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Abstract

In recent years, pre-trained language models001
(PLMs) have been shown to capture factual002
knowledge from massive texts, which encour-003
ages the proposal of PLM-based knowledge004
graph completion (KGC) models. However,005
these models are still quite behind the SOTA006
KGC models in terms of performance. In007
this work, we find two main reasons for the008
weak performance: (1) Inaccurate evaluation009
setting. The evaluation setting under the closed-010
world assumption (CWA) may underestimate011
the PLM-based KGC models since they intro-012
duce more external knowledge; (2) Inappro-013
priate utilization of PLMs. Most PLM-based014
KGC models simply splice the labels of entities015
and relations as inputs, leading to incoherent016
sentences that do not take full advantage of the017
implicit knowledge in PLMs. To alleviate these018
problems, we highlight a more accurate evalua-019
tion setting under the open-world assumption020
(OWA), which manual checks the correctness021
of knowledge that is not in KGs. Moreover, mo-022
tivated by prompt tuning, we propose a novel023
PLM-based KGC model named PKGC. The024
basic idea is to convert each triple and its sup-025
port information into natural prompt sentences,026
which is further fed into PLMs for classifica-027
tion. Experiment results on two KGC datasets028
demonstrate OWA is more reliable for evaluat-029
ing KGC, especially on the link prediction, and030
the effectiveness of our PKCG model on both031
CWA and OWA settings.032

1 Introduction033

Knowledge graph (KG) has gradually become the034

cornerstone of many Natural Language Processing035

(NLP) tasks (Cui et al., 2017; Zhou et al., 2018), as036

one of the most effective ways to represent world037

knowledge. To improve the coverage, researchers038

have automated knowledge extraction techniques039

or relied on collaborative editing, while these KGs040

still hardly cover the massive emerging knowledge041

in the real world. This problem motivates knowl-042

Triple Query: (England, contains, ?)

PLM-based KGC Model

1. Lancashire
2. Suffolk
3. Sunderland
...

14. Pontefract
15. Dundalk

Closed-world
Assumption

Open-world
Assumption

Figure 1: Evaluation results for link prediction under
different settings. The bolded entities in the dashed
box are all correct answers, but only the red entities are
considered correct under the closed-world assumption.

edge graph completion (KGC), the task of predict- 043

ing missing links through understanding existing 044

structures in KGs. 045

Soon sweeping across the entire NLP field, the 046

potential of pre-trained language models (PLMs) 047

for KGC has attracted much attention. Petroni et al. 048

(2019); Shin et al. (2020) reveal that PLMs have 049

captured factual knowledge implicitly from mas- 050

sive unlabeled texts. This could be helpful to com- 051

plete missing knowledge. KG-BERT (Yao et al., 052

2019) first introduces PLMs into KGC. It splices 053

the labels of entities and relation in the triple as 054

the input of PLMs to verify its correctness. Kim 055

et al. (2020) further introduces multi-task learn- 056

ing on the basis of KG-BERT. However, the above 057

PLM-based KGC models do not present promis- 058

ing results, or are even quite behind conventional 059

knowledge graph embedding (KGE) models (about 060

20.8% lower than the SOTA model in Hits@10). 061

This raises a question: why the learned factual 062

knowledge in PLMs cannot be beneficial for KGC? 063

In this work, we find two main reasons for the 064

weak performance of PLM-based KGC models: 065

(1) Inaccurate evaluation setting. Most existing 066

KGC models are evaluated under the closed-world 067

assumption (CWA), which assumes that any knowl- 068
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edge unseen in given KGs is incorrect. Such a069

setting can benefit the automatical dataset construc-070

tion without manual annotation. However, the intro-071

duction of PLMs brings in much unseen knowledge,072

which is considered to be incorrect under CWA,073

wrongly lowering the performance. As shown in074

Figure 1, for a triple query (England, contains, ?),075

the PLM-based KGC model gives many correct076

tail entities (highlight with boldface), but only Pon-077

tefract is considered correct under CWA since it078

exists in KGs. (2) Inappropriate utilization of079

PLMs. Existing PLM-based KGC models sim-080

ply splice the labels of the entities and relations081

in the triples as the input of PLMs. This results082

in incoherent sentences, which gaps with the pre-083

trained task and thus cannot take full advantage of084

the knowledge in PLMs.085

To alleviate the above two problems, we propose086

a new benchmark setting for rectification of this087

line of research and a novel PLM-based model.088

To make the KGC evaluation more credible, we089

highlight a new evaluation setting based on the090

open-world assumption (OWA) — the knowledge091

not in KGs is not false, but unknown. Thus, false092

positives under CWA shall be removed, as long093

as we recognize exact true and false triples from094

unknown. For these unknown triples, we conduct095

human annotation to check if they are valid.096

We further propose a novel PLM-based KGC097

model, PKGC, to better induce the implicit knowl-098

edge hidden in the PLM’s parameters. Motivated099

by the prompt-based models (Petroni et al., 2019;100

Shin et al., 2020), the basic idea is to convert each101

triple into natural prompt sentences instead of sim-102

ply splicing their labels. In specific, we manually103

define the prompt template for each relation type104

and further introduce soft prompts to better express105

the semantics of triples. Moreover, benefiting from106

prompt tuning, PKGC can flexibly consider the107

contexts of triples, such as definition and attributes108

by inserting them as the support prompt at the end109

of the triple prompt.110

We conduct experiments on two KGC datasets111

sampled from Wikidata and Freebase, and re-112

evaluate the KGE-based and PLM-based KGC113

models under OWA instead of CWA. According114

to our experimental results, we find that: (1) OWA115

provides a more accurate evaluation for KGC, es-116

pecially for the more knowledgeable PLM-based117

KGC model and the more open link prediction118

task. (2) By converting triples and supporting infor-119

mation into natural prompt sentences, our PKGC 120

model can effectively utilize the PLM’s knowledge 121

in the KGC task, and thus is less sensitive to the 122

amount of training data. (3) The reason for the 123

good performance of our model is not only that 124

PLMs have seen part of relevant knowledge in mas- 125

sive text, but also that our model has the reasoning 126

ability and can combine knowledge from PLMs 127

and KGs to infer unknown knowledge. 128

2 Related Work 129

2.1 Evaluation of KGC 130

Most exitsing KGC models (Ji et al., 2021) are 131

evaluated under CWA, since the datasets can be 132

constructed automatically. However, CWA is es- 133

sentially an approximate assumption, which may 134

bring inaccurate evaluation results. 135

OWA is rarely used to evaluate the performance 136

of KGC models since it requires manual annota- 137

tion for unseen triples. In recent years, there are 138

two datasets CoDEx (Safavi and Koutra, 2020) and 139

InferWiki (Cao et al., 2021), which provide evalu- 140

ation datasets for triple classification under OWA. 141

Besides, Safavi et al. (2020) evaluat the calibration 142

of knowledge graph embeddings under OWA. Al- 143

though these works are partially performed under 144

OWA, they only use OWA as an additional experi- 145

mental setting. In this work, we first systematically 146

compare the differences between different models 147

and different tasks under CWA and OWA. We find 148

that CWA cannot accurately reflect the real perfor- 149

mance of KGC models, which is more evident for 150

PLM-based KGC models and link prediction task. 151

2.2 KGC Models 152

KGE models are the early mainstream approach for 153

KGC. KGE models can be divided into three cate- 154

gories: (1) translation-based models (Bordes et al., 155

2013; Sun et al., 2019); (2) tensor-factorization 156

based models (Balažević et al., 2019; Nickel et al., 157

2016) and (3) non-linear models (Dettmers et al., 158

2018; Nguyen et al., 2017). In addition, there are 159

some KGE models that further introduce additional 160

information, such as text (Xie et al., 2016; Veira 161

et al., 2019) and attributes (Lin et al., 2016). 162

In addition to KGE models, there are some PLM- 163

based models that attempt to obtain knowledge 164

from PLMs, which are detailed in the following. 165

PLM-based KGC models fine-tune the PLMs 166

on the KGC task to leverage both the implicit 167

knowledge in PLMs and the structured knowledge 168
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in KGs. KG-BERT (Yao et al., 2019) is the first169

model that uses PLMs to perform KGC. It simply170

splices the labels of entities and relations in triples171

as the input to PLMs. Based on KG-BERT, Kim172

et al. (2020) further introduce multi-task learning,173

and Talukdar et al. (2021) focuses on zero-shot174

learning setting. Compared with our model, these175

model all simply splices the labels in triples, which176

results in incoherent sentences and cannot fully177

exploit the implicit knowledge in PLMs.178

Prompt-based knowledge probing models179

aims at probing how much knowledge the PLM180

contains. Therefore, they do not fine-tune the PLM181

on KGC tasks. LAMA (Petroni et al., 2019) is182

the first prompt-based knowledge probing work,183

which converts a triple query into sentences with184

[MASK] and uses the output of [MASK] as the185

predicted entity. Based on LAMA, there are some186

models (Shin et al., 2020; Zhong et al., 2021; Liu187

et al., 2021) improved from automatic template188

generation and adding soft prompts. These models189

focus on probing and do not use the knowledge190

already in KGs. In addition, most of them can only191

predict entities with a single token, so these models192

cannot be realistically used for KGC yet.193

3 Preliminary194

Knowledge graph is a network composed of en-195

tities and relations. It can be defined as KG =196

{E ,R, T }, where E is the set of entities and R is197

the set of relations. T = {(h, r, t)} ⊆ E ×R× E198

is the triple set, where h and t are the head and tail199

entities, and r is the relation between them.200

Knowledge graph completion task aims at com-201

pleting missing triples (h, r, t) /∈ T for the knowl-202

edge graph. There are two main methods to do203

this task, namely link prediction and triple classifi-204

cation, where the former mainly predicts missing205

entities for triple queries (h, r, ?) or (?, r, t), and206

the latter aims to determine whether a given triple207

(h, r, t) is correct or not.208

Closed-world assumption (CWA) believes that209

the triples that do not appear in a given knowledge210

graph are wrong. This means that if the dataset con-211

sists of training/validation/test set, and the model212

is tested on the test set, only the triples that have213

appeared in the entire dataset are considered to be214

correct. We can easily evaluate the performance of215

models without annotation under CWA. However,216

CWA is essentially an approximation and cannot217

guarantee the accuracy of the evaluation results.218

Open-world assumption (OWA) believes that 219

the triples contained in the knowledge graph are 220

not complete. Therefore, the evaluation under the 221

open-world assumption is more accurate and closer 222

to the real scenario, but requires additional human 223

annotations to carefully verify whether the com- 224

pleted triples that are not in the knowledge graph 225

are correct or not. 226

4 Methodology 227

4.1 Framework 228

In this paper, we propose a novel PLM-based KGC 229

model named PKGC, which can leverage the im- 230

plicit knowledge in PLMs and the structured knowl- 231

edge in KGs to infer new knowledge. 232

Specifically, on the one hand, we convert a triple 233

into prompt sentences to use the knowledge in 234

PLMs. As shown in Figure 2, given a triple, our 235

model transforms it into triple prompts P T and 236

support prompts PS , which are jointly fed into 237

a pre-trained language model. Formally, the fi- 238

nal input texts T to the PLM can be defined as 239

T = [CLS]P T PS[SEP] and the output of 240

[CLS] in the language model is used to predict 241

the label of the given triple. On the other hand, 242

we feed positive/negative triples to our model for 243

triple classification and use cross-entropy loss for 244

training. In this way, our model can exploit the 245

structural information in KGs. 246

In the following sections, we will introduce the 247

design strategy of triple prompts(Section 4.2) and 248

the production method of support prompts (Section 249

4.3) in detail. In addition, we will also explain the 250

training method of our model in Section 4.4. 251

4.2 Triple Prompts 252

To better exploit the implicit knowledge in PLMs, 253

we transformed each triple into triple prompts. Mo- 254

tivated by LAMA (Petroni et al., 2019), for every 255

relation r ∈ R, we manually design a hard tem- 256

plate for the relation to represent the semantics of 257

the associated triples. For example, in Figure 2, the 258

hard template for relation member of sports team is 259

“[X] plays for [Y].”. By replacing [X] and [Y] with 260

the labels of the head and tail entities, we can ob- 261

tain the preliminary triple prompts P T
p . In Figure 262

2, P T
p is “Lebron James plays for Lakers.”. 263

To make triple prompts more expressive, in- 264

spired by Han et al. (2021), we also add some soft 265

prompts to P T
p to form the final triple prompts 266

P T . Formally, we have a vector lookup table 267
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Pre-trained Language Model

[CLS] James .… sport .…

Support Prompts

Lebron James: American basketball player.

The sport number of Lebron James is 23.

Lakers: American professional basketball team.

Attribute

Definition

Triple: (Lebron James, member of sports team, Lakers)

~c
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> MLP Predicted Triple Label

[SEP]

Triple Prompts

[SP] Lebron James [SP] plays for [SP] Lakers [SP].

Lebron James plays for Lakers.Template: [X] plays for [Y].

Adding soft prompts

Lebron for… Lakers .…[SP]j
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

[SP]1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

The Founding year of Lakers is 1947.

Lebron The[SP]n
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 2: Illustration of our PKGC model for triple classification. Triples are transformed into triple prompts (left
part) and support prompts (right part) to do the classification using PLMs.

__ Template __ Entity Label __ Template __ Entity Label __ Template __ .

1 2 3 4 5 6

Figure 3: Illustration of inserting soft prompts into triple
prompts. The "Template" in the sentence represents the
words in the hard template. We can insert several soft
prompts in six positions (underlined) at most, and the
sum of the numbers of these soft prompts is n.

P ∈ R|R|×n×d for soft prompts, where n is the268

total number of soft prompts contained in the triple269

prompts for one triple, and d is the dimension of the270

word vector corresponding to the language model.271

As shown in Figure 3, the template and entity label272

split the triple prompts into six positions and we can273

insert soft prompts in them respectively. The num-274

ber of soft prompts at each position is n1, n2, · · ·n6.275

In our model, we have n =
∑6

i=1 ni. For the k-th276

soft prompt [SP]k in the triple prompts, when it277

is input to the language model, the corresponding278

word vector will be replaced with a vector from279

P, i.e., pk
r = P[idx(r),k] ∈ Rd, where idx(r) is the280

ranking index of relation r. In other words, pk
r is281

the k-th vector corresponding to the relation r in P.282

As the training progresses, the vector lookup table283

P will be updated so that it can better represent284

the semantics of the corresponding triples together285

with the hard templates.286

4.3 Support Prompts287

In addition to the triple information in the knowl-288

edge graph itself, there are many support informa-289

Type Template

Definition “[Entity]: [Definition Text].”
Attribute “The [Attribute] of [Entity] is [Value].”

Table 1: Templates for support information, where
[Entity], [Attribute], [Value] denote the label of entity,
attribute and value respectively. [Definition Text] is the
text corresponding to the entity definition.

tion that can help knowledge graph completion, 290

such as definition and attribute. In previous knowl- 291

edge graph embedding models (Veira et al., 2019; 292

Lin et al., 2016), it is usually necessary to change 293

the model structure to introduce specific types of 294

additional information, which will bring a lot of 295

additional overhead and is not conducive to the uni- 296

fication of multiple types of support information. 297

Due to the generality of the language, it is easy to 298

introduce various support information in our model 299

without changing the model structure. As shown 300

in Table 1, we define templates to convert support 301

information into the corresponding sentences. For 302

a triple (h, r, t), there may be more than one corre- 303

sponding attribute. In order to avoid too complex 304

models, in this work, we use a random strategy 305

to select attributes, i.e., randomly selecting an at- 306

tribute for each entity in a triple. 307

It is worth noting that our model does not require 308

all support information to be present. If it does not 309

exist, just do not add the corresponding information. 310

In addition, our model can also support more other 311

types of support information well, just by manually 312
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defining the corresponding templates as in Table 1.313

4.4 Training314

Our model is trained on the triple set D = T ∪ T −315

as triple classification. Specifically, T − consists of316

two types of negative triples: (1) random negative317

triples T −
RAN, which is generated by randomly re-318

placing the head or tail entities of the triple in T319

with other entity in E . Random negative examples320

are simple, but can cover most entities. (2) KGE-321

based negative triples T −
KGE, which is generated by322

replacing the head or tail entity with another en-323

tity that the KGE model considers to have a high324

probability of holding. KGE negative triples are325

more difficult. In our model, there is a hyperpa-326

rameter α to control the ratio of T −
RAN and T −

KGE,327

i.e., |T −
RAN|

|T −
KGE|

= α
1−α . Besides, we also have a hy-328

perparameter K to control the ratio of positive and329

negative triples, i.e., |T | = K · |T −|. Given a triple330

τ = (h, r, t), the classification score for the triple331

can be defined as:332

sτ = Softmax(Wc), (1)333

where c ∈ Rd is the output vector of the input334

token [CLS], W ∈ R2×d is a linear neural net-335

work. We define the following cross-entropy loss336

for optimization:337

L = −
∑

τ∈T ∪T −

(yτ log(s1τ ) + (1− yτ )
log(s0τ )

K
), (2)338

where yτ ∈ {0, 1} is the label for triple τ and339

s0τ , s
1
τ ∈ [0, 1] are the value of the first two dimen-340

sions of sτ .341

5 Experiments342

In experiments, we give the results of models un-343

der CWA and OWA. Specifically, the results under344

CWA are for reference, and the results under OWA345

can better reflect the real performance of the model.346

5.1 Evaluation Protocol347

Link Prediction Given a positive triple (h, r, t)348

in the test set, we convert it into a triple query349

(h, r, ?) or (?, r, t). The link prediction task re-350

quires the model to give a descending order of351

the probability that each entity is the missing en-352

tity. Following previous work (Dettmers et al.,353

2018), we use two evaluation metrics, i.e., MRR354

and Hits@N. However, these two metrics are not355

applicable in link prediction under OWA since we356

Dataset |E| |R| # Train # Valid # Test

Wiki27K 27,122 62 74,793 20,242/2,000 20,244/2,000
FB15K-237-N 13,104 93 87,282 14,082/2,000 16,452/2,000
FB15K-237-H 13,104 93 87,282 14,082/2,000 16,452/2,000

Table 2: Statistics of the datasets we use, where # Train
, # Valid and # Test denote the number of triples in
the training, validation and test sets, respectively. For
the right two columns, the front and back of the slash
represent the number of triples used for evaluation under
CWA and OWA, respectively.

cannot get the true label of all possible triples by 357

manual annotation. For example, given a medium- 358

sized dataset with 10,000 entities and 10,000 triples 359

in the test set, we need to know the true labels of 360

at most 200 million (2× 10, 000× 10, 000) triples, 361

which is not possible to get by annotation. There- 362

fore, we use an alternative evaluation. Specifically, 363

we sample triples from test set and fill the missing 364

entity with the top-1 predicted entity. Then, we 365

manually annotate the correct ratio of these triples. 366

This evaluation metric is denoted as CR@1. 367

Triple Classification Triple classification task 368

aims to judge whether a given triple is correct or not. 369

This is essentially a binary classification task, so 370

we use Accuracy and F1 as the evaluation metrics. 371

In contrast to link prediction, triple classification 372

task enables a low-cost evaluation of the model’s 373

performance under OWA, because we only need 374

to ensure a small number of (consistent with the 375

number of positive triples in the test set) negative 376

triples that are really wrong through annotation. 377

5.2 Datasets 378

We use two main datasets sampled from Wikidata 379

and Freebase in our experiments. 380

As we introduce in Section 2, CoDEx and In- 381

ferWiki provide evaluation datasets for triple clas- 382

sification under OWA. However, they have some 383

problems that do not apply to our task. For example, 384

the distribution of relations for the negative triples 385

of CoDEx differs significantly from the training set, 386

which violates the assumption of consistent distri- 387

bution. InferWiki is mainly concerned with the 388

triples that can be inferred from rules. Therefore, 389

we construct a new dataset named Wiki27K based 390

on Wikidata and manually annotate real negative 391

triples. Due to space limitations, we put the de- 392

tailed steps of dataset construction in Appendix A. 393

As reported by (Akrami et al., 2020), there are 394

many mediator (CVT) nodes in Freebase, which 395
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Model
Wiki27K FB15K-237-N

MRR @1 @3 @10 CR@1 MRR @1 @3 @10 CR@1
K

G
E

M
od

el
s TransE (Bordes et al., 2013) 15.5 3.2 22.8 37.8 16.0 25.5 15.2 30.1 45.9 42.0

TransC (Lv et al., 2018) 17.5 12.4 21.5 33.9 20.0 23.3 12.9 29.8 39.5 44.0
ConvE (Dettmers et al., 2018) 22.6 16.4 24.4 35.4 21.5 27.3 19.2 30.5 42.9 48.5
WWV (Veira et al., 2019) 19.8 15.7 23.7 36.5 22.5 26.9 13.7 28.7 44.3 40.5
TuckER (Balažević et al., 2019) 24.6 18.3 26.5 38.2 33.0 31.2 22.8 34.6 48.6 51.0
RotatE (Sun et al., 2019) 21.6 12.3 25.6 39.4 30.5 27.9 17.7 32.0 48.1 53.0

PL
M

-b
as

ed

KG-BERT (Yao et al., 2019) 19.2 11.9 21.9 35.2 35.5 20.3 13.9 20.1 40.3 47.5
LP-RP-RR (Kim et al., 2020) 21.7 13.8 23.5 37.9 38.0 24.8 15.5 25.6 43.6 52.5
PKGC 25.2 18.9 28.5 39.0 44.0 30.7 23.2 32.8 47.1 58.5
PKGC w/ attribute 25.5 19.1 28.8 39.4 44.0 31.1 23.5 32.9 47.7 58.5
PKGC w/ definition 28.5 23.0 30.5 40.9 47.5 33.2 26.1 34.6 48.7 62.5

Table 3: Link prediction results on two datasets. @X denotes Hits@X. CR@1 is the evaluation metric for OWA in
Section 5.1. All metrics are multiplied by 100. The best score is in bold.

will bring Cartesian production relations. (Akrami396

et al., 2020) confirm that the prediction tasks corre-397

sponding to these relations are not meaningful and398

would improperly improve the model accuracy. In399

order to increase the difficulty of the task and to be400

closer to the KGC task in real scenarios, we obtain401

a dataset FB15K237-N by removing the relations402

containing mediator nodes in FB15K-237. Besides,403

to make the triple classification harder, we also con-404

struct a dataset FB15K-237-NH based on FB15K-405

237-N by only modifying the negative triples. It406

is only used for triple classification. Specifically,407

for every positive triple (h, r, t) in validation and408

test set, we use TransE (Bordes et al., 2013) to409

do link prediction and use the highest probability410

non-answer entity to replace the missing entity to411

generate a hard negative triple. The statistics of our412

datasets are listed in Table 2. We will publish our413

codes and datasets upon acceptance.414

5.3 Experiment Setup415

Baseline Models In experiments, we choose six416

KGE models as comparisons, namely TransE (Bor-417

des et al., 2013), ConvE (Dettmers et al., 2018),418

TuckER (Balažević et al., 2019), RotatE (Sun et al.,419

2019), TransC (Lv et al., 2018) and WWV (Veira420

et al., 2019), the last two of which use concept421

and definition information, respectively. In addi-422

tion, we also compare with two PLM-based models423

KG-BERT (Yao et al., 2019) and LP-RP-RR (Kim424

et al., 2020). For our model, we have a base model425

PKGC that does not use any support information426

and two variants that use two support information,427

definition and attribute, respectively.428

Implementation Details In our implementation,429

we use RoBERTa-Large as the PLM. For the pa-430

rameters n, α,K, we choose them from {0, 1, 2, 3, 431

6}, {0.0, 0.3, 0.5, 0.7, 1.0} and {10, 30, 50, 100}, 432

respectively. More parameter selections are placed 433

in the Appendix F. We use TuckER (Balažević 434

et al., 2019) to generate KGE negative triples for 435

our model. The details of the manual annotation in 436

the experiments are placed in the Appendix E. For 437

TransE and RotatE, we use the codes implemented 438

by OpenKE (Han et al., 2018). For other baseline 439

models, we use the codes released by the authors 440

for re-implementation. 441

5.4 Link Prediction Results 442

The experimental results on link prediction are 443

shown in Table 3, where Hits@1 and CR@1 can 444

evaluate the accuracy of the model to predict the 445

entity with the highest probability under CWA and 446

OWA, respectively. From the table, we can learn 447

that most models have a large difference in per- 448

formance under Hits@1 and CR@1. This perfor- 449

mance gap is more evident in PLM-based models. 450

For example, on Wiki27K, although KG-BERT and 451

LP-RP-RR are lower than almost all KGE models 452

on Hit@1, they both outperform them on CR@1. 453

For KGE models, the performance gap cannot be 454

ignored as well. We can see that the models do not 455

have the same ranking of performance under CWA 456

and OWA, which illustrates the inability of CWA to 457

bring accurate evaluation results on the link predic- 458

tion task. This work is only a preliminary discovery 459

of the huge performance difference between KGC 460

models under CWA and OWA. We think that the 461

existing KGC models should be systematically and 462

comprehensively re-evaluated under OWA, and we 463

leave it for future work. 464

By comparing the results of our model with 465
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Model
Wiki27K FB15K-237-N FB15K-237-NH

Acc. F1 Acc. F1 Acc. F1
K

G
E

M
od

el
s TransE (Bordes et al., 2013) 65.5/64.2 72.3/71.5 66.2/64.0 71.1/70.4 50.4/49.2 66.4/62.0

TransC (Lv et al., 2018) 68.7/68.4 71.5/71.2 66.4/64.6 71.3/70.8 51.3/50.2 67.9/64.1
ConvE (Dettmers et al., 2018) 70.7/68.8 73.5/73.5 67.3/67.3 71.8/73.7 54.4/55.4 67.5/67.0
WWV (Veira et al., 2019) 69.9/68.0 72.8/72.5 65.2/65.7 70.8/70.1 50.5/49.6 66.7/62.2
TuckER (Balažević et al., 2019) 70.0/69.5 73.1/73.8 68.3/71.0 71.9/74.3 54.6/55.7 67.5/67.4
RotatE (Sun et al., 2019) 72.3/64.0 75.1/71.3 67.9/63.2 72.3/69.9 51.9/51.8 66.9/64.8

PL
M

-b
as

ed

KG-BERT (Yao et al., 2019) 83.7/82.4 84.3/83.1 71.8/72.7 72.8/73.6 56.6/57.7 63.5/63.9
LP-RP-RR (Kim et al., 2020) 84.3/83.6 85.1/84.4 73.8/74.4 73.0/74.5 58.6/59.2 65.2/65.9
PKGC 87.0/87.8 87.1/88.0 79.6/81.4 79.5/81.2 63.9/64.8 68.8/68.7
PKGC w/ attribute 87.6/87.8 87.5/87.9 79.5/81.2 79.5/81.4 64.2/65.1 68.9/69.8
PKGC w/ definition 90.0/90.0 90.1/90.2 82.5/84.4 83.0/84.7 65.9/67.0 70.6/71.6

Table 4: Triple classification results on three datasets. The values before and after the slash are the results under
CWA and OWA, respectively. All metrics are multiplied by 100. The best score is in bold.

baseline models, we find that although our model466

does not have a significant performance advantage467

under CWA, it significantly outperforms previous468

models (both KEG and PLM-based models) under469

OWA. This suggests that the approach of convert-470

ing triples into sentences in our model can make471

better use of the implicit knowledge in PLMs. For472

our model, adding support information can achieve473

performance improvements, of which definition474

brings better obvious improvement. The possible475

reason is that the definition is unique and does not476

need to be randomly selected like attributes. There-477

fore, it introduces less noise and is more accurate.478

5.5 Triple Classification Results479

In Table 4, we give the experimental results of all480

models on the triple classification task. Specif-481

ically, we give the results under both CWA and482

OWA. By comparing the performance of the model483

under CWA and OWA side-by-side, we can find484

that most models have a small performance gap.485

This is probably explained by the small proportion486

of false negative triples in the triple classification487

task. Specifically, in triple classification, there are488

about 5% of false negative triples on average, and489

for the Hits@1 of the link prediction, there are on490

average more than 30% of false negative triples.491

From the table, we can know that our model sig-492

nificantly outperforms baseline models under both493

assumptions. Specifically, compared to the KGE494

models, both our model and other PLM-based KGC495

models achieve better results, which indicates that496

the introduction of PLMs can help the model to497

better determine whether the triple is correct or not.498

There may also be a reason that the PLM-based499

KGC models are trained using the classification500

loss and may be better suited for the triple classifi- 501

cation task. Comparing all variants of our model, 502

the definition brings better results, which is consis- 503

tent with the performance in link prediction, and 504

the reasons should be similar. 505

5.6 Analysis 506

In order to further analyze what benefits the PLM 507

can bring to our model and why it can bring these 508

benefits, we conduct some triple classification ex- 509

periments under OWA. Our analysis can be divided 510

into the following three questions. Due to space 511

limitations, we put more analysis in the Appendix. 512

Q1: PLMs have seen many facts in the massive 513

texts. Is it because they remember these facts to 514

help our model achieve better results? 515

A1: Partially yes. It is worth noting that it 516

is non-trivial to answer this question rigorously. 517

Therefore, we do an approximate experiment 518

based on distant supervision. Specifically, for a 519

triple (h, r, t), if h and t appear in a sentence in 520

Wikipedia 1, we consider this sentence to imply the 521

fact of (h, r, t). In our experiments, for each triple 522

(h, r, t) in the validation and test set, we count the 523

number of sentences in Wikipedia that contain both 524

h and t. For BERT, which is mainly pre-trained on 525

Wikipedia texts, we can assume that the number of 526

sentences corresponding to the triple can represent 527

the number of times BERT has seen this fact. 528

In experiments, we divide the test set into sev- 529

eral disjoint parts based on the number of sentences 530

corresponding to each triple and obtain the perfor- 531

mance of our model (with BERT-Large), ConvE 532

and TuckER on them. The experimental result 533

is shown in the left part of Figure 4. From the 534

1https://www.wikipedia.org/
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Figure 4: The experimental results on FB15K-237-N
corresponding to Q1 (left) and Q2 (right). The hori-
zontal coordinates of the left and right figures are the
number of sentences corresponding to the triples in the
test set and the proportion of the training set used for
training, respectively.

figure, we know that there is an increase in the per-535

formance of our model as the number of sentences536

corresponding to the triple grows, while ConvE and537

TuckER are essentially constant or slightly decreas-538

ing. This indicates that our model does perform539

better on the triples that PLMs have seen more540

times. In addition, it is worth noting that even on541

the test set with zero relevant sentence, our model542

still outperforms both KGE models, which indi-543

cates that our model also has the ability to reason544

and can fuse the knowledge from PLMs and KGs545

to infer new knowledge.546

Q2: Can the introduced PLMs make our models547

less sensitive to the amount of training data?548

A2: Yes. Unlike KGE models that require train-549

ing all entity and relation vectors from scratch, our550

model is based on PLMs that have been well pre-551

trained. Therefore, we conjecture that our model is552

insensitive to the amount of training data. To vali-553

date it, we train models using different proportions554

of the training set and get the performance.555

The experimental results are shown in the right556

part of Figure 4. From the figure, we can see557

that the performance of our model only decreases558

slightly as the amount of data used for training559

decreases. As a comparison, the performance of560

both KGE models, ConvE and TuckER, decreases561

significantly. This indicates that our model is less562

sensitive to the amount of training data compared563

to the KGE models and has the potential to be used564

for sparse knowledge graph completion.565

Q3: In recent years there have been some PLMs566

containing knowledge. Can using them give bet-567

ter results for our model?568

A3: Partially yes. We compare the performance569

of our model using different PLMs. Specifically,570

we choose two PLMs containing knowledge, KE-571

Model
Wiki27K FB15K-237-N

Acc. F1 Acc. F1

PKGC (w/ BERT-base) 86.2 86.4 80.9 80.7
PKGC (w/ RoBERTa-base) 85.5 85.7 77.0 78.5
PKGC (w/ KEPLER) 85.7 85.9 77.3 78.8
PKGC (w/ LUKE-base) 86.1 86.3 82.0 82.7

Table 5: Triple classification results with different pre-
trained language models.

PLER (Wang et al., 2021) and LUKE (Yamada 572

et al., 2020). KEPLER uses the RoBERTa-base ar- 573

chitecture and jointly optimizes the knowledge em- 574

bedding and language modeling objectives. LUKE 575

continued to pre-train on the Wikipedia corpus with 576

200K steps based on RoBERTa. For a fair compar- 577

ison, we choose the base version for every PLM. 578

We conduct experiments on FB15K-237-N and 579

Wiki27K. The experimental results are shown in 580

Table 5. As we can see from the table, compared 581

to RoBERTa-base, LUKE-base can bring more per- 582

formance gains than KEPLER. This is probably 583

because LUKE needs to specify the label and po- 584

sition of the entity in the input, which makes it 585

easier to use the entity information in the PLM. 586

However, both LUKE-base and KEPLER perform 587

worse than BERT-base on Wiki27K. One possi- 588

ble reason is that these two PLMs are trained on 589

RoBERTa instead of BERT. And from the table, 590

we can see that BERT-base performs better than 591

RoBERTa-base. A similar phenomenon is reported 592

by Shin et al. (2020). The possible reason is that 593

BERT is mainly trained on Wikipedia corpus and 594

contains more factual knowledge. 595

6 Conclusion and Future Work 596

With the rapid development of pre-trained language 597

models, some PLM-based KGC models are pro- 598

posed. However, there is still a performance gap 599

between these models and SOTA KGE models. In 600

this work, we find two main reasons for the weak 601

performance: (1) Inaccurate evaluation setting. (2) 602

Inappropriate utilization of PLMs. To alleviate 603

these problems, we highlight a more accurate eval- 604

uation setting OWA and propose a novel PLM- 605

based KGC model. In our experiments, we verify 606

that CWA cannot bring accurate evaluation results. 607

Moreover, the experimental results show that our 608

model can achieve better results than the previous 609

method. In our future work, we plan to comprehen- 610

sively and systematically re-evaluate the existing 611

KGC models to reveal their real performance. 612
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A Dataset Construction758

Our Wiki27K is built on Wikidata 2. The detailed759

steps for building Wiki27K are:760

(1) For all entities in Wikidata, we score the en-761

tity in four areas: frequency of the entity, whether762

the entity has English Wikipedia links, whether763

the entity has non-English Wikipedia links, and764

whether the entity has Freebase links. We normal-765

ize the entity frequencies of all entities to a contin-766

uous value from 0 to 1. For the last three metrics,767

the score is 1 if the corresponding link is present;768

otherwise, it is 0. The final score for each entity is769

obtained by summing the above four items. We ran-770

domly select 27,122 entities among the top 30,000771

entities in the score ranking to form our entity set772

E .773

(2) For each relation r in Wikidata, we define774

its frequency as the size of corresponding triple775

set, i.e., |{(h, r, t)|h ∈ E ∧ t ∈ E}|. We sort the776

relations in descending order by their frequency777

and select the top 200 relations to form the set of778

relations Rw. Besides, we also use the set of rela-779

tions from CoDEx (Safavi and Koutra, 2020) and780

LAMA (Petroni et al., 2019), denoted as Rc and781

Rl, respectively. The final relation set is defined as782

R = Rw ∩ (Rc ∪Rl).783

(3) We select (h, r, t) whose h, r ∈ E and r ∈ R784

from Wikidata to form our triple set T .785

(4) We randomly shuffle the triple set and com-786

pose the training/validation/test set at a ratio of787

8:1:1.788

(5) There exists some symmetry relation r in R,789

i.e., if (h, r, t) holds, then (t, r, h) also holds. If790

(h, r, t) is present in the training set and (t, r, h)791

exists in the validation set or the test set, the model792

is able to make predictions easily. To avoid this793

information leakage and to make the dataset more794

difficult, inspired by FB15K-237 (Toutanova et al.,795

2015), for each symmetric relation r, we remove796

(h, r, t) from the training set if (t, r, h) is in the797

validation or test set. In our dataset, the symmetric798

relations being processed include shares border799

with and twinned administrative body.800

B Recall and Re-ranking Framework801

For a triple query (h, r, ?) in link prediction, the802

KGC models need to replace the tail entity with803

each entity in the entity set and then calculate the804

score. After that, the model can give the ranking805

2We use the 20210414 snapshot of Wikidata.

Model
Wiki27K FB15K-237-N

Acc. F1 Acc. F1

KG-BERT 82.4 83.1 72.7 73.6
LP-RP-RR 83.6 84.4 74.4 74.5
PKGC (w/o soft prompts) 87.1 87.2 80.5 80.6
PKGC 87.8 88.0 81.4 81.2

Table 6: Ablation study on soft prompts. PKGC (w/o
soft prompts) denotes our model without soft prompts,
i.e., the hyper-parameter n = 0.

of the tail entity according to the score ranking. 806

Therefore, link prediction requires a large amount 807

of computation. For the traditional KGE models, 808

most of them run efficiently and can complete the 809

evaluation quickly. However, due to the introduc- 810

tion of PLMs, PLM-based models run much less 811

efficient compared to the KGE models. This per- 812

formance inefficiency can greatly increase the eval- 813

uation time of link prediction. Take KG-BERT as 814

an example, it takes nearly one month to get the 815

evaluation result of link prediction on a dataset, 816

which is obviously unacceptable. 817

To alleviate this problem, in this work, we use a 818

recall and re-ranking framework. Specifically, for 819

a triplet query (h, r, ?), we first use a KGE model 820

(TuckER is used in experiments) to get the ranking 821

of the tail entities. After that, we select the top X 822

ranked entities and use a PLM-based KGC model 823

to recalculate the scores. Based on these scores, we 824

can re-rank the top X entities. 825

C Ablation Study on Soft Prompts 826

We do an ablation study to verify the effectiveness 827

of soft prompts, and the experimental results are 828

shown in Table 6. For PKCG, we set the hyper- 829

parameter n to 6, i.e., n1, ..., n6 are all 1 (refer 830

to Table 9). From Table 6, we can know that our 831

model without soft prompts has a small drop in 832

performance. However, it still performs better than 833

the previous PLM-based KGC models. This shows 834

that soft prompts can indeed enhance the expres- 835

siveness of triple prompts. Besides, even without 836

soft prompts, our model is able to utilize the im- 837

plicit knowledge in PLMs better than the previous 838

model. 839

D Analysis on Relation 840

We provide in Table 7 the five relations that are 841

most affected by the CWA on the Wiki27K and 842

FB15K-237-N, respectively. In other words, they 843

are the five relations with the highest number of 844
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Wiki27K FB15K-237-N

1 country /people/person/profession
2 headquarters location /location/location/contains
3 diplomatic relation /education/educational_institution/school_type
4 located in the administrative territorial entity /people/person/nationality
5 time period /olympics/olympic_games/participating_countries

Table 7: The five relations that are most affected by the CWA on two datasets.

Dataset α K X n n1, n2, n3, n4, n5, n6

Wiki27K 0.5 30 30 6 1, 1, 1, 1, 1, 1
FB15K-237-N 0.5 50 30 6 1, 1, 1, 1, 1, 1
FB15K-237-NH 0.5 50 30 6 1, 1, 1, 1, 1, 1

Table 8: The best hyper-parameters on different
datasets.

false negative triples. From the table, we can see845

that most of the relations that are strongly influ-846

enced by CWA are 1-N, N-1 or N-N relations. For847

these relations, it is difficult for the knowledge848

graph to cover all the correct tail or head entities,849

which results in incomplete knowledge. For exam-850

ple, for a head entity England and a relation /loca-851

tion/location/contains, many entities can be used852

as correct tail entities, because England contains853

a large number of geographic locations. However,854

it is difficult for the existing knowledge graph to855

cover all the correct entities, which makes this kind856

of relation more influenced by CWA.857

E Manual Annotation858

For CR@1 in link prediction, we randomly sample859

200 triples from the test set for evaluation. After860

that, we get the triples with the highest prediction861

probability for each model and merge them into a862

triple set by breaking them up. By doing so, the863

annotators do not know which model the triples864

originate from at the time of annotation, which865

ensures fairness. For triple classification, we en-866

sure that the distribution of relations (for negative867

triples) in the validation/test set are consistent with868

that in the training set.869

In the specific annotation, we invited three col-870

lege students to determine the correctness of each871

triple, and only the triples with the same opinion872

will be directly retained. The rest triples need to873

be discussed to determine and then get a unified874

opinion.875

n n1, n2, n3, n4, n5, n6

0 0, 0, 0, 0, 0, 0

1

1, 0, 0, 0, 0, 0
0, 1, 0, 0, 0, 0
0, 0, 1, 0, 0, 0
0, 0, 0, 1, 0, 0
0, 0, 0, 0, 1, 0
0, 0, 0, 0, 0, 1

2
1, 1, 0, 0, 0, 0
0, 0, 1, 1, 0, 0
0, 0, 0, 0, 1, 1

3
1, 1, 1, 0, 0, 0
0, 0, 0, 1, 1, 1

6 1, 1, 1, 1, 1, 1

Table 9: The combinations of n1, n2, · · ·n6 for every n.

F Hyper-parameters Selection 876

As introduced in Section 5.3, the parameter n is 877

selected from {0, 1, 2, 3, 6}, where n is composed 878

of n1, n2, · · ·n6. For every n, we choose some 879

combinations of n1, n2, · · ·n6 to form it. We de- 880

tail the combinations in Table 9. For the pa- 881

rameter X mentioned above, we select it from 882

{20, 30, 50, 100, 200}. We select the best hyper- 883

parameters using the Hits@1 metric and the final 884

results are shown in Table 8. 885
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