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Abstract

Although contrastive learning has greatly im-
proved sentence representation, its perfor-
mance is still limited by the size of mono-
lingual sentence-pair datasets. Meanwhile,
there exist large-scale parallel translation pairs
(100x larger than monolingual pairs) that are
highly correlated in semantic, but have not
been utilized for learning sentence represen-
tation. Furthermore, given parallel translation
pairs, previous contrastive learning frameworks
can not well balance the monolingual embed-
dings’ alignment and uniformity which repre-
sent the quality of embeddings. In this paper,
we build on the top of dual encoder and propose
to freeze the source language encoder, utiliz-
ing its consistent embeddings to supervise the
target language encoder via contrastive learn-
ing, where source-target translation pairs are
regarded as positives. We provide the first ex-
ploration of utilizing parallel translation sen-
tence pairs to learn monolingual sentence em-
beddings and show superior performance to bal-
ance the alignment and uniformity. We achieve
a new state-of-the-art performance on the av-
erage score of standard semantic textual simi-
larity (STS), outperforming both SimCSE and
Sentence-T35, and the best performance in cor-
responding tracks on transfer tasks.

1 Introduction

It has been a fundamental problem in natural
language processing to learn sentence embed-
dings that provide compact semantic representa-
tions (Reimers and Gurevych, 2019; Gao et al.,
2021; Ni et al., 2021). Recently, contrastive learn-
ing (CL) which aims to learn effective represen-
tation by pulling semantically close neighbors to-
gether and separating non-neighbors, has widely at-
tracted attention for building representations. Ben-
efited from a powerful contrastive learning frame-
work, scaling up the size of dataset greatly im-
proves robustness and generalization of representa-
tions, as suggested by some previous works (Chen
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Figure 1: Training pipeline. We first obtain a target
(Chinese) encoder given a pre-trained SimCSE model
as the source encoder. Then, we take the pre-trained
Chinese encoder as the source encoder and freeze it to
supervise a target (English) encoder. Step (A) and step
(B) both follow our proposed framework.

(B)

et al., 2020; Radford et al., 2021; Jia et al., 2021;
Wang et al., 2021).

Gao et al. 2021 demonstrates that a contrastive
objective can be extremely effective when coupled
with pre-trained language models and sentence-pair
datasets. However, the generality and capability
of the language model are strictly limited by the
size of existing sentence-pair datasets (Bowman
et al., 2015; Williams et al., 2017). Meanwhile,
there have accumulated large-scale parallel trans-
lation datasets (100x larger than existing monolin-
gual sentence-pair datasets) in multilingual learn-
ing community (Yang et al., 2019a; Feng et al.,
2020; Pan et al., 2021), which have not been uti-
lized for learning sentence representations. Fur-
thermore, given parallel translation pairs, previous
contrastive learning frameworks (Radford et al.,
2021; Gao et al., 2021) cannot well balance' the
alignment and uniformity (Wang and Isola, 2020)
of monolingual sentence embeddings, where align-
ment calculates the expected distance between posi-
tive embeddings and uniformity measures how well
the embeddings are uniformly distributed.

Suggested by Frozen (Tsimpoukelli et al., 2021)

!The alignment retains steady while uniformity improves.



in multimodal learning, freezing the language
model and only updating the vision encoder en-
ables strong generalization. In this paper, we build
on the top of dual encoder (Radford et al., 2021;
Yang et al., 2019b), and adopt a similar strategy
as Frozen, where we freeze the source language
encoder and only train the target language encoder
for better monolingual sentence embeddings. The
source language encoder constructs a large mem-
ory queue that stores negative embeddings, and
provides consistent embeddings to supervise the
target language encoder via contrastive learning,
where source-target translation pairs are regarded
as positives. Specifically, we utilize available
large-scale Chinese-English translation datasets as
source-target pairs to learn sentence embeddings
in English scenarios. To obtain the source lan-
guage (Chinese) encoder, instead of adopting a
pre-trained model, we conduct the same protocol
where a frozen pre-trained English encoder? is uti-
lized to supervise our source language (Chinese)
encoder, and fine-tune it on Chinese NLI dataset
for better performance. We initialize the target
language (English) encoder with a pre-trained lan-
guage model, such as BERT (Devlin et al., 2018)
or RoBERTa (Liu et al., 2019). The illustration of
training pipeline can be found in Figure 1

We conduct a comprehensive evaluation protocol
following SimCSE (Gao et al., 2021) on seven stan-
dard semantic textual similarity (STS) tasks (Agirre
etal., 2012, 2013; Marelli et al., 2014; Agirre et al.,
2014, 2015, 2016; Cer et al., 2017) and seven trans-
fer tasks (Conneau and Kiela, 2018). We achieve a
new state-of-the-art on STS tasks, outperforming
SimCSE (Gao et al., 2021) and Sentence-T5 (Ni
et al., 2021) by a large margin, and also achieve
the best performance in corresponding tracks on
transfer tasks evaluated by SentEval (Conneau and
Kiela, 2018). On the average score of STS tasks,
our pre-trained BERT},s. with or without fine-
tuning surpasses SImCSE-BERT}, s by 4.39% and
3.25% respectively, and RoBERTa,,;.4. achieves
85.58 on average. Surprisingly, BERT},s. with
fine-tuning achieves better results than Sentence-
T5 (11B) with only 1% parameters in comparison.

We summarize our contributions as below:

1. We provide the first exploration of utilizing
existing large-scale parallel translation pairs for
learning sentence representation.

2We adopt the pre-trained SimRoBERTa,4,4. model from
https://github.com/princeton-nlp/SimCSE.

2. We introduce a new cross-lingual contrastive
learning framework to learn sentence embeddings
that well balances alignment and uniformity.

3. Our approach achieves a new state-of-the-art
on standard semantic textual similarity (STS), and
the best performance in corresponding tracks on
transfer tasks evaluated by SentEval®.

2 Related Work

2.1 Sentence Representation

Sentence representation is a well-studied area
with many proposed methods (Mikolov et al.,
2013; Pennington et al., 2014; Le and Mikolov,
2014). With the progress of pre-training, ob-
jectives like BERT (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019) are utilized to gen-
erate sentence embeddings. To derive semanti-
cally meaningful sentence embeddings that can
be compared using cosine-similarity from BERT,
Sentence-BERT (Reimers and Gurevych, 2019)
uses siamese and triplet network structures. Sim-
CSE (Gao et al., 2021) introduces a simple con-
trastive learning framework, which greatly im-
proves state-of-the-art sentence embeddings on se-
mantic textual similarity tasks both on unsuper-
vised and supervised tracks. Sentence-T5 (Ni et al.,
2021) investigates producing sentence embeddings
from the pre-trained T5 (Raffel et al., 2019), then
fine-tunes the model on natural language inference
dataset and achieves the leading results in sentence
embeddings benchmark datasets. These works are
conducted on monolingual sentence-pair datasets,
while not exploring existing large-scale paralllel
translation datasets. In this work, we provide an ex-
ploration of utilizing available parallel translation
pairs for learning sentence embeddings.

2.2 Multilingual Learning

Multilingual learning has attracted increasing in-
terests from the community. Parallel translation
datasets have been widely leveraged for Neural Ma-
chine Translation (NMT) (Bahdanau et al., 2014,
Wu et al., 2016), Semantic Retrieval (SR) (Wag-
ner et al., 2001), Bitext Retrieval (Yang et al.,
2019b,a) (BR) and Retrieval Question Answering
(ReQA) (Kolomiyets and Moens, 2011), etc. Mul-
tilingual Sentence Encoder (Yang et al., 2019b)
conducts a multitask trained dual encoder to bridge
16 different languages, and achieves competitive
results on SR, BR, ReQA tasks. LaBSE (Feng

3https://github.com/facebookresearch/SentEval
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Figure 2: Comparison of preliminaries and our approach for utilizing parallel translation pairs. (A), (B) and
(C) represent a multilingual encoder, dual encoder and our modified dual encoder, respectively.

et al., 2020) adopts a dual encoder with additive
margin softmax combined with masked language
model (MLM) (Devlin et al., 2018) and transla-
tion language model (TLM) (Lample and Conneau,
2019) to improve multilingual sentence embed-
dings. mRASP2 (Pan et al., 2021) hypotheses that
inner multilingual representations leads to better
multilingual translation performance. They regard
a corresponding pair as a positive sample, and other
in-batch samples including a variety of languages
as negative samples, to establish a contrastive learn-
ing process. In this way, multiple languages repre-
sentations are smoothly embedded into the same
semantic space. Unlike previous works that focus
on embedding text from multiple languages into the
same semantic space, we propose utilizing corre-
sponding parallel translation pairs as semantically
close neighbors, pulling their embeddings together
while pushing apart non-neighbors.

3 Proposed Approach

We start by briefly describing background and pre-
liminaries in 3.1. Then, we introduce the design of
our proposed contrastive framework for learning
from parallel translation pairs in 3.2. Lastly, we
provide analysis for our approach in 3.3.

3.1 Background

Scaling up the size of training dataset (Radford
et al., 2021; Jia et al., 2021) has proved to be ef-
fective to improve robustness and generalization of
representations in contrastive learning framework.
However, previous works (Reimers and Gurevych,
2019; Gao et al., 2021) only utilize limited size* of
monolingual sentence pairs to learn sentence em-
beddings, such as MNLI datasets (Williams et al.,
2017) and SNLI (Bowman et al., 2015). In con-

*SNLI+MNLI only include 314K examples.

trast, there have existed large-scale well-annotated
parallel translation pairs (100x larger than mono-
lingual paired datasets) in the community of mul-
tilingual learning. Instead of training on limited
monolingual sentence pairs, utilizing existing paral-
lel translation datasets shows better flexibility and
a potential to further improve the performance of
sentence embeddings, where a parallel translation
pair that is highly correlated in semantic can be
treated as a positive sample.

Preliminaries. To utilize paired inputs, single
multilingual encoder (Ma et al., 2020; Pan et al.,
2021) and dual encoder (He et al., 2020; Radford
et al., 2021; Ni et al., 2021) are the most commonly
adopted strategies for learning multilingual repre-
sentations. Multilingual encoder embeds sentences
from different languages into a single semantic
space using a unified encoder, based on the hy-
pothesis that multilingual learning leads to better
multilingual sentence representation. Its architec-
ture is illustrated in A, Figure 2. Dual encoder, also
known as two-tower, models the paired data with
two independent encoders, and projects the embed-
dings of paired inputs into the same semantic space
through joint training. Its architecture is illustrated
in B, Figure 2.

Alignment and uniformity. Wang and Isola
(2020) identifies two key properties related to con-
trastive learning that measure the quality of repre-
sentations. The alignment calculates the expected
distance between embeddings of the paired positive
instances, while the uniformity measures how well
the embeddings are uniformly distributed. Follow-
ing Gao et al. (2021), we also use these metrics to
demonstrate the inner workings of our approach.

3.2 Method

Although multilingual encoder and dual encoder
can use parallel translation pairs straightforwardly,
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Figure 3: Illustration of contrastive objectives. (s;, ;)
and (s;,t;) are two paired samples. In (SimCSE),
(84, t;) denotes monolingual pairs, while in (Prelimi-
naries) and (Ours), it denotes parallel translation pairs.

they both suffer from the imbalance between align-
ment and uniformity, as source language encoder
and target language encoder keep updating in the
training process. In other words, while they pull the
positive samples (source-target translation pairs)
closer and the negative samples (source-non tar-
get translation pairs) farther away through an ex-
plicit contrastive learning objective, the alignment
and uniformity of embeddings from monolingual
sentence pairs cannot be guaranteed. Specifically,
let (s;, t;) denote the representation of a parallel
translation pair generated by the source language
encoder and target language encoder, respectively.
We simplify the explicit contrastive objective as Eq
1.

Lerplicit = * Lp — Qg % Ln (1)

Where L, and L, represent the distance for pos-
itives and negatives of parallel translation pairs
as defined in Eq 2 and Eq 3, o denote the linear
weights, D is a distance function, and ¢ # j. The
explicit contrastive objective is to minimize the dis-
tance between positives and maximize the distance
between negatives.

Lp = D(Si,tz‘) + D(Sj,tj) (2)

Ly, = D(si,tj) + D(sj,t;) (3)

Given parallel translation pairs, we also define
the implicit or actual objective that has not been
considered into contrastive learning framework in
Eq 4, which measures the alignment and unifor-
mity of monolingual sentence embeddings. Al-
though L;p,piicit 18 not considered in the explicit

contrastive objective, we expect to retain good
alignment and uniformity of monolingual sentence
embeddings from the target encoder, as the actual
objective is to learn monolingual sentence embed-
dings from parallel translation pairs.

Limplicit = B1 % L, — o % Ly, )

Where L;) and L;l represent the distance for posi-

tives and negatives of monolingual pairs as defined

in Eq 5 and Eq 6. s;“ and t;-F represent the mono-

lingual positive samples for s; and t;, respectively.
5 denote linear weights.

L, = D(s;,s7) + D(t;, ) (5)

7

L, = D(si, sj) + D(ti, t;) (6)

In preliminaries, as shown in (A) and (B), Figure
2, the source language encoder keeps updating in
training and can not provide consistent supervision
for the target language encoder. The implicit objec-
tive for preliminaries is Eq 4, where the alignment
and uniformity of source embeddings and target
embeddings are both required to be implicitly opti-
mized. However, given two independent implicit
objectives, it becomes hard to find a local optimum
through Eq 1 without any constraints.

To effectively improve the uniformity and retain
the alignment simultaneously, and optimize the
implicit objective (4) through an explicit objective
(1), we propose to soften the implicit objective for
better optimization with our modified architecture,
built on the top of regular dual encoder. To be
clear, we freeze the side of the source language
encoder, so that the alignment and uniformity of
source embeddings are frozen in the training. In
this case, the implicit objective degrades to Eq 7.

Limplicit = B1 * D(t;, t7) — B2 * D(t;, ;) (7)

As the optimization space shrinks and the im-
plicit objective relaxed, finding the local optimal
solution becomes easier and more efficient. We
show the differences between our approach (C) and
preliminaries (A, B) in Figure 2.

3.3 Analysis

We first analyze the connection between our ap-
proach and SimCSE (Gao et al., 2021) and claim
that the modified dual architecture with parallel
translation pairs as input shares the same implicit
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Figure 4: L0s5415gn-L08Syn; form Plot. We visualize checkpoints every 100 training steps, and the arrows indicate
the training direction. (A) shows the results of target encoder given monolingual sentence pairs as input, (B) shows
the uniformity and alignment loss of multilingual embeddings given parallel translation pairs as input. Training
details refer to 4.4.2. For both LosS41ign and L0SSyn;form, lower values are better.

contrastive objective as SImCSE with monolingual
pairs as input. Then, we provide the visualization
results of alignment and uniformity that show su-
perior performance compared to preliminaries.

Connection to SimCSE. As shown in Figure 3,
the explicit objective of SImCSE is defined in Eq 1.
However, as SimCSE adopts a single monolingual
encoder, the source and target language encoder
refers to the same model. Given monolingual sen-
tence pairs, t; = s;r is valid, and the implicit ob-
jective defined in Eq 4 is identical to its explicit
objective. The alignment and uniformity of target
language embeddings are optimized in the training.
In our approach, as the source encoder is frozen,
we soften the implicit objective to the alignment
and uniformity of monolingual target embeddings
as SimCSE. The only difference is that we optimize
the target encoder implicitly with parallel transla-
tion pairs, while SimCSE optimizes explicitly with
monolingual sentence pairs.

Visualization of alignment and uniformity. To
validate the effectiveness of our approach, we take
the checkpoint of our model and preliminaries ev-
ery 100 steps during training and visualize their
alignment and uniformity (Wang and Isola, 2020)
on a monolingual sentence-pair dataset and paral-
lel translation dataset in Figure 4, training details
can be found in 4.4.2 and the data used for visu-
alization is in Appendix A. In A, Figure 4, we
show the promising results of implicit objective
(the alignment and uniformity of target encoder),
given monolingual sentence pairs as input, where
we greatly improve uniformity and retain a steady
alignment, while others dramatically degrade align-

ment. In B, Figure 4, We also compare the conver-
gence of explicit objective between three models.
Starting from pre-trained checkpoints, all models
greatly improve uniformity given parallel transla-
tion pairs as input. In contrast, we achieve a better
training direction in alignment than other methods,
which exhibits a more consistent convergence in
cross-lingual training.

4 Experiments

We first describe the datasets in 4.1, and illustrate
the training details in 4.2. Then in 4.3, we con-
duct comprehensive experiments to evaluate the
effectiveness of our method. Lastly, we do ablation
studies for further analyzing in 4.4.

4.1 Training Datasets

We adopt WMT and source-mixed datasets that
have parallel translation pairs for cross-lingual con-
trastive learning, while the Chinese NLI dataset
that has monolingual Chinese sentence pairs is only
utilized for fine-tuning.

WMT Dataset’ is a common-used machine
translation dataset composed of various sources.
We perform an elaborate cleaning process follow-
ing (Meng et al., 2020) to filter out low-quality
pairs. We get 19,442,200 Chinese-English transla-
tion parallel pairs after cleaning.

Source-mixed Dataset collects from more open-
sourced translation datasets built on the top of
WMT dataset, including AIC (Wu et al., 2017),
translation2019zh (Xu, 2019), UN Corpus (Ziem-
ski et al., 2016), etc. Finally, we establish a

Shttp://www.statmt.org/wmt20/



larger-scale dataset including 56,741,808 Chinese-
English translation pairs. This dataset is used to
show that further scaling up the size of the training
set helps improve overall performance.

Chinese NLI Dataset® is a Chinese Nature Lan-
guage Inference dataset which is similar to NLI
dataset (Bowman et al., 2015; Williams et al.,
2017). We adopt the same method in SimCSE (Gao
et al., 2021) to handle the Chinese NLI dataset:
given one premise (sentence), we regard the ab-
solutely true (entailment) sentence as the positive,
and the definitely false (contradiction) sentence as
the hard negative. We establish a dataset containing
315,298 triplets, and each triplet has 3 sentences:
premise, positive, hard negative sentences.

4.2 Training Details

We elaborate the training details of our pipeline
that is shown in Figure 1. We maintain a consistent
memory queue (He et al., 2020) of negative embed-
dings, where the current mini-batch of the source
language encoder’s embeddings are enqueued and
the oldest are dequeued. The pooling method used
in the training is [CLS] with an MLP layer fol-
lowing SimCSE. All experiments are conducted
on 8 V100 GPUs. The batch size in experiments
represents the batch size on each GPU.

4.2.1 Training a Chinese Encoder

As shown in (A), Figure 1, the first step is to train
a target language (Chinese) encoder. Specifically,
we adopt the pre-trained SimCSE-RoBERTa,,4¢
model as the source language (English) encoder,
and initialize a Chinese ROBERTa,.¢¢ model” with
pre-trained weights as the target language (Chinese)
encoder. We adopt a series of hyperparameters
from 4.2.2: learning rate is 5Se-5, batch size is 200,
queue size is 200,000, dropout is 0.1, and the input
sentence length is 50. In addition, a cosine learn-
ing rate scheduler is applied for maintaining the
consistency of training. We freeze the source lan-
guage (English) encoder and only update the target
language (Chinese) model. We evaluate every 250
training steps on the development set of Chinese
STS-B and save the best checkpoint. The target
language (Chinese) model is trained for 2 epochs
on WMT or source-mixed dataset. To further boost
the performance of the target language (Chinese)

Shttps://github.com/pluto-junzeng/CNSD
"https://huggingface.co/hfl/chinese-RoBERTa-wwm-ext-
large

model, we fine-tune it on Chinese NLI dataset, with
the same settings as described in section 4.2.3.

4.2.2 Training an English Encoder

As shown in B, Figure 1, we train a target lan-
guage (English) encoder that generates sentence
embeddings. Specifically, we reuse the pre-trained
Chinese encoder from 4.2.1 as the source language
(Chinese) encoder and freeze its parameters. We
evaluate every 250 training steps on the develop-
ment set of STS-B and save the best checkpoint.

Effect of Temperature. Temperature is a cru-
cial factor which impacts training convergence and
the overall performance in contrastive learning. We
evaluate several temperatures recommended by pre-
vious works (Gao et al., 2021; Ni et al., 2021; Rad-
ford et al., 2021), including 0.05, 0.01, parameter
1 (a learnable parameter in training). As shown in
Table 1, a parameter 1 works best.

0.01
81.59

0.05
86.93

Parameter 1
87.73

Temperature
BERT ¢

Table 1: Effect of the temperature.

For BERT},s. (or RoOBERTay,,.), the learning
rate is we-4, batch size is 400, queue size is 10000,
temperature is parameter 1 and the dropout is de-
faulted set as 0.1. We leverage the cosine learning
rate scheduler to adjust the learning rate dynami-
cally. In the term of ROBERTa,,.4¢ (0r BERT 4;4c),
we set the learning rate to Se-5, batch size to 200,
queue size to 200,000, all other hyperparameters
keep the same as BERT, ... Refer to appendix B
for grid search of hyperparameters.

4.2.3 Fine-tune on NLI Dataset

We investigate the effect of scaling up training
dataset by fine-tuning on NLI dataset. The NLI
dataset contains 275,602 samples, and each sample
consists of a query sentence, a positive sentence,
and a hard negative sentence. Following the simi-
lar training setting as SimCSE, we set the learning
rate to le-5, batch size to 128, dropout to 0.1, tem-
perature to 0.05, and input length to 50 for small
models (BERT},s. and RoBERT},,.). While for
large models (BERT;.4c and ROBERTa;4;.4c), we
set batch size to 96.

4.3 Evaluation Results

Following Gao et al., we evaluate our models on
seven transfer and seven STS tasks by SentEval



Model Fine-tune data | STS12 STS13 STSI4 STS15 STS16 STSb SICK-R  Avg
SBERTqse NLI 7097 7653 7319  79.09 7430 77.03 7291 74.89
SBERT}q..-flow NLI 6978 7727 7435 8201 7746 79.12 7621 76.60
SBERT ;.- whitening NLI 69.65 7757 7466 8227 7839 79.52 7691  77.00
CT-SBERT}q.c NLI 74.84 8320 78.07 8384 7793 8146 7642 79.39
SimCSE-BERTq.c NLI 7530  84.67 80.19 8540  80.82 84.25 8039  81.57
Ours-BERT 4. (WMT) - 8073  85.82 8320 88.57 8250 86.60 80.64  84.01
Ours-BERT}.. (SMD) . 7921  87.84 8324  88.64 8242 86.87 8131 84.22
Ours-BERT 4. (WMT) NLI 80.85 8730 8342 8781 8374 87.42 81.52  84.58
Ours-BERT}.(SMD) NLI 8026 8870  84.05 88.62 8457 87.95 81.87 85.15
SBERT a1 ¢ NLI 7227 7846 7490 8090 7625 79.23 7375 76.55
SimCSE-BERT 4 ge NLI 7578 8633 8044 8660  80.86 84.87 81.14 8221
Ours-BERT 4.9 (WMT) - 8071  86.10 83.18  89.13 8325 86.75 8143  84.36
Ours-BERT 4.4 (SMD) - 79.18 8775  82.85 8853  82.60 86.85 81.51 84.18
Ours-BERT 4. e (WMT) NLI 81.88 8878  84.04 8842 8494 88.08 8138 85.36
Ours-BERT 4.4 (SMD) NLI 80.86  89.47 8435 8897 8504 88.58 81.63 85.56
SROBERTay, sc-whitening NLI 7046  77.07 7446  81.64 7643 79.49 76.65  76.60
SimCSE-RoBERTapqsc NLI 76.53 8521 8095 8603 8257 85.83 80.50 82.52
Ours-RoBERTayq,.(WMT) - 80.59 8536  82.16 87.84 8230 8596 80.90 83.59
Ours-RoBERTapq 5 (SMD) - 78.60 8733 8322  88.64  83.04 86.59 81.15 84.08
Ours-BROBERTapqse (WMT) NLI 8025 8697 8292 8797 8378 87.10 81.06 84.29
Ours-RoBERTapq 5 (SMD) NLI 80.02 8790 83.64 8859 8526 87.59 81.32  84.90
SROBERTa.c NLI 7453 7700 73.18 8185 7682 79.10 7429  76.68
SimCSE-RoBERTa14r g NLI 7746 8727 8236  86.66 8393 86.70 81.95 83.76
Ours-RoBERTa14,.4o(WMT) . 7926  87.80 8376 8851 8376 86.94 81.86  84.56
Ours-RoBERTa141 4 (SMD) . 80.86  88.19 8434 8920 8390 87.47 8126 85.03
Ours-RoBERTa14,.4o (WMT) NLI 81.24  88.69 84.58 8859 8555 88.05 82.00 85.53
Ours-RoBER T4, 4 (SMD) NLI 80.07 8945 84.64 8885 8514 88.60 82.28 85.58
ST5-Enc mean (11B) NLI 7742 8750 8251 8747  84.88 8561 80.77 83.74
ST5-EncDec first (11B) NLI 80.11 8878 8433 8836 8555 86.82 80.60 84.94
Ours-BERT}.(SMD) NLI 8026 8870  84.05  88.62 8457 87.95 81.87 85.15
Ours-BERT 44 (SMD) NLI 80.86 89.47 8435 8897 8504 88.58 81.63  85.56
Ours-RoBERTa14 g (SMD) NLI 80.07 89.45 84.64 8885 8514 88.60 82.28 85.58

Table 2: Comparison with previous state-of-the-art works in STS tasks. All results are from Gao et al., 2021;
Ni et al., 2021; Reimers and Gurevych, 2019; WMT and SMD represent the model is trained on WMT dataset and
source-mixed dataset, respectively. The pooling methods used for comparison can be found in Appendix C, and the
Ours-RoBERTa;,,.4.(WMT)’s pooling method is [CLS] with MLP.

tools. As the main goal of learning sentence embed-
dings is to cluster semantically similar sentences,
we also take STS result as the main metric.

Semantic textual similarity tasks. We evalu-
ate our approach under zero-shot and fine-tuned
settings, respectively. To fairly compare with
previous works (Gao et al., 2021; Ni et al.,
2021), we adopt seven STS tasks including STS
2012-2016 (Agirre et al., 2012, 2013, 2014, 2015,
2016), STS Benchmark (Cer et al., 2017) and
SICK-Relatedness (Marelli et al., 2014). STS tasks
are widely used in measuring the discriminative
power of sentence embeddings. In STS, sentence
embeddings are evaluated by how well their cosine
similarities correlate with human-annotated similar-
ity scores. Suggested by Reimers et al., 2016; Gao
et al., 2021, we also report Spearman’s correlation
coefficients to evaluate the performance.

We start from pre-trained checkpoints of BERT
or RoBERTa as the backbone. We divide the
comparison into 3 tracks for a comprehensive
comparison: BERT track, RoOBERTa track, and
state-of-the-art track. Specifically, BERT track in-
cludes Sentence-BERT (Reimers and Gurevych,
2019), CT-BERT (Carlsson et al., 2020), and Sim-
BERT. RoBERTa track includes SimRoBERTa and
Sentence-RoBERTa. In the term of the state-of-the-
art track, we compare with Sentence-T5 (Ni et al.,
2021) 11B model, which contains 11 billion pa-
rameters. Table 2 reports the evaluation results on
seven STS tasks. Our approach can substantially
improve results on all the datasets with or with-
out extra NLI supervision, greatly outperforming
the previous state-of-the-art models. Specifically,
our approach outperforms the averaged Spearman’s
correlation of SimCSE by 1.27-2.65 under a zero-



shot setting in all tracks. When using NLI datasets,
Ours-BERT, . further pushes the state-of-the-art
results from 84.94 to 85.15. The gains are more pro-
nounced on RoBERTa encoders, and our method
achieves 85.58 with ROBERT4;4e.

Transfer Tasks. We evaluate on the follow-
ing transfer tasks: MR (Pang and Lee, 2005),
CR (Hu and Liu, 2004), SUBJ (Pang and Lee,
2004), MPQA (Wiebe et al., 2005), SST-2 (Socher
et al., 2013), TREC (Voorhees and Tice, 2000) and
MRPC (Dolan and Brockett, 2005). We employ
the default configurations from SentEval. Results
on transfer tasks are shown in Appendix Table 7.

Benefited from the large scale of parallel trans-
lation datasets that boosts the power of contrastive
learning, our method learns more generalized sen-
tence representations than previous approaches,
and improves performance on transfer tasks.

4.4 Ablation Studies

We investigate the impact of source language en-
coder and contrastive objectives. We use BERT} ¢
(WMT) without fine-tuning as our benchmark.

4.4.1 The effect of source language encoder

To analyze the role of source language encoder,
we train a SimCSE-RoBERTa,,.,. model on the
Chinese NLI dataset directly and use it as the
source language (Chinese) encoder. For compar-
ison, we train two RoOBERTa;,;.¢c models on the
WMT dataset following the steps in 4.2.1 with and
without fine-tuning. Then, we train three target lan-
guage (English) encoders as 4.2.2 given different
source language models and evaluate them on the
SST-B development set. We report the results in
table 3. We also directly evaluate the source lan-
guage (Chinese) encoder on the Chinese STS-B
test dataset. The results are in Table 4. All results
reveal the superior performance of our approach.

Source Encoder || SImCSEcpy | Ours | Ours+F

STS-B 86.58 86.91 | 88.06

Table 3: Performance of target language encoders
given different source language encoders on STS-B
development dataset. SInCSE¢y represents the Chi-
nese SimCSE-RoBERTa;4,g.. Ours+F and Ours are
RoBERTa,,4. that trained by our strategy with and
without fine-tuning, respectively.

4.4.2 The effect of contrastive objectives

In 3.1, we describe preliminaries in contrastive
learning for handling paired data. Figure 2 shows

Model
STS-Beon

Ours+F
83.37

Ours
81.13

SimCSE¢
81.13

Table 4: Performance of source language encoders on
Chinese STS-B test dataset. SInCSE ¢y represents the
Chinese SimCSE-RoBERTa;.gc. Ours+F and Ours are
RoBERTa,4. that trained by our strategy with and
without fine-tuning, respectively.

the differences. To show the effectiveness of our
cross-lingual contrastive learning scheme, we train
models with multilingual encoder, dual encoder
and our modified dual architecture, respectively,
and evaluate their performance on STS-B devel-
opment set. For dual encoder, we adopt the pre-
trained source language (Chinese) encoder from
4.2.1 and a pre-trained ROBERTa, ¢, then train it
via contrastive learning. For multilingual encoder,
we adopt a RoBERTa;,,s.-xIm (Lample and Con-
neau, 2019) model that accepts multilingual input.
For our modified dual architecture, we use the same
source and target encoder as dual encoder, while
keeping the source encoder frozen. All models are
trained on WMT dataset.

Dual
73.13

Models Ours
STS-B 86.82

Table 5: The effect of contrastive objectives. Dual,
Multilingual and Ours represent dual encoder, multilin-
gual encoder and our modified dual encoder.

Multilingual
71.02

For a fair comparison, we unify the hyperpa-
rameters of different objectives: batch size is 128,
learning rate is 2e-4, queue size® is 0, temperature
is parameter 1. The only difference between dual
encoder and ours is whether the source language
encoder is frozen in the training. Table 5 shows the
effectiveness of our approach.

Conclusion

In this work, we provide the first exploration of
utilizing existing large-scale parallel translation
pairs for learning sentence representation, propose
a modified dual architecture that well balances
the alignment and uniformity of embeddings. We
demonstrated that our method achieves a new state-
of-the-art on standard semantic textual similarity
(STS), and the best performance on correspond-
ing tracks on transfer tasks, outperforming both
SimCSE and Sentence-TS5.

8We gather the samples from other GPUs, so the compara-
tive samples in contrastive learning are 128 x 8=1024.
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A Validation Set for Visualization

For monolingual sentence-pair dataset, we adopt
the STS-B development set and the same settings
as the SimCSE(Gao et al., 2021). For parallel trans-
lation dataset, UN Corpus development set is used
for our visualization. We take out the first 1000
data of the UN Corpus development set. Then, we
use the first 250 as positive samples, and replace
the Chinese sentence in the last 750 pairs with other
Chinese sentences (randomly selected in remaining
data in the UN Corpus development set) as negative
samples to build a visual validation set of parallel
translation data.

B Hyperparameters

We also provide comprehensive analysis of hy-
perparameters on cross-lingual contrastive learn-
ing, including the size of memory queue, learn-
ing rate and batch size. We perform grid-search
of batch size € {128,256,400,512}, learning
rate € {be — 5,1e — 4,2e — 4,5e — 4} and
queue size € {1024,4096,10000,50000} for
BERT}sc, and batch size € {64, 128,200}, learn-
ing rate € {le — 5,2¢ — 5,5¢ — 5,1e — 4} and
queue size € {10000, 50000, 200000, 300000} for
RoBERTa;4.4.. We evaluate on STS-B develop-
ment set. The results are shown in Table 6.

BERT RoBERTa
base large base large
Batch size 400 200 400 200
Learning rate 2e-4 Se-5 2e-4 5Se-5
Queue size I0T 200T 10T 200T

Table 6: Our setting of batch sizes, queue size and learn-
ing rates for different models. T represents a thousand.

C The Effect of Pooling

Suggested by Gao et al. (2021), pooling strate-
gies make differences in the performance. Li et al.
(2020) shows that taking the average embeddings
of the pre-trained model leads to better perfor-
mance than [CLS]. Here, we consider three dif-
ferent pooling settings: (1) Average Pooling, (2)
[CLS] with MLP, (3) [CLS] without MLP. Table 8
shows the comparison between different pooling
methods. We evaluate on STS-B development set.
As shown, we find that CLS without MLP method
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Model MR CR SUBJ MPQA SST TREC MRPC Avg
InferSent-GloVe 81.57 86.54 92.50 90.38 84.18 88.20 75.77 85.59
Sentence Encoder 80.09 85.19 9398 86.70 86.38 93.20 70.14  85.10
SBERTpqse 83.64 89.43 94.39 89.86 88.96 89.60 76.00 87.41
SimCSE-BERTy s 82.69 89.25 94.81 89.59 87.31 88.40 73.51 86.51
Ours-BERT 5. (SMD) 8578 91.26 94.90 9141 90.77 91.40 77.74 89.04
SROBERTap4 se 8491 90.83 92.56 88.75 90.50 88.60 78.14 87.76
SimCSE-RoBERTapse 84.92 92.00 94.11 89.82 91.27 88.80 75.65 88.08
SimCSE-RoBERTa;4ge 88.12 9237 95.11 90.49 92.75 91.80 76.64 89.61
Ours-RoBERTa, 5. (SMD) 87.02 9232 9521 90.92 92.75 92.40 7791 89.79
Ours-RoBERTa;4,4¢(SMD) | 88.02 9245 9545 91.23 92.70 94.80 76.17  90.12

Table 7: Performance on transfer tasks. Results are from Gao et al.; Ni et al.; Reimers and Gurevych. SMD
represents the model is pre-trained on source-mixed dataset. The models in comparison are both fine-tuned.

Models [CLS]w/M | AVG | [CLS] wo/M
BERT} e 85.19 87.28 88.08

Table 8: The effect of different pooling methods.
[CLS] w/M and [CLS] wo/M represent [CLS] with or
without an MLP layer, respectively.

works the best for our models. In addition, we
adopt the [CLS] with MLP as the fine-tuned models
pooling method, as suggested by SimCSE (because
we fine-tune our models by SimCSE method).
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