
Basil: A Fast and Byzantine-Resilient Approach for
Decentralized Training

Ahmed Roushdy Elkordy Saurav Prakash A. Salman Avestimehr ∗
ECE Department

University of Southern California (USC)

1 Introduction and Overview of Basil

Decentralized machine learning methods are becoming core aspects of many important applications
thanks to the large amounts of data generated on and held by the edge devices. We consider a
decentralized training setup that does not rely on a central coordinator (e.g. parameter server).
Instead, it only requires on-device computations on the edge nodes and peer-to-peer communications.
The general optimization problem in this setting over r distributed devices is given as follows:
x∗ = arg minx∈Rd

[
f(x) := 1

r

∑r
i=1 fi(x)

]
, where x is the optimization variable, and fi(x) is the

expected loss function of node i such that fi(x) = Eζi∼Pi
[li(x, ζi)]. Here, li(x, ζi) ∈ R denotes the

loss function for model parameter x ∈ Rd for a given realization (xi, yi) of ζi which is generated
from a distribution Pi.
Although decentralized training provides many benefits, its decentralized nature makes it vulnerable
to performance degradation due to system failures, malicious nodes and data heterogeneity [1].
Specifically, one of the key challenges for solving the decentralized training problem given above
is the different threats that can alter the learning process, such as the software/hardware errors and
adversarial attacks. Particularly, some of the clients can become faulty due to software bugs, hardware
components which may behave arbitrarily, or even get hacked during training, sending arbitrary or
malicious values to other clients, thus severely degrading the overall convergence performance. Such
faults, where client nodes arbitrarily deviate from the agreed-upon protocol, are called Byzantine
faults [2]. To mitigate Byzantine nodes in a graph-based decentralized setup where nodes are
randomly connected by each other, some Byzantine robust optimization algorithms have been
introduced recently, e.g., [3, 4]. In these algorithms, each node combines the set of models received
from its neighbours by using robust aggregation rules, to ensure that the training is not impacted
by the Byzantine nodes. However, to the best of our knowledge, none of these algorithms have
considered the scenario when the data distribution at the nodes is heterogeneous. Data heterogeneity
makes the detection of Byzantine nodes a daunting task, since it becomes unclear whether the model
drift can be attributed to a Byzantine node, or to the very heterogeneous nature of the data. Even in
the absence of Byzantine nodes, data heterogeneity can degrade the convergence rate [1].

1.1 Contributions

We summarize our main contributions below:

• We propose Basil2, a fast and computationally efficient Byzantine robust algorithm for decentral-
ized training. Unlike the prior Byzantine robust decentralized algorithms that are based on parallel
training over a random graph, Basil algorithm achieves Byzantine robustness in decentralized
training over a logical ring. Therefore, the training process in Basil is sequential, in which each
node becomes active and performs model training only when it receives the model from its coun-
terclockwise neighbour. Since nodes need not be active during the whole training time, Basil is
∗Email: {aelkordy,sauravpr,avestime}@usc.edu.
2Basil I the Macedonian was a prominent ruler of the Byzantine Empire who reigned from 867 to 886.

0 200 400
Round, k

0.2

0.4

0.6

Te
st

 A
cc

ur
ac

y
Mozi
Basil

(a) Gaussian Attack (IID setting)

0 100 200 300 400 500
Round, k

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

R-plain: =0%
R-plain: =5%

(b) No Attack (non-IID setting)

0 100 200 300 400 500
Round, k

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

IID: Mozi
Non-IID: Basil+ACDS (=5%)
Non-IID: Mozi

(c) Gaussian Attack

Figure 1: A highlight of the performance benefits of Basil, compared with state-of-the-art (Mozi) [3],
for CIFAR10 under different settings: In Figure (a), we can see the superior performance of Basil
over Mozi with ∼16% improvement of the test accuracy under Gaussian attack in the the IID setting.
Figure (b) demonstrates that the test accuracy in the non-IID setting by using sequential training
over the ring topology can be increased by up to ∼10% in the absence of Byzantine nodes, when
each node shares only 5% of its local data with other nodes. Figure (c) shows that ACDS on the top
of Basil not only provides Byzantine robustness to Gaussian attack in the non-IID setting, but also
gives higher performance than Mozi in the IID setting. Furthermore, Mozi for the non-IID setting
completely fails in the presence of this attack. Further details are given in Appendix H.

quite suitable for scenarios where nodes, being phones or IoT devices, have limited computational
resources, and thus remain dormant unless they are triggered to carry out their updates. In Basil,
the defense technique to filter out Byzantine nodes is a performance-based strategy, wherein each
node evaluates a received set of models from its counterclockwise neighbours by using its own
local dataset to select the best candidate.

• We provide the theoretical guarantees of Basil. In particular, we show that Basil for convex loss
functions in the IID data setting has a linear convergence rate with respect to the product of the
number of benign nodes and the total training rounds over the ring. In other words, our theoretical
result demonstrates a scalable performance for Basil with respect to the number of nodes.

• Using neural network with real-world CIFAR10 dataset, we demonstrate that Basil provides up
to ∼16% higher test accuracy when compared with Mozi, the state-of-the-art Byzantine-resilient
decentralized learning scheme over graph, under different Byzantine attacks in the IID setting. In
Figure 1(a), a sample result has been illustrated.

• For extending the superior benefits of Basil to the scenario when data distribution is non-IID
across devices, we propose Anonymous Cyclic Data Sharing (ACDS) to be applied on top of
Basil. To the best of our knowledge, no prior decentralized Byzantine robust algorithm has
considered the scenario when the data distribution at the nodes is non-IID. ACDS allows each node
to share a random fraction of its local non-sensitive dataset (e.g., landmarks images captured during
tours) with all other nodes, while guaranteeing anonymity of the node identity. There are multiple
real-world use cases where anonymous data sharing is sufficient to meet the privacy concerns of the
users 3. The proposed ACDS 4 scheme guarantees anonymous data sharing under the assumptions
that there is no collusion between nodes, while providing robustness to Byzantine failures resulting
from software/hardware errors or other non-malicious errors when it is integrated with Basil.

• We experimentally demonstrate that even when each node shares only 5% of its local data with all
other nodes, the test accuracy for the naive sequential training over ring in the non-IID setting can
be increased by up to ∼10% in the absence of Byzantine nodes (Figure. 1(b)). Furthermore, we
demonstrate that using ACDS on top of Basil provides resiliency to Byzantine behaviors unlike
Mozi in the non-IID setting (Figure. 1(c)).

3For example, mobile users maybe fine with sharing some of their own text data, which does not contain any
personal and sensitive information with others, as long as their personal identities remain anonymous. Another
example is sharing of some non-private data (such as landmark images) collected by a person with others. In
this scenario, although data itself is not generated at the users, revealing the identity of the users can potentially
leak private information such as personal interests, location, or travel history. Our proposed ACDS strategy is
suitable for such scenarios as it guarantees that the owner identity of each shared data point is kept hidden.

4Some other anonymous data sharing schemes (e.g., [5]) may fail in the presence of Byzantine faults as
discussed in Appendix A, unlike our proposed ACDS which is robust to these faults.

2

2 Problem Statement
2.1 Decentralized system model
In this section, we formally define the decentralized learning system in the presence of Byzantine
faults. In particular, we consider a decentralized learning setting in which a set N = {1, . . . , N} of
|N | = N nodes collaboratively train a machine learning (ML) model x ∈ Rd, where d is the model
size, based on all the training data samples ∪n∈NZn that are generated and stored at these distributed
nodes, where the size of each local dataset is |Zi| = Di data points. In this decentralized setup, we
assume that there is no central parameter server, and consider the setup where training process is
carried out in a sequential fashion over a clockwise directed ring. Each node in this ring topology
takes part in the training process when it receives the model from the previous counterclockwise node.
In Appendix, we propose a method in which nodes can consensually agree on a random ordering on a
logical ring at the beginning of the training process, so that each node knows the logical ring positions
of the other nodes. Therefore, without loss of generality, we assume for notation simplification that
the indices of nodes in the ring are arranged in ascending order starting from node 1. In this setup,
each node can send its model update to any set of users in the network.

In this decentralized setting, an unknown β-proportion of nodes can be Byzantine, where β ∈ (0, 1),
meaning they can send arbitrary and possibly malicious results to the other nodes. We denote R
(with cardinality |R| = r) and B (with cardinality |B| = b) as the sets of benign nodes and Byzantine
nodes, respectively. Furthermore, Byzantine nodes are uniformly distributed over the ring due to
consensus-based random order agreement. Finally, we assume nodes can authenticate the source of a
message, so no Byzantine node can forge its identity or create multiple fake ones [6].

2.2 Model training

The setR of benign nodes use their own datasets to train a shared model by solving the optimization
problem given in the introduction in the presence of Byzantine nodes. The general update rule in
this setting is given as follows. At the k-th round, the current active node i updates the global model
according to: x

(i)
k =x̄

(i)
k − η

(i)
k gi(x̄

(i)
k), (1)

where x̄
(i)
k =A(x

(j)
v , j ∈ N , v = 1, . . . , k) is the selected model by node i according to the aggrega-

tion rule A, g(x̄
(i)
k) is the stochastic gradient computed by node i by using a random sample from its

local dataset Zi, and η(i)k is the learning rate in round k used by node i.

Threat model: Byzantine node i ∈ B could send faulty or malicious update x(i)
k =∗, where ∗ denotes

that x(i)
k can be an arbitrary vector in Rd.

Figure 2: Basil scheme with N = 6 nodes
where node 3 and node 6 are Byzantines.
Node 1, the current active benign node in
the k-th round, selects one model out of its
stored 3 models which gives the lowest loss
when it is evaluated on a min-batch from its
local dataset Z1. After that, node 1 updates
the selected model by using the same mini-
batch according to (5) before broadcasting it
to the next 3 clockwise neighbours.

Our goal is to design an algorithm for the decentralized
training setup discussed earlier, while mitigating the
impact of the Byzantine nodes. Towards achieving
this goal, we propose Basil that is described next.

3 The Proposed Basil Algorithm
Now, we describe Basil, our proposed approach for
mitigating both malicious updates and faulty updates
in the IID setting, where the local dataset Zi at node
i consists IID data samples from a distribution Pi,
where Pi = P for i ∈ N , and characterize the com-
plexity of Basil. After that, we extend Basil to
the non-IID setting by integrating it to our proposed
Anonymous Cyclic Data Sharing scheme.

3.1 Basil for IID setting
As illustrated in Figure 2, Basil leverages sequential
training over the logical ring to mitigate the effect of
Byzantine nodes. At a high level, in the k-th round, the current active node carries out the model
update step in (5), and then broadcasts its updated model to the next S = b + 1 clockwise nodes,

3

where b is the worst case number of Byzantine nodes. We note that broadcasting each model to
the next b + 1 neighbours is crucial to make sure that the benign subgraph, which is generated by
excluding the Byzantine nodes, is connected. Connectivity of the benign subgraph is important as
it ensures that each benign node can still receive information from a few other non-faulty nodes,
i.e., the good updates can successfully propagate between the benign nodes. Even in the scenario
where all Byzantine nodes come in a row, broadcasting each updated model to the next S clockwise
neighbours allows the connectivity of benign nodes.

We now describe how the aggregation rule ABasil in Basil, that a node i implements for obtaining
the model x̄(i)

k for carrying out the update in (5), works. Node i stores the S latest models from its
previous S counterclockwise neighbours. As highlighted in the previous paragraph, the reason for
storing S models is to make sure that each stored set of models at node i contains at least one good
model. When node i is active, it implements our proposed performance-based criteria to pick the best
model out of its S stored models. In the following, we formally define our model selection criteria:

Definition 1 (Basil Aggregation Rule) In the k-th round over the ring, let N i
k = {y1, . . . ,yS} to

be the set of S latest models from the S counterclockwise neighbours of node i. We define ζi to be
a random sample from the local dataset Zi, and let li(yj) = li(yj , ζi) ∈ R to be the loss function
of node i evaluated on the model yj ∈ N i

k, by using a random sample ζi. The proposed Basil
aggregation rule is defined as x̄(i)

k = ABasil (N i
k) = arg miny∈N i

k
E [li(y, ζi)] .

In practice, node i can sample a mini-batch from its dataset and leverage it as validation data to test
the performance (i.e., loss function value) of each the neighboring S models, and set x̄(i)

k to be the
model with the lowest loss among the S stored models. As demonstrated in our experiments, this
practical mini-batch implementation of the Basil criteria in Definition 1 is sufficient to mitigate
Byzantine nodes in the network, while achieving superior performance over state-of-the-art.

We note that the connectivity parameter S can be relaxed S < b+ 1 while guaranteeing the success
of Basil with high probability (Proposition 2 in Appendix C).

3.2 Theoretical guarantees
We derive the convergence guarantees of Basil under these standard assumptions: convexity,
smoothness of the loss functions when the data distribution is IID (formal assumptions along with the
proof of Theorem 1 are presented in Appendix D).
Theorem 1 Basil with a fixed learning rate η = 1

L at all users achieves linear convergence with a
constant error as follows:

E

[
f

(
1

T

T∑
s=1

xs

)]
− f(x∗) ≤ ||x

0 − x∗||2L
2T

+
1

L
σ2, (2)

where T = Kr, K is the total number of rounds over the ring and r is the number of benign nodes.
Here xs represents the model after s update steps starting from the initial model x0, where s = rk+ i
with i = 1, . . . , r and k = 0, . . . ,K−1. Furthermore, x∗ is the optimal solution for the optimization
problem given in the introduction and σ2 is the stochastic gradient variance bound.

Remark 1 The error bound for Basil decreases with increasing the total number of benign nodes
r = βN , where β ∈ (0, 1).
To extend Basil to be robust against software/hardware faults in the non-IID setting, i.e. the local
dataset Zi at node i consists of data samples from a distribution Pi with Pi 6= Pj for i, j ∈ N and
i 6= j, we gives the high level discussion of our Anonymous Cyclic Data Sharing scheme (ACDS) in
the following subsection.

3.3 Generalizing Basil to non-IID setting via Anonymous Cyclic Data Sharing

We propose the ACDS scheme that allows each node to anonymously share α fraction of its non-
sensitive local dataset with other nodes. At a high level, this is done by first arranging nodes in
different rings. Then, within each ring, each node sends a batch of its selected sharable dataset to the
next clockwise node. The next node then selects a batch from its own sharable dataset, and uniformly
shuffles the combination of its batch and the received dataset from its counterclockwise node. The
accumulated dataset at the last node in each ring is shared with all other nodes in all other groups.
The process is repeated till the α fraction of the local dataset is shared between all users. The detailed
discussion of ACDS along with its anonymity guarantees are presented in Appendix E.

4

References

[1] P. Kairouz, H. B. McMahan, and e. a. Brendan, “Advances and open problems in federated
learning,” preprint arXiv:1912.04977, 2019.

[2] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,” ACM Trans. Program.
Lang. Syst., vol. 4, no. 3, p. 382–401, Jul. 1982.

[3] S. Guo, T. Zhang, X. Xie, L. Ma, T. Xiang, and Y. Liu, “Towards byzantine-resilient learning in
decentralized systems,” preprint arXiv:2002.08569, 2020.

[4] Z. Yang and W. U. Bajwa, “Bridge: Byzantine-resilient decentralized gradient descent,” preprint
arXiv:1908.08098, 2019.

[5] L. A. Dunning and R. Kresman, “Privacy preserving data sharing with anonymous id assignment,”
IEEE Transactions on Information Forensics and Security, vol. 8, no. 2, pp. 402–413, 2013.

[6] M. Castro, B. Liskov, and et al., “Practical byzantine fault tolerance,” OSDI, vol. 173–186,
1999.

[7] J. Regatti, H. Chen, and A. Gupta, “Bygars: Byzantine sgd with arbitrary number of attackers,”
preprint arXiv:2006.13421, 2020.

[8] C. Xie, S. Koyejo, and I. Gupta, “Zeno: Distributed stochastic gradient descent with suspicion-
based fault-tolerance,” in Proceedings of the 36th International Conference on Machine Learn-
ing, ser. Proceedings of Machine Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds.,
vol. 97. PMLR, 09–15 Jun 2019, pp. 6893–6901.

[9] ——, “Zeno++: Robust fully asynchronous SGD,” in Proceedings of the 37th International
Conference on Machine Learning, ser. Proceedings of Machine Learning Research, H. D. III
and A. Singh, Eds., vol. 119. PMLR, 13–18 Jul 2020, pp. 10 495–10 503.

[10] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Machine learning with adversaries:
Byzantine tolerant gradient descent,” in Proceedings of the 31st International Conference on
Neural Information Processing Systems, ser. NIPS’17. Curran Associates Inc., 2017, p.
118–128.

[11] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust distributed learning: Towards
optimal statistical rates,” in Proceedings of the 35th International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, J. Dy and A. Krause, Eds., vol. 80.
Stockholmsmässan, Stockholm Sweden: PMLR, 10–15 Jul 2018, pp. 5650–5659.

[12] A. R. Elkordy and A. S. Avestimehr, “Secure aggregation with heterogeneous quantization in
federated learning,” arXiv preprint arXiv:2009.14388, 2020.

[13] K. Pillutla, S. M. Kakade, and Z. Harchaoui, “Robust aggregation for federated learning,”
preprint arXiv:1912.13445, 2019.

[14] L. Zhao, S. Hu, Q. Wang, J. Jiang, S. Chao, X. Luo, and P. Hu, “Shielding collaborative learning:
Mitigating poisoning attacks through client-side detection,” IEEE Transactions on Dependable
and Secure Computing, pp. 1–1, 2020.

[15] S. Prakash and A. S. Avestimehr, “Mitigating byzantine attacks in federated learning,” arXiv
preprint arXiv:2010.07541, 2020.

[16] E. M. El Mhamdi, R. Guerraoui, and S. Rouault, “The hidden vulnerability of distributed
learning in Byzantium,” in Proceedings of the 35th International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, J. Dy and A. Krause, Eds., vol. 80.
Stockholmsmässan, Stockholm Sweden: PMLR, 10–15 Jul 2018, pp. 3521–3530.

[17] J. woo Lee, J. Oh, S. Lim, S.-Y. Yun, and J.-G. Lee, “Tornadoaggregate: Accurate and scalable
federated learning via the ring-based architecture,” preprint arXiv:1806.00582, 2020.

[18] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated learning with non-iid
data,” preprint arXiv:1806.00582, 2018.

[19] A. Krizhevsky, “Learning multiple layers of features from tiny images,” 2009.

[20] Y. LeCun, C. Cortes, , and C. Burges, “The mnist database of handwritten digits,”
http://yann.lecun.com/exdb/mnist/, 1998.

5

Appendices
Overview

In the following, we summarize the content of this supplementary document:

• In section A, we present some of the realted works
• In Section B, we describe how nodes consensually agree on their order on the ring in Basil.
• In Section C, we provide the communication, computations and storage cost of Basil Basil.

Additionally, we show in Proposition 2 how the connectivity parameter S of Basil can be
relaxed to S < b+ 1, while guaranteeing the success of Basil.

• In Section D, we prove the convergence guarantees of Basil.
• In Section E, we formally present our proposed ACDS scheme.
• In Section F, we describe how Basil can be robust to nodes dropout.
• In Section G, we explain Mozi [3], the recent Byzantine robust decentralized algorithm.
• In Section H, we provide the numerical experiments by using MNIST dataset and CIFAR10

to show the performance of Basil.

A Related works

Many Byzantine robust strategies have been proposed recently for the distributed training setup
(federated learning) where there is a central server to orchestrate the training process [7–15]. These
Byzantine robust optimization algorithms combine the gradients received by all workers using
robust aggregation rules, to ensure that training is not impacted by malicious nodes. Some of
these strategies [10–13] are based on distance-based approaches, while some others are based on
performance-based criteria [7–9, 15]. The key idea in distance-based defense solutions is to filter the
updates that are far from the average of the updates from the benign nodes. It has been shown that
distance-based solutions are vulnerable to the sophisticated attack proposed in [16]. In this attack,
Byzantine nodes could create gradients that are malicious but indistinguishable from benign gradients
in distance. On the other hand, performance-based filtering strategies rely on having some auxiliary
dataset at the server to evaluate the model received from each node.

Compared to the large number of Byzantine robust training algorithms for distributed training in the
presence of a central server, there have been only a few recent works on Byzantine resiliency in the
decentralized training setup with no central coordinator. In particular, to address Byzantine failures
in a decentralized training setup over a random graph under the scenario when the data distribution at
the nodes is IID, the authors in [4] propose using a trimmed mean distance-based approach called
BRIDGE to mitigate Byzantine nodes. However, the authors in [3] demonstrate that BRIDGE
is defeated by the hidden attack proposed in [16]. To solve the limitations of the distance-based
approaches in the decentralized setup, [3] proposes an algorithm called Mozi in which a combination
of performance-based and distance-based stages are used to mitigate the Byzantine nodes, where
the performance-based stage at a particular user leverages only its local dataset. As demonstrated
numerically in [3], the combination of these two strategies allows Mozi to defeat the Byzantine attack
proposed in [16]. However, Mozi is not suitable for the training over resource-constrained edge
devices, as the training is carried out in parallel and nodes remain active all the time. In contrast,
Basil is a fast and computationally efficient Byzantine robust algorithm, which leverages a novel
sequential, memory assisted and performance based criteria for training over a logical ring while
filtering the Byzantine users.

Data heterogeneity in the decentralized setting has been studied in some recent works, e.g., [17]
in the absence of Byzantine nodes. In particular, the authors of TornadoAggregate [17] propose to
cluster users into groups based on an algorithm called Group-BY-IID and CLUSTER where both
use EMD (earth mover distance) that can approximately model the learning divergences between the
models to complete the grouping. However, EMD function relies on having a publicly shared data at
each node which can be collected similarly as in [18]. In particular, to improve training on non-IID
data in federated learning, [18] proposed sharing of small portions of users’ data with the server. The

6

parameter server pools the received subsets of data thus creating a small subset of the data distributed
at the clients, which is then globally shared between all the nodes to make the data distribution close
to IID. However, the aforementioned data sharing approach is considered insecure in scenarios where
users are fine with sharing some of their datasets with each other but want to keep their identities
anonymous, i.e., data shares should not reveal who the data owners are.

As a final remark, we point out that for anonymous data sharing, [5] proposed an approach which
is based on utilizing a secure sum operation along with anonymous ID assignment (AIDA). This
involves computational operations at the nodes such as polynomial evaluations and some arithmetic
operations such as modular operations. Thus, this algorithm may fail in the presence of Byzantine
faults during these computations. Particularly, computation errors or software bugs can be present
during the AIDA algorithm thus leading to the failure of anonymous ID assignment, or during the
secure sum algorithm which can lead to distortion of the shared data.

B Order Agreement over the Ring

In practice, nodes can consensually agree on their order on the ring by using the following simple
steps. 1) All nodes first share their IDs with each other, and we assume WLOG that nodes’ IDs can
be arranged in ascending order, and Byzantine nodes cannot forge their identities or create multiple
fake ones [6]. 2) Each node locally generates the order permutation for the nodes’ IDs by using
pseudo random number generator (PRNG) initialized via a common seed (e.g., N). This ensures that
all nodes will generate the same IDs order for the ring.

C Communication, Computation and Storage complexities of Basil

Proposition 1. The communication, computation and storage complexities of Basil scheme are all
O(Sd) for each node in each iteration, where d is the model size.

Proof. Each node receives and stores the latest S models, calculates the loss by using each model out
of the S stored models, and broadcasts its updated model to the next S clockwise neighbours. Thus,
this results in O(Sd) communication, computation and storage costs. �

The costs in Proposition 1 can be reduced by relaxing the connectivity parameter S to S < b + 1
while guaranteeing the success of Basil (benign subgraph connectivity) with high probability, as
formally presented in Proposition 2:

Proposition 2. The number of models that each benign node needs to broadcast, store and evaluate
for ensuring the connectivity and success of Basil can be relaxed to S < b+ 1 while guaranteeing
the success of Basil (benign subgraph connectivity) with high probability.

Proof. This can be proven by showing that the benign subgraph, which is generated by removing the
Byzantine nodes, is connected with high probability when each node broadcasts its updated model to
the next S < b+ 1 clockwise neighbours instead of b+ 1 neighbours. Connectivity of the benign
subgraph is important as it ensures that each benign node can still receive information from a few
other non-faulty nodes. Hence by letting each node store and evaluate the latest S model updates,
this ensures that each benign node has the chance to select one of the benign updates.

More formally, when each node broadcasts its model to the next S clockwise neighbors, we define
Aj to be the failure event in which S Byzantine nodes come in a row where j is the starting node of
these S nodes. When Aj occurs, there is at least one pair of benign nodes that have no link between
them. The probability of Aj is given as follows:

P(Aj) =

S−1∏
i=0

(b− i)
(N − i)

=
b!(N − S)!

(b− S)!N !
, (3)

where the second equality follows from the definition of factorial, while b, and N are the number of
Byzantine nodes and the total number of nodes in the system, respectively. Thus, the probability of
having a disconnected benign subgraph in Basil, i.e., S Byzantine nodes coming in a row, is given

7

as follows:

P(Failure) = P(

N⋃
j=1

(Aj))
(a)

≤
N∑
j=1

P(Aj)
(b)
=

b!(N − S)!

(b− S)!(N − 1)!
, (4)

where (a) follows from union bound and (b) follows from (3). �

In order to further illustrate the impact of choosing S on the probability of failure given in (4), we
consider the following numerical examples. Let the total number of nodes in the system be N = 100,
where b = 33 of them are Byzantine, and the storage parameter S = 15. The failure event probability
in (4) turns out to be ∼ 4× 10−7, which is negligible. For the case when S = 10, the probability of
failure becomes ∼ 5.34× 10−4, which remains reasonably small.

D Convergence Analysis

In this section, we prove the main Theorem presented in Section 3.2 in the main paper. We start the
proofs by stating the main assumptions and the update rule of Basil.

Assumption 1 (IID data distribution). Local dataset Zi at node i consists of IID data samples
from a distribution Pi, where Pi = P for i ∈ R. In other words, fi(x) = Eζi∼Pi

[l(x, ζi)] =
Eζj∼Pj

[l(x, ζi)] = fj(x)∀i, j ∈ R. Hence, the global loss function f(x) = Eζi∼Pi
[l(x, ζi)].

Assumption 2 (Bounded variance). Stochastic gradient gi(x) is unbiased and variance bounded, i.e.,
EPi

[gi(x)] = ∇fi(x) = ∇f(x), and EPi
||gi(x) −∇fi(x)||2 ≤ σ2, where gi(x) is the stochastic

gradient computed by node i by using a random sample ζi from its local dataset Zi.

Assumption 3 (Smoothness). The loss functions f ′is are L-smooth and twice differentiable, i.e., for
any x ∈ Rd, we have ||∇2fi(x)||2 ≤ L.

Let bi to be the number of Byzantine nodes out of the S counterclockwise neighbours of node
i. We divide the set of stored models N i

k at node i in the k-th round into two sets. The first set
Gik = {y1, . . . ,yri} contains the benign models, where ri = S − bi. We consider scenarios with
S = b+ 1, where b is the total number of Byzantine nodes in the network. Without loss of generality,
we assume the models in this set are arranged such that the first model is from the closest benign
node in the neighbourhood of node i, while the last model is from the farthest node. Similarly, we
define the second set Bik to be the set of models from the counterclockwise Byzantine neighbors of
node i such that Bik ∪ Gik = N i

k.

The general update rule in Basil is given as follows. At the k-th round, the current active node i
updates the global model according to the following rule:

x
(i)
k =x̄

(i)
k − η

(i)
k gi(x̄

(i)
k), (5)

where x̄
(i)
k is given as follows

x̄
(i)
k = arg min

y∈N i
k

E [li(y, ζi)] . (6)

In order to prove the main theorem given in Section 3.2 in the main paper, we first prove the following:

Theorem 2 When the learning rate η(i)k for node i ∈ R in round k satisfies η(i)k ≥
1
L , the expected

loss function E [li(·)] of node i evaluated on the set of models in N i
k can be arranged as follows:

E [li(y1)] ≤ E [li(y2)] ≤ · · · ≤E [li(yri)] ≤ E [li(x)] ∀x ∈ Bik, (7)

where Gik = {y1, . . . ,yri} is the set of benign models stored at node i. Hence, the Basil aggregation
rule in (6) is reduced to x̄

(i)
k = ABasil (N i

k) = y1. Hence, the model update step in (5) can be
simplified as follows:

x
(i)
k = y1 − η(i)k gi(y1), (8)

8

D.1 Proof of Theorem 1

We first show that if node i completed the performance-based criteria in (6) and selected the model
y1 ∈ Gik, and updated its model as follows:

x
(i)
k = y1 − η(i)k gi(y1), (9)

we will have

E
[
`i+1(x

(i)
k)
]
≤ E [`i+1(y1)] , (10)

where `i+1(y1) = `i+1(y1, ζi+1) is the loss function of node i+ 1 evaluated on a random sample
ζi+1 by using the model y1.

The proof of (10) is as follows: By using Taylor’s theorem, there exists a γ such that

`i+1(x
(i)
k) =`i+1

(
y1 − η(i)k gi(y1)

)
(11)

=`i+1(y1)− η(i)k gi(y1)T gi+1(y1) +
1

2
η
(i)
k gi(y1)T∇2`i+1(γ)η

(i)
k gi(y1), (12)

where ∇2`i+1 is the stochastic Hessian matrix. By using the following assumption

||∇2`i+1(x
(i)
k)||2 ≤ L for all random samples ζi+1 and any model x ∈ Rd, (13)

where L is the Lipschitz constant, we get

`i+1(x
(i)
k) ≤`i+1(y1)− η(i)k gi(y1)T gi+1(y1) +

(η
(i)
k)2L

2
||gi(y1)||2. (14)

By taking the expected value of both sides of this expression (where the expectation is taken over the
randomness in the sample selection), we get

E
[
`i+1(x

(i)
k)
]
≤E [`i+1(y1)]− η(i)k E

[
gi(y1)T gi+1(y1)

]
+

(η
(i)
k)2L

2
E||gi(y1)||2

a
=E [`i+1(y1)]− η(i)k E

[
gi(y1)T

]
E [gi+1(y1)] +

(η
(i)
k)2L

2
E||gi(y1)||2

≤E [`i+1(y1)]− η(i)k E
[
gi(y1)T

]
E [gi+1(y1)] + (η

(i)
k)2LE||gi(y1)||2

b
≤E [`i+1(y1)]− η(i)k ||∇f(y1)||2 + (η

(i)
k)2L||∇f(y1)||2 + (η

(i)
k)2Lσ2

=E [`i+1(y1)]− ||∇f(y1)||2
(
η
(i)
k − (η

(i)
k)2L

)
+ (η

(i)
k)2Lσ2 (15)

where (a) follows from that the samples are drawn from independent data distribution, while (b) form
Assumption 1 along with

E||gi(y1)||2 =E||gi(y1)− E [gi(y1)] ||2 + ||E[gi(y1)]||2

≤σ2 + ||∇f(y1)||2. (16)

Let Cik = ||∇f(y1)||2
||∇f(y1)||2+σ2 = ||E[gi(y1]||2

||E[gi(y1]||2+σ2 , which implies that Cik ∈ [0, 1]. By selecting the learning

rate as η(i)k ≥
1
LC

i
k, we get

E [li+1(y1)] ≤ E [li+1(y1)] . (17)

Note that, nodes can just use a learning rate η ≥ 1
L , since Cik ∈ [0, 1], while still achieving (17). This

completes the first part of the proof.

By using (17), it can be easily seen that the update rule in equation (5) can be reduced to the case
where each node updates its model based on the model received from the closest benign node (9) in
its neighborhood, where this follows from using induction.

9

Let’s consider this example. Consider a ring with N nodes and by using S = 3 while ignoring the
Byzantine nodes for a while (assume all nodes are benign nodes). We consider the first round k = 1.
With a little abuse of notations, we can get the following, the updated model by node 1 (the first
node in the ring) x1 = h(x0) is a function of the initial model x0 (updated by using the model x0).
Now, node 2 has to select one model from the set of two models N 2

k = {x1 = h(x0),x0}. The
selection is performed by evaluating the expected loss function of node 2 by using the criteria given
in (6) on the models on the set N 2

k . According to (17), node 2 will select the model x1 which results
in lower expected loss. Now, node 2 updates its model based on the model x1, i.e., x2 = h(x1).
After that, node 3 applies the aggregation rule in (6) to selects one model from this set of models
N 3
k = {x2 = h(x1),x1 = h(x0),x0}. By using (17) and Assumption 1, we get

E[l3(x2)] ≤ E[l3(x1)] ≤ E[l3(x0)], (18)
and node 3 model will be updated according to the model x2, i.e., x3 = h(x2).

More generally, the set of stored benign models at node i is given by N i
k = {y1 = h(y2),y2 =

h(y3), . . . ,yri = h(yri−1)}, where ri is the number of benign models in the set N i
k. According to

(17), we will have the following
E [li(y1)] ≤ E [li(y2)] ≤ · · · ≤E [li(yri)] ≤ E [li(x)] ∀x ∈ Bik, (19)

where the last inequality in (19) follows from the fact that the Byzantine nodes are sending faulty
models and their expected loss is supposed to be higher than the expected loss of the benign nodes.

According to this discussion and by removing the Byzantine nodes thanks to (19), we can only
consider the benign subgraph which is generated by removing the Byzantine nodes according to the
discussion in Section 3.1 in the main paper. Note that by letting each active node send its updated
model to the next b+ 1 nodes, where b is the total number of Byzantine nodes, the benign subgraph
can always be connected. By considering the benign subgarph (the logical rings without Byzantine
nodes), we assume without loss of generality that the indices of benign nodes in the ring are arranged
in ascending order starting from node 1 to node r. In this benign subgraph, the update rule will be
given as follows

x
(i)
k = x

(i−1)
k − η(i)k gi(x

(i−1)
k), (20)

D.2 Proof of main theorem (Theorem 1) given in the main paper

By using Taylor’s theorem, there exists a γ such that

f(x
(i+1)
k)

a
=f
(
x
(i)
k − η

(i)
k gi+1(x

(i)
k)
)

=f(x
(i)
k)− η(i)k

(
gi+1(x

(i)
k)
)T
∇f(x

(i)
k)

+
1

2
η
(i)
k

(
gi+1(x

(i)
k)
)T
∇2f(γ)η

(i)
k gi+1(x

(i)
k)

b
≤f(x

(i)
k)− η(i)k

(
gi+1(x

(i)
k)
)T
∇f(x

(i)
k) +

L

2
η
(i)
k ||gi+1(x

(i)
k))||2 (21)

where (a) follows from the update rule in (20), while f is the global loss function in equation (1) in
the main paper, and (b) from Assumption 3 where ||∇2f(γ)|| ≤ L. Given the model xik, we take
expectation over the randomness in selection of sample ζi+1 (the random sample used to get the
model x(i+1)

k). We recall that ζi+1 is drawn according to the distribution Pi+1 and is independent of
the model xik). Therefore, we get the following set of equations:

E[f(x
(i+1)
k)] ≤f(x

(i)
k)− η(i)k E

[
(gi+1(x

(i)
k))

]T
∇f(x

(i)
k) +

(η
(i)
k)2L

2
E||gi+1(x

(i)
k)||2

a
≤f(x

(i)
k)− η(i)k ||∇f(x

(i)
k)||2 +

(η
(i)
k)2L

2
||∇f(x

(i)
k)||2 +

(η
(i)
k)2L

2
σ2

=f(x
(i)
k)− ||∇f(x

(i)
k)||2

(
η
(i)
k −

(η
(i)
k)2L

2

)
+

(η
(i)
k)2L

2
σ2

b
≤f(x

(i)
k)−

η
(i)
k

2
||∇f(x

(i)
k)||2 +

η
(i)
k

2
σ2 (22)

10

where (a) follows from (16), and (b) by selecting η(i)k ≤
1
L . Furthermore, in the proof of Theorem 1,

we choose the learning to be η(i)k ≥
1
L . Therefore, the learning rate will be given by η(i)k = 1

L . By the
convexity of the loss function f , we get the next inequality from the inequality in (22)

E[f(x
(i+1)
k)] ≤f(x∗) + 〈∇f(x

(i)
k),x

(i)
k − x∗〉 −

η
(i)
k

2
||∇f(x

(i)
k)||2 +

η
(i)
k

2
σ2 (23)

We now back-substitute gi(x
(i)
k) into (23) by using E[gi+1(x

(i)
k)] = ∇f(x

(i)
k) and ||∇f(x

(i)
k)||2 ≤

σ2 − E||gi+1(x
(i)
k)||2:

E[f(x
(i+1)
k)] ≤f(x∗) + 〈E[gi+1(x

(i)
k)],x

(i)
k − x∗〉 −

η
(i)
k

2
E||gi+1(x

(i)
k)||2 + η

(i)
k σ2

=f(x∗) + E[〈 [gi+1(x
(i)
k)],x

(i)
k − x∗〉 −

η
(i)
k

2
||gi+1(x

(i)
k)||2] + η

(i)
k σ2. (24)

by completing the square of the middle two terms to get:

E[f(x
(i+1)
k)] ≤f(x∗) + E

[
1

2η
(i)
k

(
||x(i)

k − x∗||2 − ||x(i)
k − x∗ − η(i)k gi+1(x

(i)
k)||2

)]
+ η

(i)
k σ2.

=f(x∗) + E

[
1

2η
(i)
k

(
||x(i)

k − x∗||2 − ||x(i+1)
k − x∗||2

)]
+ η

(i)
k σ2. (25)

For K rounds and r benign nodes, we note that the total number of SGD steps are T = Kr. We let
s = kr + i represent the number of updates happen to the initial model x0, where i = 1, . . . , r and
k = 0, . . . ,K − 1. Therefore, x(i)

k can be written as xs. With the modified notation, we can now take
the expectation in the above expression over the entire sampling process during training and then by
summing the above equations for s = 0 . . . , T − 1, while taking η = 1

L , we have the following:

T−1∑
s=0

(
E[f(xs+1)]− f(x∗)

)
≤L

2

(
||x0 − x∗||2 − E[||x(T)

k − x∗||2]
)

+
1

L
Tσ2 (26)

By using the convexity of f(.), we get

E

[
f

(
1

T

T∑
s=1

xs

)]
− f(x∗) ≤ 1

T

T−1∑
s=0

E
[
f(xs+1)

]
− f(x∗)

≤||x
0 − x∗||2L

2T
+

1

L
σ2. (27)

E Generalizing Basil to non-IID setting via Anonymous Cyclic Data Sharing

We propose Anonymous Cyclic Data Sharing scheme, a scheme that can be integrated on the top of
Basil to guarantee robustness against software/hardware faults in the non-IID setting. This scheme
allows each node to anonymously share α fraction of its local non-sensitive dataset with other nodes.
In other words, ACDS guarantees that the owner of the shared data is kept hidden from all other
nodes under no collusion between nodes.

ACDS starts by first clustering the N nodes into G groups of rings, where the set of nodes in each
group is denoted by Ng = {1g, . . . , ng} where node 1g is the starting node in ring g, and each group
has the same number of nodes, n = N

G . Each node i ∈ N divides its data set Zi into sensitive
(Zsi) and non-sensitive (Znsi) portions. For α ∈ (0, 1), every node chooses αD data points from its
local non-sensitive data at random, and then divides these data points into H batches denoted by
{c(1), . . . , c(H)}, where each batch is of size M = αD

H data points.

As shown in Figure 3, within group g and during the first round τ = 1, node 1g sends the first batch
c
(1)
1g

to its clockwise neighbour, node 2g, which shuffles the data points in this batch with the data

points from its first batch c(1)2g
before sending them together to node 3g. The cyclic sharing over

11

Figure 3: Two rounds for the ACDS scheme within group g with n = 4 nodes.

the ring proceeds in the following general procedure in which node ig shuffles the data points in
the received set of batches {c(1)1g

, . . . , c
(1)
(i−1)g} from its counterclockwise neighbour node (i − 1)g

with the data points from its own batch c(1)ig , before sending them together to node (i+ 1)g. After
completing the first round, the master node in each group, node 1g, shares the received set of ng
batches {c(1)1g

, . . . , c
(1)
ng } with the other groups. This can be done by either sending these batches to

the master nodes in the other groups who broadcast them within their groups, or by directly sharing
them with all other nodes in the other groups.

In round τ > 1 as shown in Figure 3, node 1g after receiving the set of batches {c(τ−1)1g
, . . . , c

(τ−1)
ng }

from node ng, it replaces its batch c(τ−1)1g
with c(τ)ig

, which is the τ -th batch on its list, and shuf-

fles all the set of data points in the new set of batches {c(τ)1g
, c

(τ−1)
1g

. . . , c
(τ−1)
ng } before sending

them to node 2g. More generally, in the τ -th round, node ig replaces its batch c(τ−1)ig
with c(τ)ig

,
which is the τ -th batch on its list, and shuffles all the set of data points in the new set of batches
{c(τ)1g

, . . . , c
(τ)
ig
, c

(τ−1)
(i+1)g

, . . . , c
(τ−1)
ng } before sending them to node (i + 1)g. The collected data in

each group are shared within the other groups after each round in the same way as mentioned earlier.
The total number of rounds until completing the ACDS scheme is H rounds, where H is the total
number of batches to be shared by each node. Note that data sharing by using ACDS strategy only
needs to be performed once when the training is initialized, i.e., this is one time cost; however, as we
demonstrate later in Section H, this dramatically improves the performance.

E.1 Anonymity guarantees of ACDS

In the first round of the scheme, node 2g will know that the source of the received batch c11g is node
1g . Similarly and more general, node ig will know that each data points in the received set of batches
{c11g , . . . , c

1
(i−1)g} is generated by one of the previous i− 1 counterclockwise neighbours. However,

in the next H − 1 rounds, each received data point by any node will be equally likely generated from
any one of the remaining n− 1 nodes in this group. Hence, the size of the candidate pool from which
each node could take a guess for the owner of each data point is small specially for the first set of
nodes in the ring. In order to provide anonymity for the entire data and decrease the risk in the first
round of the ACDS scheme, the size of the batch can be reduced to just one data point. Therefore, in
the first round node 2g will only know one data point from node 1g. This comes on the expense of
increasing the number of rounds. Another key consideration is that the number of nodes in each group
trades the level of anonymously with the communication cost. In particular, the communication cost
per node in the ACDS scheme is O(n), while the anonymous level, which we measure by the number
of possible candidate for a given data point, is (n− 1). Therefore, increasing n, i.e., decreasing the
number of group G, will decrease the communication cost but increase the anonymous level.

F Joining and Leaving of Nodes

Basil can handle the scenario of 1)node dropouts out of the N available nodes 2) nodes rejoining
the system.

12

F.1 Nodes dropout

For handling node dropouts, we allow for extra communication between nodes. In particular, each
active node can broadcast its model to the S=b+d+1 clockwise neighbours, where b and d are
respectively the number of Byzantine nodes and the worst case number of dropped nodes, and each
node can store only the latest b+1 model updates. By doing that, each benign node will have at least
1 benign update even in the worst case where all Byzantine nodes appear in a row and d (out of S)
counterclockwise nodes drop out.

F.2 Nodes rejoining

To address a node rejoining the system, this rejoined node can re-broadcast its ID to all other nodes.
Since benign nodes know the correct order of the nodes (IDs) in the ring according to Section B,
each active node out of the L=b+d+1 counterclockwise neighbours of the rejoined node sends its
model to it, and this rejoined node stores the latest b+1 models. We note that handling participation
of new fresh nodes during training is out of scope of our paper, as we consider mitigating Byzantines
in decentralized training with a fixed number of N nodes

G Mozi

We consider Mozi [3] a recent Byzantine resilient approach for parallel decentralized training. This
decentralized training setup is defined over undirected graph: G = (V,E), where V denotes a set of
N nodes and E denotes a set of edges representing communication links. Filtering Byzantine nodes
is done over two stages for each training iteration. At the first stage, each benign node performs a
distance-based strategy to select a candidate pool of potential benign nodes from its neighbors. This
selection is performed by comparing the Euclidean distance of its own model with the model from its
neighbours. In the second stage, each benign node performs a performance-based strategy to pick
the final nodes from the candidate pool resulted from stage 1. It reuses the training sample as the
validation data to compute loss function value of each model. It selects the models whose loss values
are smaller than the value of its own model, and calculates the average of those models as the final
updated value. Formally, the update rule in Mozi is given by

x
(i)
k+1 = αx

(i)
k + (1− α)RMozi(x

(j)
k , j ∈ Ni)− η∇fi(x(i)

k), (28)

where Ni is the set of neighbours of Node i, ∇fi(x(i)
k) is the local gradient of node i evaluated on a

random sample from the local dataset of node i while using its own model, k is the training round,
andRMozi is given as follows:

RMozi =

{
1
N r

i,k

∑
j∈N r

i,k
x
(j)
k if x(i)

k+1 6= φ

xj
∗

k , Otherwise
(29)

where there are two stages of filtering:

stage (1) N s
i,k = arg min

N∗⊂Ni,
N∗=ρi|Ni|

∑
j∈Ni

||x(j)
k − x

(i)
k ||,

stage (2) N r
i,k =

⋃
j∈N s

i,k

`i(x
(j)
k)≤`i(x(i)

k)

j, and j∗ = arg min
j∈N s

i,k

`i(x
(i)
k).

H Numerical Experiments

H.1 Setting

Schemes We consider four schemes as described next. G-plain: This is for graph based topology. At
the start of each round, nodes exchange their models with their neighbors. Each node then finds the
average of its model with the received neighboring models and uses it to carry out an SGD step over
its local dataset. R-plain: This is for ring based topology with S = 1. The current active node carry
out an SGD step over its local data set by using the model received from its previous counterclockwise

13

neighbour. Mozi: This is the prior state-of-the-art for mitigating Byzantines in decentralized training
over graph, and is described in Section G. Basil : This is our proposal.

Datasets and Hyperparameters There are a total of 100 nodes, in which 67 are benign. For
decentralized network setting for simulating Mozi and G-plain schemes, we follow a similar approach
as described in the experiments in [3]. Specifically, we first assign connections randomly among
benign nodes with a probability of 0.4, and then randomly assign connections from the benign nodes
to the Byzantine nodes, with a probability of 0.4. Furthermore, we set the Byzantine ratio for benign
nodes as ρ = 0.33.

For Basil and R-plain, the nodes are arranged in a logical ring, and 33 of them are randomly set
as Byzantines. Furthermore, we set S = 10 for Basil which gives us the guarantees discussed in
Proposition 1. We use a decreasing learning rate of 0.03/(1 + 0.03 k). We consider CIFAR10 [19]
and use a neural network with 2 convolutional layers and 3 fully connected layers. The details are
included in the following paragrpah (Model). The training dataset is partitioned equally among all
nodes. Furthermore, we report the worst test accuracy among the benign clients in our results. We
also conduct similar evaluations on a simpler MNIST dataset [20]. The experimental results lead to
the same conclusion.

Models We provide the details of the neural network architectures used in our experiments. For
MNIST, we use a model with three fully connected layers, and the details for the same are provided
in Table 1. Each of the first two fully connected layers is followed by ReLU, while softmax is used at
the output of the third one fully connected layer.

Table 1: Details of the parameters in the architecture of the neural network used in our MNIST
experiments.

Parameter Shape
fc1 784× 100
fc2 100× 100
fc3 100× 10

For CIFAR10 experiments in the main paper, we consider a neural network with two convolutional
layers, and three fully connected layers, and the specific details of these layers are provided in Table
2. ReLU and maxpool is applied on the convolutional layers. The first maxpool has a kernel size
3× 3 and a stride of 3 and the second maxpool has a kernel size of 4× 4 and a stride of 4. Each of
the first two fully connected layers is followed by ReLU, while softmax is used at the output of the
third one fully connected layer.

We initialize all biases to 0. Furthermore, for weights in convolutional layers, we use Glorot uniform
initializer, while for weights in fully connected layers, we use the default Pytorch initialization.

Table 2: Details of the parameters in the architecture of the neural network used in our CIFAR10
experiments.

Parameter Shape
conv1 3× 16× 3× 3
conv2 16× 64× 4× 4
fc1 64× 384
fc2 384× 192
fc3 192× 10

Byzantine Attacks We consider a variety of attacks, that are described as follows. Gaussian Attack:
Each Byzantine node replaces its model parameters with entries drawn from a Gaussian distribution
with mean 0 and standard distribution σ = 1. Random Sign Flip: We observed in our experiments
that the naive sign flip attack, in which Byzantine nodes flip the sign of each parameter before
exchanging their models with their neighbors, is not strong in the R-plain scheme. To make the
sign-flip attack stronger, we propose a layer-wise sign flip, in which Byzantine nodes randomly
choose to flip or keep the sign of the entire elements in each neural network layer. Hidden Attack:
This is a sophisticated attack that degrades the performance of distance-based defense approaches, as

14

proposed in [16] and described in detail in Appendix. Essentially, the Byzantine nodes are assumed
to be omniscient, i.e. they can collect the models uploaded by all the benign clients. Byzantine nodes
then design their models such that they are undetectable from the benign ones in terms of the distance
metric, while still degrading the training process. For hidden attack, as the key idea is to exploit
similarity of models from benign nodes, thus to make it is more effective, the Byzantine nodes launch
this attack after 20 rounds of training.

0 100 200 300 400 500
Round, k

0.2

0.4

0.6

Te
st

 A
cc

ur
ac

y

R-plain
G-plain
Mozi
Basil

(a) No Attack

0 100 200 300 400 500
Round, k

0.2

0.4

0.6

Te
st

 A
cc

ur
ac

y

R-plain
G-plain
Mozi
Basil

(b) Gaussian Attack

0 100 200 300 400 500
Round, k

0.2

0.4

0.6

Te
st

 A
cc

ur
ac

y

R-plain
G-plain
Mozi
Basil

(c) Random Sign Flip

0 100 200 300 400 500
Round, k

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

R-plain
G-plain
Mozi
Basil

(d) Hidden Attack

Figure 4: Illustrating the results for CIFAR10 under IID data distribution setting.

0 50 100 150
Round, k

0.2

0.4

0.6

0.8

1.0

Te
st
 A
cc
ur
ac

y

R-plain
G-plain
Mozi
Basil

(a) No Attack

0 50 100 150
Round, k

0.0

0.2

0.4

0.6

0.8

Te
st
 A
cc
ur
ac

y

R-plain
G-plain
Mozi
Basil

(b) Gaussian Attack

0 50 100 150
Round, k

0.0

0.2

0.4

0.6

0.8

Te
st
 A
cc
ur
ac

y

R-plain
G-plain
Mozi
Basil

(c) Random Sign Flip At-
tack

0 50 100 150
Round, k

0.0

0.2

0.4

0.6

0.8

Te
st
 A
cc
ur
ac

y

R-plain
G-plain
Mozi
Basil

(d) Hidden Attack

Figure 5: Illustrating the results for MNIST under IID data distribution setting.

H.2 Results

IID Setting We first present the results for the IID data setting. Training dataset is first shuffled
randomly and then partitioned among the nodes. As can be seen from Figure 4(a), Basil converges
much faster than both Mozi and G-plain even in the absence of any Byzantine attacks, illustrating the
benefits of ring topology based learning over graph based topology. We note that the total number of
gradient updates after k rounds in the two setups are almost the same. We can also see that R-plain
gives higher performance than Basil. This is because in Basil, a small mini-batch is used for
performance evaluation, hence in contrast to R-plain, the latest neighborhood model may not be
chosen in each round resulting in the loss of some update steps. Nevertheless, Figures 4(b), 4(c)
and 4(d) illustrate that Basil is not only Byzantine-resilient, it maintains its superior performance
over Mozi with ∼16% improvement in test accuracy, as opposed to R-plain that suffers significantly.
Furthermore, we would like to highlight that as Basil uses a performance-based criterion for
mitigating Byzantine nodes, it is robust to the Hidden attack as well. Finally, by considering the poor
convergence of R-plain under different Byzantine attacks, we conclude that Basil is a good solution
with the fast convergence, strong Byzantine resiliency and acceptable computation overhead.

Figure As can be seen from Figure 5 that using Basil leads to the same conclusion shown in
CIFAR10 dataset in terms of its fast convergence, high test accuracy, and Byzantine robustness
compared to the different schemes.

Non-IID setting For simulating the non-IID setting, we sort the training data as per class, partition
the sorted data into N subsets, and assign each node 1 partition. By applying ACDS in the absence of
Byzantine nodes while trying different values for α, we found that α = 5% gives a good performance
while giving a reasonable small amount of shared data from each node. Figure 6(a) illustrates that
test accuracy for R-plain in the non-IID setting can be increased by up to ∼10% that when each
node shares only α = 5% of its local data with other nodes. Figure 6(c), and Figure 6(d) illustrate
that Basil on the top of ACDS with α = 5% is robust to software/hardware faults represented in
Gaussian model and random sign flip. Furthermore, both Basil without ACDS and Mozi completely
fail in the presence of these faults. This is because the two defenses are using performance criteria

15

0 100 200 300 400 500
Round, k

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

R-plain: =0%
R-plain: =5%

(a) No Attack

0 100 200 300 400 500
Round, k

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

R-plain: =0%
R-plain: =5%
Mozi: =0%
Basil: =0%
Basil: =5%

(b) No Attack

0 100 200 300 400 500
Round, k

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y R-plain: =0%
R-plain: =5%
Mozi: =0%
Basil: =0%
Basil: =5%

(c) Gaussian Attack

0 100 200 300 400 500
Round, k

0.1

0.2

0.3

0.4

Te
st
 A
cc

ur
ac

y R-plain: α=0%
R-plain: α=5%
Mozi: α=0%
Basil: α=0%
Basil: α=5%

(d) Random Sign Flip

Figure 6: Illustrating the results for CIFAR10 under non-IID data distribution setting.

0 50 100 150
Round, k

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

R-plain: =5%
R-plain: =0%

(a) No Attack

0 50 100 150
Round, k

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y
R-plain: =5%
Basil: =5%
R-plain: =0%
Basil: =0%
Mozi: =0%

(b) No Attack

0 50 100 150
Round, k

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y Basil: =5%
R-plain: =0%
R-plain: =5%
Mozi: =0%
Basil: =0%

(c) Gaussian Attack

0 50 100 150
Round, k

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y Basil: =5%
R-plain: =0%
R-plain: =5%
Mozi: =0%
Basil: =0%

(d) Random Sign Flip At-
tack

Figure 7: Illustrating the results for MNIST under non-IID data distribution setting.

which is not meaningful in the non-IID setting. In other words, each node has only data from one
class, hence it becomes unclear whether a high loss value for a given model can be attributed to
Byzantine node, or to the very heterogeneous nature of the data. Additionally, both R-plain with
α = 0 and α = 5 completely fail in the presence of Byzantine nodes.

Finally, we can observe in 6(b) that Basil with α = 0 gives low performance. This confirms
that non-IID data distribution degraded the convergence behaviour. For Mozi, the performance is
completely degraded, since the way in which Mozi is implemented, each node selects the set of
models which gives a lower loss than its own local model, before using them in the update rule. Since
performance-based is not meaningful in this setting, each node might end up only with its own model.
Hence,the model of each node does not completely propagate over the graph, as also demonstrated in
Figure 6(b), where Mozi fails completely. This is different from the ring setting where the model is
propagated over the ring.

Similarly, Figure 7 that using Basil leads to the same conclusion shown in CIFAR10 dataset in
terms of its fast convergence, high test accuracy, and Byzantine robustness compared to the different
schemes.

In Figure 6 and Figure 7 in this section, we showed that Mozi performs quite poorly for non-IID data
setting, when no data is shared among the clients. We note that achieving anonymity in data sharing
in Mozi is an open problem. Nevertheless, in Figure 8 and Figure 9, we further show that even 5%
data sharing is done in Mozi, performance remains quite low in comparison to Basil+ACDS.

0 100 200 300 400 500
Round, k

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

Basil+ACDS: =5%
Mozi: =5%

(a) No Attack

0 100 200 300 400 500
Round, k

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

Basil+ACDS: =5%
Mozi: =5%

(b) Gaussian Attack

0 100 200 300 400 500
Round, k

0.1

0.2

0.3

0.4

Te
st

 A
cc

ur
ac

y

Basil+ACDS: =5%
Mozi: =5%

(c) Random Sign Flip Attack

Figure 8: Illustrating the performance of Basil compared with Mozi for CIFAR10 under non-IID data
distribution setting with α = 5% data sharing.

16

0 50 100 150
Round, k

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

Basil+ACDS: =5%
Mozi: =5%

(a) No Attack

0 50 100 150
Round, k

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

Basil+ACDS: =5%
Mozi: =5%

(b) Gaussian Attack

0 50 100 150
Round, k

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y
Basil+ACDS: =5%
Mozi: =5%

(c) Random Sign Flip Attack

Figure 9: Illustrating the performance of Basil compared with Mozi for MNIST under non-IID data
distribution setting with α = 5% data sharing.

17

	Introduction and Overview of Basil
	Contributions

	Problem Statement
	Decentralized system model
	Model training

	The Proposed Basil Algorithm
	Basil for IID setting
	Theoretical guarantees
	Generalizing Basil to non-IID setting via Anonymous Cyclic Data Sharing

	Appendices
	Related works
	Order Agreement over the Ring
	 Communication, Computation and Storage complexities of Basil
	Convergence Analysis
	Proof of Theorem 1
	Proof of main theorem (Theorem 1) given in the main paper

	Generalizing Basil to non-IID setting via Anonymous Cyclic Data Sharing
	Anonymity guarantees of ACDS

	Joining and Leaving of Nodes
	Nodes dropout
	Nodes rejoining

	Mozi
	Numerical Experiments
	Setting
	Results

