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ABSTRACT
The use of Deep Reinforcement Learning (Deep RL) in many
resource constrained mobile systems has been limited in scope
due to the severe resource consumption (e.g., memory, com-
putation, energy) such approaches exert. As a result, TinyML
devices ranging from sensors and cameras to small form-
factor robots and drones have been unable to benefit from
the advantages of recent Deep RL algorithms that have un-
derpinned breakthrough results in applications of decision
and control. In this work, we propose and study a variety of
general-purpose techniques designed to lower such system
resource bottlenecks for Deep RL by optimizing both the
agent algorithms and neural architectures used in these solu-
tions. Experiments show our Deep RL optimization frame-
work that combines these techniques is able produce signif-
icant efficiency gains to the point such techniques become
feasible for TinyML platforms. We present one representa-
tive end-to-end application (viz. network protocol learning)
executing on constrained processors (embedded-hardware),
in addition to simulated control problems addressed assum-
ing limited access to system resources.

1. INTRODUCTION
In the past five years deep learning has made important
strides within critical, typically discriminative, learning
tasks. But beyond these sit an additional set of break-
throughs that have been achieved within the area of re-
inforcement learning powered largely again through the
use of deep neural network principles and algorithms;
referred to as Deep Reinforcement Learning (Deep RL).
Many of the more celebrated results within the popu-
lar press center around the ability of such approaches
to train algorithms that reach human-level performance
across a wide-range of games of skill; for example, play-
ing 50 different Atari games or in games that have long
resisted automated cognition such as AlphaGo [30] and
DeepStack [23] – the games of Go and poker respec-
tively.

Deep RL, offers the ability to learn algorithms that
make decision on the basis of inputs (such as sensors or
system state). Potential (and emerging) mobile appli-
cations of such techniques include: determining when
and how mobile system might schedule and regulate re-
sources; or driving the decisions of a drone to navigate
a flight path. But deep-forms of reinforcement learning
in particular have not yet extensively been applied to a
variety of these tasks performed by the more resource
constrained forms of mobile devices and robots drones;

the reason for this is because of the extreme system
resources Deep RL requires. Most of the examples of
systems applying these techniques have enormous re-
source budgets; for instance, the control decisions of
autonomous cars, of course, already have adopted Deep
RL techniques [8]. But platforms like the Nvidia Drive
PX2 [2] designed for such scenarios require 250W of
power while offering 8 tera-flops of computation. As
an extreme example, for AlphaGo to beat the world’s
best human player required more than 1,200 CPUs and
176 GPUs [30]. However such resource levels are out of
reach for embedded systems ranging from smart sensors
to small form-factor drones and robots. To bring Deep
RL to these devices will require a leap in the efficiency,
but today what we lack is a principled understanding of
how to reduce and manage the resources used by deep
reinforcement learning algorithms. It is unclear for ex-
ample, how well these algorithms would perform when
potential avenues of optimization are explored – and if
acceptable control and decision performance could be
maintained within the constraints of tinyML devices.
Only recently has this area begun to be explored in the
literature [11, 33, 19, 28].

In this work, we perform an early exploration to-
wards general-purpose system resource optimizations
techniques for deep reinforcement learning (Deep RL)
algorithms. Our aim is to enable this class of algorithms
to execute specifically on severely limited processors
such as those found in tinyML platforms like small form-
factor IoT devices, drones and robots – with typical pro-
cessors that can be as limited as ARM Cortex M0 pro-
cessors. To achieve this, we study methods to reduce the
memory, computation and energy requirements of Deep
RL algorithms largely at the expense of a manageable
loss in algorithm performance (i.e., the ability to first
learn, and then perform control and decision tasks). We
build where possible on growing knowledge of optimiza-
tion techniques for deep learning classification models
at inference time, such use of low-precision parameters,
separation of convolution layers and resource-sensitive
model selection (e.g., [5]). Although direct application
of such methods designed for discriminative deep mod-
els is limited by a series of intrinsic differences with Deep
RL models that presents a mixture of unique resource
bottlenecks, along with differing algorithmic data-flows
and neural network architectures. Unlike deep classi-
fiers that are trained off-line before they are introduced
to a constrained device, Deep RL often revises model
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parameters iteratively based on the arrival of new data;
as a result, not only must the forward-pass of the neu-
ral networks used in DRL be optimized, but also those
for back-propagation. Similarly, although DeepRL of-
ten use similar neural architectures, that typically act
as perceptional phases applied to incoming data – these
networks may only consume a fraction of the overall
resources used.

The contributions of this work are:

• Early Mobile Insights into Deep RL. As far as we
are aware, our results demonstrating a range of Deep
RL tasks on the severely constrained Cortex M0 are
some of the first-of-their-kind. We show the feasi-
bility for reasonable trade-offs of algorithm perfor-
mance (i.e., reward function) and system resources
(like memory) which opens the door to many new
powerful Deep RL applications.

• Systematic Low-resource Deep RL Study. We de-
vise and investigate the general purpose use of a
range of techniques: reduced precision, agent and ar-
chitecture selection, and redundancy minimization.
When collectively applied these methods lower the
resource needs of Deep RL to the point it can lo-
cally run on embedded hardware; significantly, none
of these techniques are tied to specific RL tasks.

• TinyML Deep RL Application Evaluation. We
study a distinct tinyML application: a distributed
co-ordination task in Deep RL that performs a cus-
tom message-passing protocol for a specific topology
and environment. For the first time, our methods
show this recent theoretical result [12] can execute
even on a network of Cortex M0 nodes.

2. CHALLENGES OF MOBILE DEEP RL
In this section, we briefly provide background into deep
reinforcement learning theory and its potential to be
applied to embedded and mobile systems.
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Figure 1: Reinforcement learning cycle.

2.1 Deep RL Primer
Intuitively, learning can be understood as the process of
interacting with an environment which as a result forms
experiences. Based on these experiences with the sur-
roundings, implicit connections in terms of cause and

effect can be formed. The desired actions and conse-
quences to obtain and achieve a designated objective in
this environment can be mapped out.

In many Reinforcement Learning applications the sce-
nario can be framed more formally with the main ele-
ments of the agent, a policy, a reward, value function
and the environment and in certain scenarios a model
of the environment. The interactions of each element
in the reinforcement learning setting are illustrated in
Figure 1 shown below.

Where, at ∈ A (set of all actions),st ∈ S (set of all
states), rt ∈ R (set of all rewards). Thus, through rein-
forcement learning the process of learning is performed
by the agent interacting with the environment and re-
inforcing positive or negative behaviour to obtain an
objective, or noted as goal-directed learning.

2.2 TinyML Deep RL Scenarios
The ability to overcome the limitations of Deep RL-style
algorithms with general-purpose optimization techniques
for resource constrained devices would be broadly bene-
ficial to a host of exciting learning tasks such as robots,
drones and other sensor based networks. The optimiza-
tion techniques proposed should be easily executed on
low-resource platforms, minimize DRL model changes
and generalize well enough for a variety of possible ap-
plications. For example, sensor networks with global/local
co-ordination [21], robust low complexity control [24]
and real-time plane management [31],[32]. The applica-
tion to Deep RL in drone swarming [26] setting presents
another possible course of action.

3. DEEP RL EFFICIENCY FRAMEWORK
To enable control, and more importantly reduction, of
system resources consumed by Deep RL we developed
an efficiency framework illustrated in Figure 2. The
heart of this framework is a series of optimization tech-
niques detailed in §4.

3.1 Framework Architecture
Our efficiency framework is comprises by the following
four core artefacts shown in Figure 2.

Deep RL Module. Initially the user of the frame-
work will specify a preliminary Deep RL module. This
module is otherwise unremarkable and so includes in-
ternals such as an agent algorithm, neural architecture,
state update and forward propagation operations. This
module is the target of the framework’s efforts to re-
duce the resource consumption. It can be replaced with
another RL module once the user is satisfied with the
system resource performance achieved.

Resource Scalers. An extensible number of techniques
are included that operate on the neural architecture,
state update and forward propagation operations of the
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Figure 2: DQN Optimisation Process.

Deep RL module. Each technique has a different ca-
pability to shape one or more resources (e.g., mem-
ory and energy), by typically approximating its nor-
mal operation. We find in most cases that significant
amounts of resource usage can be reduced for only a
small loss of quality of it behavior. At this stage the
framework includes the following individual scalers: (1)
selective mixed parameter precision; (2) architecture
search; (3) redundancy minimization; (4) convolution
optimization.

Optimization Tuner. The previous framework com-
ponents provide a variety of options for shaping the
resource consumption. The role of the Optimization
Tuner is to determine how these options should be com-
bined, and where applicable, to what level of intensity
they should be applied. The aim is not for this compo-
nent to arrive the absolute optimal mixture of settings
– only for this tuning to be simple and tractable.

3.2 Framework Operation
Framework initiation begins with the provision of a Deep
RL module along with an environment (either real or
simulated). The iterative execution of the RL module
within the environment is started and this guides the
Optimization Tuner as to how heavily to pursue oppor-
tunities to reduce resources is given by the Retain Rate.
This value attempts to act as a universal summary of
optimization intensity across all available optimization
methods. Feedback to the Optimization Tuner is pro-
vided by the Reward Score computed by the Deep RL
module which is necessary part of any RL formulation
that indicates the quality of decisions being made within
the context of the task being performed.

The Optimization Tuner operates iteratively with the
provided environment feedback given to the current spec-

ification of the Deep RL module. The Optimization
Tuner can explore potential optimizations by explicitly
turning on and off certain techniques or changing the
intensity at which Resource Scalers are applied.

Primarily, the Resource Scalers will make modifica-
tions to the Neural Architecture of the Deep RL Mod-
ule. For example, separating a convolutional layer to
lower memory or compute demands. But optimizations
are also applied to the operations necessary to revise
policy decisions, which open up new potential ineffi-
ciencies that occur during the updating of the Neural
Architecture.

4. DEEP RL EFFICIENCY TECHNIQUES
We now specify in more detail each major component of
the framework described in the prior section. We begin
with each of the four Resource Scalers, before ending
with the Optimization Tuner.

4.1 Selective Mixed Parameter Precision
For deep models designed for classification tasks (e.g.,
recognize a face), it well-established that the model ac-
curacy can remain surprisingly high even if the param-
eters of the model are changed from 32-bits to 8-bits
or even less [14, 10]. The theoretical reasons for this
are not yet well understood, but it is reasoned that
the ability of deep learning to tolerate noisy complex
inputs is similar to withstanding a loss of precision in
how the data is represented within the model. However,
this property of neural networks has not been explored
significantly within Deep RL, even though clearly it is
reasonable to anticipate it might.

Motivated by this, within our optimization frame-
work we incorporate stochastic rounding [14]. Under
this approach, any Deep RL parameter can be modified
to a certain precision level simply by using:

Round(x, 〈IL,FL〉) =

{
bxc w.p 1− x−bxc

ε

bxc+ ε w.p x+ x−bxc
ε

Where, IL refers to the number of integer bits and FL
refers to the number of fractional bits. To regulate and
select which parameters are simplified a greedy search
is performed with parameters modified in batches of
layers or block of matrices for non-neural network ar-
chitecture parameters. Architecture parameters are pri-
oritized ahead of all others. A user can set the retain
value to indirectly determine the fraction of parameters
that are modified and by how much.

4.2 Redundancy Minimization
Significant inefficiencies exist within the neural architec-
ture of a Deep RL module. The following matrix factor-
ization approach has been used for classification tasks
in deep learning previously [34, 20] but as far as we are
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aware never within a Deep RL module, and therefore
it remained unknown just how effective this approach
would turn out to be. More over, we also apply such
matrix factorization based efficiency gains to Deep RL
specific operations (e.g., updating policy gradients).

Formally, the process is as follows: xL ∈ Rm×n rep-
resents the states of the nodes in the previous layer. All
connections between layer L and layer L+ 1 containing
m and n units respectively can be represented by the
matrix, WL. Let the ith row of WL contain all the
connections between the ith unit in layer L and all the
units in layer L + 1. Thus, the redundancy reduction
of the fully connected layer in a neural network can be
achieved by the well known matrix factorization tech-
nique known as Singular Value Decomposition (SVD).

The weight matrix WL
m×n can be approximated by

ŴL
m×n by taking only the first k singular values of the

full matrices [4].

WL
m×n ≈ ŴL

m×n (1)

ŴL
m×n = Um×kDk×kVk×n (2)

ŴL
m×n = Um×kBk×n (3)

As shown in Equation 3, the original weight matrix
WL

m×n can be expressed in a concise form as the prod-
uct of Um×k and Bk×n by introducing a new layer be-
tween L and L + 1. The updating of the states of all
nodes can be expressed as:

ŴL · xL = (U ·B) · xL = U · (B · xL) (4)

Thus, the number of pairwise calculations and weight
parameters is reduced when: k < m·n

m+n [6].

4.3 Architecture and Hyper-parameter Search
The optimization of the hyper-parameters associated
with various RL models are essential to the model per-
formance. The original DQN model created was ana-
lyzed in order to identify number of layers, layer types
(e.g convolutional, fully-connected) and kernel sizes and
thus identify applicable techniques. We adopt a rela-
tively simple guided search based on expected cost re-
ductions in system resources. The aggressiveness of this
search is guided by the Retain Rate. With respect to
this component the Retain Rate is proportional to the
number of parameters retained in an optimized model
compared to the original.

4.4 Convolution Minimization
Conceptually related to §4.2, this method differs in that
it targets convolutions. Just a previously discussed, this
method while popular as an approach to optimizing the
inference of deep classification models – little experi-
mental results exist about how these techniques function
in a Deep RL module.

The optimization opportunity comes from the time
complexity of convolving multi-channel input data, x ∈

RC×H×W with a bank of N d × d filters denoted as,
K ∈ RN×d×d×C is O(CNd2HW )[29]. Therefore, by
exploiting the property of separable filters we are able
to reduce the overall convolutional operations[6]. The
output feature map M ∈ RN×H×W can be stated as:

Mj = f

(∑
c

xc ∗ Kjc + bj

)
(5)

Where, f(·) is a non-linear function, b is the bias vector
for the layer and c is the index over C input channels.
Thus, for convolution minimization the goal is to obtain
an approximation K̂, expressed as [6]:

K̂cn =

K∑
k=1

Hkn (Vck)T (6)

Where, K̂ can be decomposed into horizontal, H ∈
RN×1×d×K and vertical, V ∈ RK×d×1×C filters with
lower ranks, controlled by the parameter K. The recon-
struction error of the convolutional filter approximation
should be small. Under this approach, the overall con-
volution task (indexed by n) becomes:

Kn ∗ x ≈ K̂n ∗ x (7)

K̂n ∗ x =

C∑
c=1

K∑
k=1

Hkn (Vck)T ∗ xc (8)

=

K∑
k=1

Hkn ∗
( C∑
c=1

Vck ∗ xc
)

(9)

Therefore, filters V and H are updated by the approx-
imation K̂ using the Convolution Minimization tech-
nique from the initial DQN model shown in Figure 2.
It can be seen from Equation 9 that the input x is now
convolved with two successive layers with filters, V and
H instead of the original convolutional layer. Thus,
the overall memory consumed by the original convolu-
tional layers can be reduced while maintaining compa-
rable model performance on the embedded platforms.

4.5 Optimization Tuner
As the Deep RL model proceeded through a batch of it-
erations it always considered possible optimization strate-
gies to follow. We make no novel contribution with this
optimization process and use a greedy search guided by
some regression models that give it guidance towards
tuning each optimization method for improved reward
score outcomes combined with reduced resource usage.
In this system, the Retain Rate is utilized as a universal
metric in guiding the exploration of optimization oppor-
tunities as it was technique independent. This approach
provides an effective strategy in identifying good areas
of model compression when using various combinations
of Resource Scalers as well as bad areas in which model
compression lead to degraded performance.
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5. EVALUATION
We now present the main benefits achieved by our frame-
work. The aim of each experiment can be concisely as:

• Classic RL: Investigate performance of optimized
DQN agents in classic RL control scenarios.

• Robot RL: Profile the memory footprint of robot
Deep RL models e.g, Roboschool.

• Distributed Coordination: Show an optimized DQN
agent’s performance in learning customized message
passing protocols for Colour-Digit MNIST.

Each experimental setting becomes progressively more
advanced and finally tests our framework under an RL
that learns a message passing protocol on embedded
devices. Our results demonstrate that:

• Optimized DQN models in both the classic and real-
world applications have smaller memory footprints
when compared to their baseline models.

• A reduction in energy consumption and faster model
inference as shown in §5.3.

• Optimized DQN agents in Distributed Coordination
with a retain value of 0.65 and 0.32 only had a 0.11
and 0.34 decrease in average reward respectively.

5.1 Methodology
The approach taken in this exploration was to identify
several simulated and real-world environments for Deep
RL development. After which one case study on real
embedded devices were performed.

Metrics. We will outline two crucial metrics (e.g Re-
tain Rate, Reward Score) used in optimizing Deep RL
models and evaluating their performance. The reward
score is also known as the cumulative discounted return.
It is the reward the DQN agent obtains by interacting
with the environment. The reward score is a universal
metric used in RL to easily compare the performance of
various RL algorithms for applications. Retain Rate is
presented as a generic term to describe the lowering of
complexity. As it is interpreted by different framework
optimization components differently direct interpreta-
tion is difficult. But during experiments we highlight
opportunities for doing this when they arise.

Hardware Processors. Most experiments deploy Deep
RL to an ARM Cortex M0 processor [22]. These in-
clude our Classic RL experiment (CartPole) as well as
our final case study. This processor is very limited, and
presents a strong test of it Deep RL can be effective on
TinyML devices. We also test under a physics-based
simulated environment (§5.2.2), and for these experi-
ments use an Amazon Web Services EC2 Instance [3].
But resources were limited artificially, and measured to
see how well our framework performed.

5.2 Benchmarks: Simulated Environments

We begin our experiments into optimization of Deep
RL algorithms with two well known RL simulation en-
vironments namely, CartPole from OpenAI’s Gym [7]
and Humanoid from OpenAI’s Roboschool [18]. This
enables our resource optimized agents to make decisions
within an environment and setup open and consistent
across the reinforcement learning community.

5.2.1 Classic Reinforcement Learning Scenarios
Experiment Setup. The DQN agents are run on the
ARM Cortex M0.

Scenario: CartPole. The game of CartPole is to keep
balance of a pendulum and prevent it from falling over
by controlling the cart to which the pendulum is at-
tached by an un-actuated joint. The episode fails when-
ever the pole deviates more than 15 degrees from ver-
tical or the cart moves more than 2.4 units from the
center. A reward of 1 is obtained for every frame the
pole is kept upright. The total score is the cumulative
points it earned during each episode, as the episode has
the maximum length of 200 frames, the upper bound
of the performance is 200. The initial DQN model was
trained for 175k episodes before optimization techniques
were applied.

According to Figure 4, we found that the average
reward score across 1000 episodes for the retain rate
of 0.95 is comparable with that of the original model.
There is a decline in the model performance for retain
rates ranging from 0.95 to 0.65. Correspondingly, the
average reward score decreases from 200 to approxi-
mately 120. This is a decrease in reward of 80 across a
compression of 30%. Table 1 presents a lower inference
time exerted by the compressed (retain=0.95) CartPole
model than the original model on the ARM Cortex M0.
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Figure 3: CartPole

Figure 4: Influence on average reward and parameter number with
different retaining levels for CartPole when executed on ARM
Cortex M0.

Table 1: Inference Time of CartPole (retain=0.95).

Model Time[msec]
Original 2.1
Compressed 1.2
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5.2.2 Physics-based Robot Environment
The performance and memory footprint of DQN agents
applied to one of OpenAI’s Roboschool environments
namely, Humanoid. The memory profile associated with
each model was captured using Python’s Memory Pro-
filer[25] and executed on an AWS instance.

Experiment Setup. The DQN agent is constructed based
on the architecture outlined in §4 for continuous action
spaces.

Table 2: Average Reward Score of Humanoid in Roboschool.

Game Reward Score

Humanoid -56.871

Figure 5: Time Series Memory Profile of DQN Agent in Humanoid
environment.

Figure 6: Time Series Memory Profile of A3C Agent in Humanoid
environment (Peak=175.5MB).

Table 3: Peak Memory Footprint of DQN Algorithm.

Game Memory (MB)

Humanoid 232.3

Scenario: Humanoid. The Humanoid environment was
utilized to control a bipedal robot with an upper torso
to walk forward as fast as possible and for as long as
possible without tipping over.

Reward Score. Table 2 presents the reward score
achieved which is close to the unmodified RL agent.

Memory Footprint Varies Dependant on RL Algorithm.
The memory profile of the DQN and A3C algorithms
shown in Figure 5 and 6 are different. The A3C agent
has a sharp increase in memory usage before tapering
off while the DQN agent’s memory footprint gradually
increases. The A3C agent has a lower memory footprint
peak of 175.5MB when compared to DQN’s 200.6MB.

Memory Footprint Increases in High Dimensions. The
DQN agent has a peak memory footprint of 232.3MB
(See Table 3). The higher memory footprint can also be
described as having a higher retain rate which is repre-
sentative of complexity associated with the Humanoid
model. The retain rate can be thought of as universal
controller.

5.3 Case Study: Distributed Coordination
These experiments study the proposed optimization tech-
niques applied to two practical real-world embedded
and robot applications: the autonomous robot naviga-
tion and distributed coordination network protocol.

5.3.1 Distributed Coordination Network Protocol
Reinforced Inter-Agent Learning (RIAL) and Differen-
tiable Inter-Agent Learning (DIAL) techniques have been
proposed as means of learning multi-agent Deep RL[12].
RIAL uses deep Q-Learning with recurrent neural net-
works where agents train individually and share model
parameters (Decentralized Learning). Whereas in DIAL,
gradients of agents are passed through communication
channels to each other leading to system that is end-
to-end trainable (Centralized Learning). The ability of
agents to learning efficient and robust message passing
protocols across noisy channels is beneficial in reduc-
ing the size and number of messages needed through
reinforcement learning. This approach can greatly de-
crease the computation and energy requirements and
memory footprint on resource constrained devices. Pre-
vious research in this area has mainly been theoretical.
Therefore, we propose a practical experiment to demon-
strate DIAL agents learning customized message pass-
ing on the resource constrained ARM Cortex MO[1].
We also demonstrate the performance of compressed
DIAL agents in comparison to the original model.

Figure 7: Network control performances of three DQNs on snap-
dragon 400.

Communication Scenario. We implement the deep Q-
learning solution on the ARM Cortex M0 and adopt
the DIAL approach within a game called Colour-Digit
MNIST [12]. We adapt this agent to learn a more prac-
tical message passing protocol: Each sensor node ob-
serves a low resolution image of a moving object from
which it is able to extract a series of binary characteris-
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Figure 8: Runtime Protocol Behavior of two Compressed DIAL
agents (“RNN 32” and “Weight compression 65”) compared to
the original algorithm. Reward score (y-axis) is a measure of
the quality of protocol decisions. This strong result shows both
compressed agents are only slightly worse than the original.

tics that include (1) if the object is a car or a different
entity; (2) if the object color is red or not; (3) if the
object has two or four wheels. We setup a 5-node net-
work, with each node acting as a DIAL agent. Every
node captures the three pieces of information from an
image and executes a state exchange protocol towards
agreeing to each characteristic they observe. Nodes can
repeat the analysis on the image if needed. The learn-
ing between DIAL agents seeks to find a custom spe-
cific message passing protocol for this specific problem,
that can cope with channel noise and that will minimize
the amount of bits exchanged between nodes. There
are two phases, a learning phase in which agents freely
exchange information towards the learning of an opti-
mized efficient protocol given conditions and a runtime
phase during which the learned protocol is executed.

Experiment Setup. Each ARM processor is networked
with simulated wireless conditions (random message drop
with a probability of 0.42) conditions. Within the sim-
ulation each ARM processor is provided with the same
image at each protocol execution. Although network
conditions are simulated, the actual necessary computa-
tion is performed on an ARM Cortex M0 – this satisfies
the core aim of the experiment.

Reward Score Metric. In the context of the following
results, the reward score corresponds to the efficiency of
the protocol. The objective of our embedded optimiza-
tion is to reach as closely the performance of the original
agent behavior defined by [12]. In understanding these
results a 10% lower score at the run-time of the protocol
should be roughly treated as 10% less efficient in terms
of the number of bits exchanged.

Optimized Protocol Decisions Remain Accurate. The
model achieved a maximum reward score after training
for 5000 episodes as specified by [12]. This experiment
shows that the behavior of the optimized protocol, as
executed by the DIAL agents, remain very faithful to
the unoptimized agents. Figure 8, shows the compari-
son of the average reward score for the unchanged agent

(far left) and two optimized variations of the agent that
allow them to execute efficiently even on an ARM Cor-
tex M0. The two optimizations are a compression of
the RNN layers of the agent using all three techniques
described in §3 (“RNN 32”), while the second (“Weight
compression 65”) applies only the redundancy compres-
sion alone. This translates to 32% and 65% of the orig-
inal number of agent parameters being retained.

Significantly Lower Resource Consumption. Figure 7
illustrates the performances of the control scenario un-
der three retain factors - 35%, 65%, and 100% baseline.
It can be seen from the figure that the overall energy
benefits of the optimized models are significant.

6. RELATED WORK
Optimizing Discriminative Deep Learning. Towards
improving the performance of deep-forms of reinforce-
ment learning specifically for constrained devices, the
most directly applicable techniques are those already
developed for this purpose within the context of dis-
criminative deep models. The past two years has seen
an explosion of research of this type (e.g., [16, 27, 5, 13,
20, 15, 9, 17, 34]). These works provide underlying in-
sights as to how potential modifications to the workflow
of DRL algorithms and the neural architectures that are
used towards trading off the quality of Deep RL deci-
sions for lower resources. But the research we conduct
here has developed methods to exploit these same ob-
servations within Deep RL and been first to quantify if
the degraded quality is still acceptable.
Deep Reinforcement Learning. The concept of opti-
mizing reinforcement learning even pre-dates the use of
deep learning methods and principles. Optimization in
reinforcement learning is not a novel idea and several
researchers approached this problem since the 2000s.

But only recently relatively recently have works started
to examine this important issue of on-device tinyML
deployment of DeepRL [11, 33, 19, 28]. We add to
this growing discussion by providing a general purpose
framework for TinyML applications. [28] targets net-
working applications and is less general purpose. [19] is
particularly relevant to our mixed precision component,
and we plan to leverage its results in the future. [33,
11] are strong examples of applications of Deep RL run-
ning on TinyML systems as drones. Our case study is
distinct from drones, as it targets networking protocols,
and complements this strong drone based work.

7. CONCLUSION
In this work, we have taken significant strides towards
understanding of the system resource bottlenecks within
forms of deep reinforcement learning (Deep RL), and
how these can be managed with a series of proposed
optimizations that make it possible for mobile-class pro-
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cessors adopt such approaches.
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