation and, secondly, building an341

LFs-to-classes confidence matrix CL×K . The fur-342

ther combining of this confidence matrix, which343

reflects the out-of-sample predicted LFs to classes344

assignment, and the original matrix T results in345

an adjusted T̂ matrix, which could be used to cal-346

culate new, more accurate training labels Y . The347

graphical illustration is provided in Figure 1 and348

the algorithm is summarized in Algorithm 1.349

4.3 Label Probabilities with Cross-Validation350

Firstly, the class probabilities for each training351

sample are predicted by the k-fold cross-validation.352

For that, we use the unlabeled training set X and353

weak labels Y obtained by multiplying Z and T354

matrices.355

356

There are three possible ways of data split- 357

ting: 358

• randomly (ULFrndm): assigning the samples 359

to folds same way as it would be done in stan- 360

dard k-fold cross-validation not considering 361

which LFs are matching; 362

• by labeling functions (ULFlfs): the same way 363

it is done in WSCW (refer to Section 3.2 for 364

more details) 365

• by signatures (ULFsgn): for each training 366

sample xi we take the set of matching LFs Lxi 367

as its signature. Now the k folds {f1, ..., fk} 368

contain the signatures and not LFs as in 369

WSCW. After that, the signatures are split 370

into k folds, each of which becomes a test fold 371

in turn, while others build training folds. 372

Xtraini = {xj |Lxj /∈ fi}
Xtesti = {xj |Lxj ∈ fi}

(3) 373

After training k models separately on Xtraini , 374

i ∈ [1, k], and making the predictions on the hold- 375

out folds Xtesti , we obtain a matrix with out-of- 376

sample predicted probabilities P̂N×K . From these 377

probabilities the reliable labels ŷ are derived in the 378

same way as in WSCL through Eq. 2 with refer- 379

ence to the expected average thresholds tkj (Eq. 1). 380

4.4 Re-estimate Labeling Functions 381

In contrast to Northcutt et al., 2021, the central 382

idea of our approach is not to estimate the joint dis- 383

tribution between out-of-sample predicted labels 384

and noisy ones (i.e., build a class-to-class confident 385

matrix CK×K), but between matched LFs and pre- 386

dicted labels, what, in its turn, define the classes 387

each LF confidently corresponds to. 388

For each LF li, we calculate the number of sam- 389

ples with this LF matched and confidently assigned 390

to each class kj . This information is saved as a 391

LFs-confident matrix CL×K : 392

Cli,ŷj = |{xi ∈ X : ŷi = yj , li ∈ Lxi}| (4) 393

Next, the confident matrix is calibrated and nor- 394

malized to Q̂L×K to correspond with the values in 395

the Z matrix: the confident matrix should sum up 396

to the overall number of training samples and the 397

sum of counts for each LF should be the same as 398

in the original Z matrix: 399
5



YouTube Spouse TREC SMS

Training Data 1586 22254 4965 4502
Validation Data 150 2711 500 500
Test Data 250 2701 500 500
#Classes (C) 2 2 6 2
#LFs (R) 10 9 68 73
Average LF Hits 1.62 33.7 1.73 0.509
LF Accuracy (Majority Voting) 82%± 0.8 44%± 0.6 61%± 0.4 54%± 1.8
LF Coverage 87% 25% 85% 40%

Table 1: Statistics of all the datasets. The LF accuracy metrics are reported across 5 runs with standard deviation in
order to reduce the instability caused by randomly broken ties.

Q̂li,ŷj =

Cli,ŷj ·
L∑

m=1
Zlm,ŷj

L∑
m=1

Clm,ŷj

, (5)400

where
∑

i∈L,
j∈K

Cli,ŷj = n,
K∑
j=1

Zlm,ŷj =
K∑
j=1

Q̂lm,ŷj401

The joint matrix Q̂l,ŷ can now be used for tuning402

the LFs-to-class matrix T that contains the initial403

LFs to class allocations. T and Q̂l,ŷ are summed404

with multiplying coefficients p and 1 − p, where405

p ∈ [0, 1]. The value of p determines how much406

information from the estimated assignment matrix407

Q̂l,ŷ should be preserved in the refined matrix T̂ .408

T̂ = p ∗ Q̂l,ŷ + (1− p) ∗ T (6)409

With the multiplication of Z and the newly es-410

timated T̂ matrices, the new set of labels Yupd is411

calculated. Now it can be used either for rerun-412

ning the estimation process or for training the final413

classifier. After all iterations are done, the final clas-414

sifier is trained on the training set X annotated by415

improved labels Y . Note that, in contrast to North-416

cutt et al., 2021, we do not eliminate any training417

samples that are considered to be unreliable but use418

them all with corrected labels.419

Unlabeled instances. One of the challenges in420

weak supervision is the data samples where no421

LF matched. In some approaches, such sam-422

ples are filtered out, while in others they are423

kept as belonging to a random class or to the424

other class. In ULF, such samples are initially425

assigned with random labels and may be partly426

involved in cross-validation training. The propor-427

tion of randomly labeled data included in each k-428

training fold is defined with hyper-parameter λ:429

|{xi|Lxi ̸= ∅}| = λ · |{xj |Lxj = ∅}|. After each 430

T̂ matrix recalculation, their new labels are calcu- 431

lated directly from the out-of-samples predicted 432

probabilities: ŷi = argmax p̂(y = j;xi, θ), where 433

p̂(y = j;xi, θ) ≥ tj . 434

5 Experiments 435

Datasets. We evaluate our methods on four well- 436

known weakly supervised English datasets (the 437

amount of covered tasks and language limitation 438

of datasets certainly leaves room for future work): 439

(1) YouTube Spam Classification dataset (Alberto 440

et al., 2015), also used in (Ratner et al., 2017); (2) 441

SMS Spam Classification dataset (Almeida et al., 442

2011); (3) Question Classification dataset from 443

TREC-6 (Awasthi et al., 2020); (4) Spouse Relation 444

Classification dataset based on the Signal Media 445

One-Million News Articles Dataset (Corney et al., 446

2016), also used in (Ratner et al., 2017). The same 447

LFs were used in the same way as in the previous 448

works in order to provide a fair comparison. The 449

data statistics is provided in Table 1. 450

All datasets used in experiments have their own 451

peculiarities. For example, in the Spouse dataset, 452

there are 75% of samples not covered with any LFs, 453

while in the rest 25% there is a high ratio of LF 454

overlappings. Besides, though it has a moderate 455

overlapping and non-coverage score, the TREC 456

dataset has quite unreliable LFs, which results in 457

61% LFs accuracy. 458

Baselines. We compare our algorithm against 459

two baselines. (1) Majority + Training: the classi- 460

fier is trained on the data and noisy labels acquired 461

with simple majority voting and randomly broken 462

ties. (2) Snorkel-DP: a classifier is trained using 463

both generative and discriminative Snorkel (Ratner 464

et al., 2017) steps. 465
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YouTube
(Acc)

Spouse
(F1)

TREC
(Acc)

SMS
(F1)

Majority + Training 86.8 ± 0.5 41.2 ± 0.2 55.9 ± 0.0 80.0 ± 0.2
Snorkel-DP (Ratner et al., 2017) 88.0 ± 0.0 41.5 ± 0.7 42.2 ± 2.2 82.8 ± 0.1

CrossWeigh (Wang et al., 2019b) 90.1 ± 0.6 41.6 ± 0.5 40.0 ± 0.1 79.6 ± 1.4
WSCW 90.8 ± 0.7 42.0 ± 0.0 46.0 ± 0.4 84.0 ± 0.9

Cleanlab (Northcutt et al., 2021) 78.0 ± 0.2 45.1 ± 0.1 58.5 ± 0.1 79.5 ± 0.2
Cleanlab-PyTorch 86.9 ± 0.7 44.4 ± 1.2 55.8 ± 0.3 86.0 ± 0.6
WSCL lfs 87.2 ± 0.4 44.4 ± 0.7 58.9 ± 0.3 86.6 ± 0.3
WSCL sgn 88.3 ± 0.5 44.6 ± 0.9 56.4 ± 0.3 85.1 ± 0.3

ULF rndm 92.8 ± 0.1 44.8 ± 0.5 58.0 ± 0.2 85.7 ± 0.5
ULF lfs 90.8 ± 0.9 44.0 ± 0.9 55.5 ± 0.4 70.0 ± 0.4
ULF sgn 94.6 ± 0.2 49.8 ± 1.0 58.2 ± 0.2 88.6 ± 0.3

Table 2: Results of cross-validation methods across multiple datasets, averaged over ten trials and reported with
standard error of the mean. The best results for each dataset are marked bold, the second best - underlined.

In order to evaluate the performance of our466

weakly supervised adaptations of CrossWeigh and467

Cleanlab, we also introduce the original frame-468

works as baselines: (3) CrossWeigh (Wang et al.,469

2019b), (4a) Cleanlab - the original implementa-470

tion of Northcutt et al. 2021 with Scikit-learn li-471

brary, (4b) Cleanlab-PyTorch - our PyTorch-based472

reimplementation of the Cleanlab algorithm in or-473

der to provide a fair comparison with our methods474

implemented with PyTorch library (Paszke et al.,475

2017). Following (Northcutt et al., 2021), we use a476

logistic regression model in our experiments.477

Implementation Details. The training data were478

encoded with TF-IDF vectors. For training, we479

set the number of epochs to 20 and applied the480

early stopping with patience = 5. We ran each ex-481

periment 10 times; the models which showed the482

best scores on the development set were evaluated483

on the test sets. Development set is also used to484

estimate the number of iterations t: initially, it is485

set to t = 20, but if training labels do not change486

after three iterations, the algorithm stops, and the487

last saved model is used for final testing. The ac-488

tual number of iterations in training of the best489

performing ULF models (ULFsng and ULFrndm),490

alongside other hyperparameter values found using491

grid-search, are provided in Appendix A.492

For our implementations we used the setting493

of the weak supervision framework Knodle (Se-494

dova et al., 2021), which by providing an access to495

all WS components allowed us to implement and496

benchmark all algorithms described above.1 All 497

experiments were performed on a machine with 498

CPU frequency of 2.2GHz with 40 cores; the full 499

set up took on average 20 hours for each dataset. 500

5.1 Experimental Results 501

In Table 2, there are the average results across all 502

datasets reported with the standard error of the 503

mean. Due to the skewness of the Spouse and SMS 504

datasets, we report the F1 score for them; for other 505

datasets, an accuracy score is provided. 506

Overall, our WSCW and WSCL extensions of 507

CrossWeigh and Cleanlab frameworks outperform 508

the corresponding base methods in most cases and 509

lead to consistent improvements compared to the 510

Majority and Snorkel-DP baselines. It proves our 511

hypothesis of LFs’ importance in applying cross- 512

validation techniques for weak supervision. At the 513

same time, the ULF algorithm shows the best result 514

overall on most of the datasets. ULFsgn outper- 515

forms the classifier trained on the data with label 516

chosen with majority voting without any additional 517

denoising by 6.8% on average and Snorkel-DP by 518

9.2%, ULFrndm - by 4.4% and 6.7% respectively. 519

Interestingly, the ULFlfs demonstrates a worse re- 520

sult compared to ULFsign and even ULFrndm, which 521

could be explained by multiple LF overlappings 522

that makes using them for splitting the data in 523

scope of ULF a complicated task. The analysis 524

of hyperparameter values in Tables 4 and 5 showed 525

that in most cases the signature-based data splitting 526

1The code will be publicly released on acceptance.
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Figure 3: Examples of changed labels in YouTube and SMS datasets after denoising with ULFlfs.

requires smaller number of folds k and iterations527

t compared to the random data splitting. In the528

meantime, the values of multiplying coefficient529

p and non-labeled data rate λ, being rather data-530

and not algorithm-specific parameters, remain the531

same. Note that our method does not involve any532

manually annotated data and, therefore, cannot be533

directly compared to the results reported for set-534

tings that include it (Karamanolakis et al., 2021;535

Awasthi et al., 2020).536

5.2 Case Study537

Table 3 demonstrates several samples from538

YouTube and SMS datasets and their erroneous539

labels that were detected and changed by ULFlfs.540

While Sample 1 is definitely a SPAM comment, no541

SPAM LF matched in it (since the potentially spam542

keyword "subscribe" is here reduced to "sub").543

However, a LF short_comment corresponding to544

class HAM matched there, which results in assign-545

ing a wrong label HAM to it. Sample 2 is a SPAM546

message not covered by any keywords-based LFs:547

while they are primarily concerned with the cases548

where a user asks to subscribe to the channel (using549

the key words "subscribe", "my"), here there is a550

request to like the comment. Thus, a lack of LFs551

involves misclassification. However, in Sample 3,552

a word "subscribe" is mentioned indeed, but in a553

related to the video context, what makes this mes-554

sage not-SPAM in contrast to the assigned label555

HAM in effect. In the same way, keyword "pass-556

word", which is defined as a LF corresponding to557

SPAM class in SMS dataset (in order to detect spam 558

messages like Send me your id and password), is 559

matched in a HAM message and annotated it with 560

SPAM label. A different one is Sample 5: here, two 561

LFs from different classes match; as a result, the 562

label SPAM was defined not by LFs but randomly. 563

All of these various misclassifications were cor- 564

rected by ULFlfs, and the corresponding samples 565

were reassigned to the correct classes. 566

6 Conclusion 567

In our work, we explored the k-fold cross- 568

validation based methods for denoising the weakly 569

annotated data. Firstly, we introduced our exten- 570

sions of two frameworks, initially proposed for de- 571

noising the manually annotated data: CrossWeigh 572

(Wang et al., 2019b) and Cleanlab (Northcutt et al., 573

2021). We adapted them for weakly supervised set- 574

ting by leveraging the information about labeling 575

functions matching in the data samples and proved 576

the efficiency of our adaptations. In the second part 577

of our work, we propose the ULF algorithm for un- 578

supervised labeling functions denoising. Based on 579

counting the confident labeling functions-to-classes 580

matrix and estimating their joint distribution, ULF 581

helps to refine the labeling functions to classes 582

allocations without any manually annotated data, 583

allowing for the correction (and not just removal) 584

of the weak labels. Thus, the entire training set 585

can then be used for training a reliable classifier 586

without any data reduction. 587
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A Appendix812

Hyperparameter Values

Multiplying coefficient p 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9
Learning rate lr 1e1, 1e2, 1e3, 1e4
Number of folds k 3, 5, 8, 10, 15, 20 (with respect to the overall number of LFs)
Number of iterations t 1, 2, 3
Non-labeled data rate λ 0, 0.5, 1, 2, 3

Table 3: Hyperparameter values tried in grid search.

YouTube Spouse TREC SMS

Multiplying coefficient p 0.5 0.2 0.3 0.1
Learning rate lr 1e-2 1e-2 1e-1 1e-1
Number of folds k 8 3 3 10
Number of iterations t 5 1 1 2
Non-labeled data rate λ 0 3 1 0.5

Table 4: ULFsng selected hyperparameters.

YouTube Spouse TREC SMS

Multiplying coefficient p 0.5 0.2 0.3 0.2
Learning rate lr 1e-2 1e-2 1e-1 1e-2
Number of folds k 8 5 5 5
Number of iterations 10 1 1 1
Non-labeled data rate λ 0 3 1 0.5

Table 5: ULFrndm selected hyperparameters.
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