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Abstract

The Stochastic Streamflow Models (SSMS) are time series models for precise prediction of1

hydrological data useful in hydrologic risk management. Nowadays, deep learning networks2

get many considerations in time series forecasting. However, despite their theoretical3

benefits, they fail due to their drawbacks, such as complex architectures, slow convergence4

and the vanishing gradient problem. In order to alleviate these drawbacks, we propose a5

new stochastic model applied in problems that involve stochastic behavior and periodic6

characteristics. The new model has two components, the first one, a type of recurrent7

neural network embedding the echo-state (ESN) learning mechanism instead of conventional8

backpropagation. The last component adds the uncertainty associated with stationary9

processes. This model is called Stochastic Streamflow Model ESN (SSMESN). It was10

calibrated with time series of monthly discharge data from MOPEX data set. Preliminar11

results show that the SSMESN can achieve a significant prediction performance, learning12

speed. This model, can be considered a first attempt that applies the echo state network13

methodology to stochastic process.14

1 Motivation15

In probability theory, an stochastic process is defined as a set of models that allow the study of problems16

with random components. Natural phenomena such as precipitation and streamflow discharge have nonlinear,17

complex and chaotic characteristics. In order to model the behavior of these phenomena, initially linear18

approximation was used [2, 11]. Afterwards, were developed methods using self-correcting models such19

as the PAR(p) model [12, 4]. However, these models are statistical, linear and they cannot capture real20

chaotic characteristics of hydrometeorological time series, being they sometimes inadequate [13]. Currently,21

Deep learning (DL) approaches [17], attempt to model this complex non-linear behavior. In fact, DL have22

been widely used in the recent literature from simplest feedforward Neural Network (ANN) to the most23

complex Recurrent architecture LSTM. Studies on forecasting performance, show that Recurrent Neural24

Networks(RNN) [6] are better than their peers ANN, in virtually all tests [3]. However, literature on stochastic25

models shows preference to use feedforward ANN than RNN, because the last one generates greater complexity26

in the training process, slow convergence rate, as well as vanishing gradient problems [15]. All it is added to27

the complexity that uncertainty analysis and stochastic simulation requires [4]. This motivated the development28

of a stochastic process model using RNN and the echo-state (ESN) learning mechanism instead of conventional29

backpropagation, the interesting property of ESN is that only the readout layer is trained, whereas the recurrent30

topology has fixed connection weights [10]. ESN is a training approach attractive as simple and fast compared31

to other approaches used in RNN, all in order to reduce complexity, and leverage its proven ability to represents32

the characteristics of time series.33

2 Proposal: Stochastic Streamflow model ESN (SSMESN)34

The figure 1 details our model, it generates scenarios Yv,t of hydrological synthetic data , in terms of monthly35

intervals, and can be resume by36
Yv,t = f (Rv,t + Ev,t) (1)
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Figure 1: Generation of synthetic scenarios, the new SSMESN model.

Horizon

12 months 24 months

M
O

PE
X

basin

PPPPPModel
Metric RMSE MSE MAD NRMSE MPE NSE RMSE MSE MAD NRMSE MPE NSE

01541500

TF 0.68528 0.471 0.59818 0.74254 123.67 0.39673 0.643840.415010.53775 0.73835 98.6120.43049
SSMESN 0.61774 0.3818 0.5057 0.66936 98.937 0.51098 0.559250.312820.44525 0.64134 76.1760.57072

NSP 0.68959 0.47714 0.5934 0.74721 120.21 0.38887 0.699450.489960.58354 0.80212 106.030.32763
LSTM 0.68863 0.475590.59665 0.74617 120.97 0.39085 0.642360.41309 0.5323 0.73665 96.0570.43312

12413000

TF 1.4658 2.1549 1.0567 1.4564 156.42 -1.3207 1.3793 1.9048 0.99965 0.72012 160.2 0.45817
SSMESN 1.26 1.5903 0.93179 1.2519 154.03-0.71271 1.306 1.7064 0.89157 0.68185 131.670.51463

NSP 1.3454 1.8235 0.98366 1.3368 150.53 -0.9639 1.365 1.8667 0.98498 0.71267 157.320.46902
LSTM 1.2965 1.6952 0.94809 1.2881 142.2 -0.82572 1.3736 1.8903 0.99941 0.71717 162 0.4623

03054500

TF 1.1956 1.4316 1.045 0.69638 475.29 0.47014 1.1604 1.3471 0.94575 0.68206 312.910.51439
SSMESN 1.0688 1.1425 0.90358 0.62255 363.55 0.57716 1.1167 1.2471 0.87742 0.65638 225.150.55042

NSP 1.1793 1.3926 1.0242 0.68688 447.6 0.48458 1.1744 1.3796 0.95197 0.69026 316.540.50268
LSTM 1.2063 1.457 1.0463 0.70264 457.65 0.46073 1.1611 1.3484 0.93855 0.68244 299.540.51391

01541000

TF 0.78917 0.6235 0.71423 0.77839 138.14 0.33828 0.7325 0.537150.62133 0.80215 97.8990.32783
SSMESN 0.68499 0.469330.59049 0.67563 107.960.50191 0.6488 0.421020.52178 0.7105 76.5720.47315

NSP 0.77286 0.598140.69586 0.76229 130.29 0.36519 0.73998 0.5481 0.62001 0.81034 96.0870.31413
LSTM 0.78557 0.617970.70885 0.77484 133.77 0.34415 0.732090.53651 0.6172 0.80171 95.8670.32863

Table 1: Summary of results ( RMSE, MSE, MAD, NRMSE, MPE and NSE) of all methods in four series datasets (discharge) MOPEX [7], 1) each column
has the results of a specific stochastic model NSP[4][1], TF[16], LSTM [9] and our SSMESN, in a particular metric; 2) each row compares the results of
all the methods in a particular data set with a specific horizon value(Monthly Forecasts); 3) Bold rows indicate the best result of each column in a particular
metric.

where Ev,t is the value produced by the RNN with the echo-state (ESN) learning mechanism, (see equation37

2), where W out, is the weight matrix between the internal states x(t+ 1) added to the input signals yt and38

the output neurons, δ(.) the activation function. Rv,t is the stochastic value (see equation 3), where σt+1,39

is the standard deviation in month t + 1, the correlation coefficient between months t + 1 and t is rt and40

ε = N(0, 1), a normally distributed random noise with zero mean and standard deviation one.41

Et+1 = δ
(
W

out
(x(t+ 1) + yt) + θt

)
(2)

42

Rt+1 = ε× σt+1 ×
√

(1 − r2t ) (3)

The above equations are concatenated, (2, 3), to obtain the extended equation of our model:43

Yt+1 = f
(
δ
(
W

out ×
(
ϑ
[
W

in
yt + θt +Wx(t− 1)

]
+ yt

)
+ θt

)
+ Rt

)
(4)

3 Preliminary Results44

Experiments were made using the well-known MOPEX data set [7]. Table 1 shows SSMESN as a promising45

stochastig model, it outperforms the feedforward models (NSP[4][1], LSTM [9]) and the shallow statistical46

model (TF[16]) in forecasting performance, learning speed and short-term memory capacity [15]. The main47

model component "RNN-Echo State Network (ESN)" has a highly inter-linked recurrent topology and random48

initialize. ESN has two interesting properties; the first is that only the last layer is trained, the second is thanks49

to its internal memory which is the result of recurrent connections it is not necessary to embed previous input50

signals (sliding windows). Apparently it may seem surprising that a recurrent neural network with random51

connections may be effective, but randomized parameters have been successful in several domains [8, 14, 5].52
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