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Abstract

Multilayer-perceptrons (MLP) are known to struggle with learning functions of
high-frequencies, and in particular cases with wide frequency bands. We present a
spatially adaptive progressive encoding (SAPE) scheme for input signals of MLP
networks, which enables them to better fit a wide range of frequencies without
sacrificing training stability or requiring any domain specific preprocessing. SAPE
gradually unmasks signal components with increasing frequencies as a function of
time and space. The progressive exposure of frequencies is monitored by a feedback
loop throughout the neural optimization process, allowing changes to propagate at
different rates among local spatial portions of the signal space. We demonstrate the
advantage of SAPE on a variety of domains and applications, including regression
of low dimensional signals and images, representation learning of occupancy
networks, and a geometric task of mesh transfer between 3D shapes.

1 Introduction

Neural implicit functions have recently emerged as a powerful representation paradigm for modeling
complex signals. Their continuous nature sets them apart from typical discrete representations
(i.e. pixels, voxels, meshes), allowing to capture high resolution details in various domains such as
images [41, 43], 3d shapes [31, 6] and radiance fields [30, 32], while retaining a reasonably compact
representation. In this formulation, a deep neural network is trained with the goal of faithfully
mapping input coordinates to a corresponding target domain, effectively learning the representation
of signal properties such as magnitude, color, or shape occupancy.

Implementing implicit neural representations with common neural structures, e.g., multilayer perecep-
trons with ReLU activations (ReLU MLPs), proves to be challenging in the presence of signals with
high frequencies. Consequently, recent works have demonstrated that deep implicit networks benefit
from mapping the input coordinates [30, 43], or the intermediate features [41] to positional encodings.
That is, before feeding them into a neural layer, they are first transformed to an overparameterized,
high dimensional space, typically by multiple periodic functions.

Positional encodings1 have been shown to enable highly detailed mappings of signals by MLP
networks. For example, Fourier Feature Networks [43] suggested to map input coordinates of signals
to a high dimensional space using sinusoidal functions. In their work, they show that the frequency

1In this paper, we use the term “positional encodings” in lower case letters to denote the family of encoding
methods that map coordinates to a higher dimensional space. Not to be confused with the term “Positional
Encoding” coined by [30, 43], which refers to a particular mapping scheme in this family.
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Figure 1: Left: Fourier Features Network (FFN) encoding, tuned to a bandwidth of low frequencies
in order to fit the smooth snow areas. The same frequency bandwidth yields blurry buildings in the
top image. Middle: FFN tuned to a higher bandwidth to fit to the sharp details of the city. The same
bandwidth results in the appearance of noisy artifacts in the mountain image. Right: SAPE is able to
fit both examples without extra tuning, using the same choice of frequency bandwidth in both cases.

target function no encoding FFN progressive encoding spatially-adaptive
progressive encoding

Figure 2: 1D signal regression. Red: Samples of positional coordinates as network input, and signal
magnitude as labels. Black: Predicted implicit signal at inference time. MLPs with “no encoding”
struggle to fit high frequency segments (see appendix for train details). Efforts of static positional
encoding models (FFN) to fit high frequency areas of the signal introduce noise at the low frequency
region. Fitting varying signals with spatial adaptivity allows MLPs to recover all signal frequencies.

of these sinusoidal encodings is the dominant factor in obtaining high quality signal reconstructions.
In particular, they present compelling arguments for randomly sampling frequency values from an
isotropic Gaussian distribution with a carefully selected scale, providing a striking improvement over
mapping coordinates directly via standard MLPs.

Despite the success of positional encodings, there are still some concerns left unaddressed: (i) Choos-
ing the right frequency scale requires manual tuning, oftentimes involving a tedious parameter sweep;
(ii) The frequency distribution scale may change between different inputs, and accordingly it becomes
harder to tune a “one-fits-all” model for signals that are composed of a large range of frequencies
(Fig. 1); (iii) Frequencies are selected for the entire input in a global, spatially invariant manner, thus
missing an opportunity to better adapt to local high frequencies (Fig. 2).

Our work investigates mitigations to the aforementioned challenges. We study the setting of positional
encodings as input to implicit neural networks and present Spatially-Adaptive Progressive Encoding
(SAPE). SAPE is a policy for learning implicit functions, relying on two core ideas: (i) guiding the
neural optimization process by gradually unmasking signal components with increasing frequencies
over time, and (ii) allowing the mask progression to propagate at different rates among local spatial
portions of the signal space. To govern this process, we introduce a feedback loop to control the
progression of revealed encoding frequencies as a bi-variate function of time and space.

Our work enables MLP networks to adaptively fit a varying spectrum of fine details that previous
methods struggle to capture in a single shot, without involved tuning of parameters or domain
specific preprocessing. SAPE excels in learning implicit functions with a large Lipschitz constant,
without sacrificing quality of details or optimization stability, in problems that require meticulous
configuration to achieve convergence. To highlight the latter, in Section 5.1 we present the tasks of
2D silhouettes deformation and 3D mesh transfer – both require stable optimization from the get-go
in order to avoid convergence to sub-optimal local minima.

SAPE is encoding-agnostic: it is not limited to a specific positional encoding type. It can be easily
applied to the learning process of coordinate-based neural implicit functions of various domains
including images, 2D shapes, 3D occupancy maps and surfaces, showing improvement in all of them.
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y

Figure 3: Method overview. Coordinates p are fed into an implicit function network, regressing the
signal value ŷ at position p as output. An encoder E maps the input coordinates to a high dimensional
embedding space. Our encoding layer then masks the encoded features. In this example, samples p
are encoded and progressively exposed during the network training, going from low frequency (top
node) to high (bottom node). Node colors indicate the various neuron states: on, off, and partially
masked. Finally, the loss between output ŷ and target y is fed back to encoder E, which spatially
adapts the encoding mask according to the spatial error, indicated by the heatmap on the pufferfish.

2 Related work

Implicit neural representations. Recent works show the capability of deep neural networks in
representing different functions (e.g., 2D/3D scenes or objects) as an implicit, memory efficient
continuous function [8]. These networks are used as a signed distance function (SDF) [1, 15, 31] or
as an occupancy network, either binary [6, 28, 33] or soft volumetric density [26, 30, 49].

Several works train such networks to represent a collection of 3D shapes via 3D data supervision
[6, 16, 29, 28, 31], reconstruct 3D shapes [5, 11, 13, 14, 18, 42] or infer them from 2D images
[22, 37, 40]. Recent works employ spatial data structures to scale the represented shapes size [25, 42].

Positional encodings (PE). have been suggested as higher dimensional network input for various
purposes. Radial basis function (RBF) networks [7] use weighted sums of embedded RBF encodings
due to their symmetric property. [47] used random Fourier Features to map time spans. In natural
language processing, Transformers [19, 23, 24, 46] leverage sinusoidal positional encoding to
maintain the order of token sequences. Our work differs by focusing on how to encode the inputs to
MLPs in order to improve network implicit representations.

The closest works to ours are SIREN [41] and Fourier feature networks (FFN) [43]. SIREN suggests
to replace the ReLU activations in the network by periodic ones. FFN [43] encodes the inputs to
the network by projecting them to a higher dimensional space using a family of encoding functions.
In the appendix we provide an illustration of this approach with some examplary used encodings.
The analysis of [43] demonstrates that FFN improves the learning of implicit neural representation
compared to other alternatives. A follow-up work in [44] accelerates the training convergence by
using a meta-learned initialization of the network weights. The contemporary work of [27] extends
SIREN with a modulation network, to allow representing multiple shapes within a single network.

Concurrently to our work, Park et al. [32] extend NERF to non-rigidly deforming scenes, and
BARF [21] extends NERF for cases of imperfect camera poses. Both these works show the advantage
of employing coarse-to-fine annealing linearly over the frequency bandwidth of the positional
encoding. The coarse-to-fine approach bears similarity to our progressive frequency approach.
Different from us, these works do not use a feedback loop or spatial encoding, which, as we show in
the following, further closes the gap between the regressed function and the ground truth.

As a final remark, SAPE’s concept of feedback loop resonates with the idea of "predictive coding" in
computational neuroscience [35], suggesting another angle to appreciate the rationale of our method.
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Figure 4: Learning progress of SAPE for implicit representation of a 2D image, showing iterations
75, 150, 300 and 3000 (left to right). The beginning of optimization is dominated by low frequencies:
spectral bias maintains global optimization stability. As the optimization progresses high frequency
mapping takes place, and SAPE fits the finer details of the image. See other methods in the appendix.

3 Preliminaries

The setting of implicit neural representation is commonly formulated as learning a mapping function
fθ, using a neural network, from an input of low dimensional position coordinates p ∈ Rd to an
output value in the target domain. The network training data are coordinates samples as the input and
an expected value of the function, or signal, as the output. Examples of such mappings include pixel
locations to intensity values for images, or 3D space coordinates to binary surface occupancy labels.

Achieving such mappings using conventional neural networks with ReLU is hard. It has been shown
that ReLU networks exhibit a behaviour of spectral bias [34, 3, 36, 2, 48, 4]. Networks tend to
learn low frequency functions first, as they are characterized by a global behaviour, and are therefore
more stable to optimize. Spectral bias, however, also prevents networks from properly learning to
fit functions that change at a high rate, e.g., functions with a large Lipschitz constant. When visual
domains are concerned, this is mostly evident in delicate details missing from the network output.

To mitigate this deficiency, recent works proposed to replace the ReLU activation layers with periodic
sine functions [41] or map the input to some higher dimensional space in order to learn a mapping
with high frequencies [30, 43]. In the latter approach, the input p is encoded to a high dimensional
embedding by a family of functionals ei : Rd → R, such that:

E(p) = (e1(p), e2(p), . . . , en(p)) , (1)

where usually n� d. Tancik et al. [43], for example, suggest the following encoding:

EFFN (p) =
(
cos(2πb>1 p), sin(2πb>1 p), ..., cos(2πb>np), sin(2πb>np)

)
, (2)

where bi are frequency vectors randomly sampled i.i.d. from a Gaussian distribution with standard
deviation σ. Other examples of positional encodings are included in the appendix.

These embedding schemes facilitate learning of complex functions, at the price of introducing a
second associated phenomenon: the spectral bias characteristic of the network is reduced. The
implication in this case is twofold. Positional encodings can cause neural optimizations processes
to become unstable, and consequently converge to a bad local minimum (Fig. 9). In addition, when
fitting functions of varying levels of details/frequencies, neurons predicting smooth, low frequency
areas are still exposed to encoding dimensions of high frequency. That, in turn, may complicate the
learning process, as networks have to learn where to ignore such embedding dimensions.

Indeed, Tancik et al. [43] advocate a careful choice of the standard deviation of frequency distribution,
σ in their method, showing that using low values yields missing details in the network output, and
using values that are very high results in noisy artifacts. Thereupon, for such static encodings the
value of σ requires a parameter sweep per sample.

4 Spatially-Adaptive Progressive Encoding (SAPE)

Our proposed approach, SAPE, is a policy for guiding the optimization of implicit neural represen-
tations based on input coordinates. SAPE relies on the delicate balance of the two phenomena that
govern the learning process: it reconciles the effects of the spectral bias and the expressiveness of
high frequency encodings in a manner that benefits from both. It maintains a stable optimization,
without sacrificing the ability to fit fine signal details. SAPE is composed of two key components:
progressive encoding and spatial adaptivity, which allow it to be less sensitive to the encoding
frequency bandwidth, i.e., the choice of the standard deviation in the case of [43] (Fig. 4). Next, we
detail each of the mechanisms that compose SAPE. The full algorithm is included in the appendix.
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Figure 5: Mesh transfer. In this task, we transfer the tessellation of a source mesh to a target shape
(left columns). We estimate an initial transformation using user specified correspondence points
(marked in red). Then, we follow with a neural optimization tuning process, which brings the source
mesh surface to the target shape while keeping the quality of the original tessellation.

Without loss of generality, in our description below we assume the encoding functionals are sorted by
their respective Lipschitz constants (LC), i.e. LC(e1) ≤ LC(e2) ≤ · · · ≤ LC(en). For example,
we sort the Fourier features encoding by the frequency value ‖bi‖. We set the first d dimensions
to the identity encodings: ei(p) = pi, ∀i ≤ d, thereby exposing the network to the original input
position coordinates p ∈ Rd as well.

Progressive encoding. A core part of SAPE is progressively fitting the frequencies. The first layer
of the network encodes an input position p with a set of functionals ei. In order to use only part of
the functionals at different stages of training, it multiplies the encoding dimensions with a soft mask,
which progresses as a function of the optimization iteration t:

Eprog(p, t) = (ê0(p, t), ê1(p, t), ê2(p, t), . . . , ên(p, t)) = α(t)>E(p), (3)

where êi(p, t) = αi(t) ei(p) is the progression control for the encoding functional ei, regulated by
the elements of masking vector α(t) ∈ [0, 1]n. During the optimization, we progressively reveal
encoding features in a manner that allows the encoding neurons to be tuned to different states
according to the value of αi(t), where αi(t) = 1 corresponds to the state on, αi(t) = 0 means off
and 0 < αi(t) < 1 denotes partially on (Fig. 3).

We define a policy Φ that controls the progression of the mask vector α(t) by α(t + 1) =
Φ [α(t)|α(0)] . In this work, we use the following progression rule for the mask of the ith encoding
dimension at time step t:

ΦP [α(t)] : αi(t+ 1) =

clamp
(
t− τ · (i− d)

τ
, 0, 1

)
, if i > d

1, otherwise,
(4)

where τ = T/2n represents the number of iterations each encoding dimension takes to progress from
0 to 1 and T is the maximal number of iterations in the optimization. Essentially, ΦP performs a
linear progression sequentially for each encoding i until it is fully exposed, s.t. αi(t) = 1. When a
certain encoding dimension mask achieves saturation, we continue to the following one. We allow a
technical exception to this rule, for proper progression of correlated masks of encoding dimensions
sharing the same Lipschitz constant, e.g., pairs of cos, sin in the encoding in Eq. (2). For initialization,
the first d positional encoding masks are fully exposed right from the beginning, and in our setting,
correspond with the identity encoding functionals.

Notice that previous methods, which introduce all encoding dimensions to the network at once, can
now be formulated as a specific case in our framework, where α(t+ 1) = 1.

Spatial adaptivity. When t > T/2, the progression policy ΦP achieves global saturation in terms
of revealing encoding dimensions, so that the masking vector becomes α(t) = 1. For signals of
global-like characteristics, e.g., have a low LC, the network is compelled to learn how to cope with
undesirable encoding dimensions of high frequency to regress a smooth, slowly changing signal. This
can lead to sub-optimal outputs, often visible in the form of visual artifacts (Fig. 1, mid-bottom).

Given loss function L and convergence threshold ε, a simple improvement to policy ΦP may apply
early stopping when L < ε. However, for signals with varying levels of detail as a function of spatial
position p, this improvement is not sufficient: early stopping does not occur due to areas characterized
by high frequencies. Relying on a global threshold ε is inherently a sub-optimal decision, as when
learning an implicit neural function with positional encoding, different spatial segments of the signal
in question may converge at different rates (Fig. 2).
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To solve this problem, we set the mask vector to be spatially sensitive: α(t,p). By design, the new
policy ΦSA progresses the encoding of each spatial location p separately, per encoding dimension i.
To simplify our explanation, in the current setting we assume the signal can be discretized to distinct
spatial segments on a regular grid, each tracked independently (e.g., pixels, voxels). The progressive,
spatially adaptive policy is controlled by a feedback loop, where the independent regression loss of
each signal segment is used to control the progression:

ΦSA [α(t,p)] : α(t+ 1,p) =

{
ΦP (α(t)) , if L(t,p) ≥ ε
α(t,p), otherwise

(5)

For implicit functions, at inference time we assume signals can be regressed with “pseudo-continuous”
coordinates p. Therefore, to support coordinates p that did not appear during training and have no
mask recordings, we extend the estimated parameters of α(T,p) continuously over the entire input
domain by a linear interpolation.

One common example that benefits from spatial adaptivity is natural 2D image containing blurry,
out-of-focus areas in the background together with sharp, detailed foreground objects. To shed more
light on the behaviour of our algorithm, Figs. 6 and 8 demonstrate examples of spatial heat maps,
highlighting the maximal encoding frequency achieved per spatial location, upon convergence.

a. Forward mask

b. Loss feedback

Sparse grid sampling. We now extend our method to cases where model fθ is
optimized by coordinates p that do not lie on a regular grid, or when it is simply
infeasible to store parameters α(t,p) per sampled coordinate p during training. In
this setting, we discretize the input domain and store parameters αu in a sparse grid
G, where for a grid of resolution rd ⊆ Rd, we denote u as the multidimensional
grid coordinates. In the forward pass, we obtain the original encoding mask α(t,p)
per sampled point p by encoding a linear interpolation of the masking parameters
over the nearest grid nodes (see the inset (a) on the left):

α(t,p) =
∑

u∈NG(p)

wp,uα(t,u), (6)

where NG(p) are the neighboring grid coordinates in the vicinity of p, and wp,u are the interpolation
weights for a sample p over the multidimensional grid G such that

∑
u∈NG

wp,u = 1. During
training, the loss L(t,u) at time t for a given grid point u is accumulated over all sampled points p
affected by u (inset (b) above):

L(t,u) =
1∑

p wp,u

∑
p

wp,uL(t,p). (7)

Here, L(t,p) is the loss for the original coordinate p. To obtain the overall training loss, we sum over
all the used points for training at time t. We note that the linear interpolation used during the forward
pass has an added benefit: since only local neighbors participate per update of the original coordinate
p, sparse weights allow for efficient accumulations during forward and backward pass updates.

5 Experiments

We evaluate SAPE on a variety of common 2D and 3D regressions tasks. In addition, we demon-
strate how it may be used to improve the tasks of deforming 2D silhouettes and transferring mesh
connectivity between 3D shapes. We demonstrate our results using the Fourier feature encoding [43]
(Eq. (2)). We emphasize that SAPE is agnostic to the encoding used and applicable to other mapping
schemes as well. More examples, as well as the full implementation details appear in the appendix.

5.1 Evaluations

We test SAPE on a variety of problems: regression tasks optimized by a direct supervision and
geometric tasks optimized by an indirect supervision. All configurations employ 256 unique frequency
encodings sampled from a Gaussian distribution. For fair evaluation, the distribution scale and number
of neural layers remain the same for all inputs in the same problem setting. However, hyperparameter
values may vary per problem. For convergence threshold ε, we set the values of 1e−3 for regression
tasks and 1e−2 for geometric tasks. See the appendixfor full description of implementation details.
We compare the settings of 6 MLP configurations:
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Table 1: Quantitative Evaluation of SAPE against baseline encoded MLPs on various tasks.
Best results displayed in bold. ± accounts for deviation among independent experiments.

2D regression (PSNR) 3D occupancy (IoU) 2D silhouettes (IoU)︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
Natural images Text images Thingi10K Turbosquid MPEG7 (IoU)

No Encoding 19.72± 2.77 19.39± 2.02 0.899± 0.034 0.872± 0.08 0.81± 0.177
SIREN 27.03± 4.28 30.81± 1.72 0.964± 0.013 0.93± 0.025 0.779± 0.253
RBFG 25.98± 3.98 25.94± 4.03 0.941± 0.022 0.919± 0.044 0.854± 0.155
SAPE + RBFG 27.06± 3.94 28.52± 3.51 0.966± 0.015 0.94± 0.03 0.928± 0.102
FF 25.57± 4.19 30.47± 2.11 0.945± 0.03 0.964± 0.017 0.873± 0.142
Progressive FF 27.01± 3.56 30.2± 1.83 0.98± 0.018 0.943± 0.019 0.86± 0.133
SAPE + FF 28.09 ± 4.04 31.84 ± 2.15 0.981 ± 0.008 0.969 ± 0.013 0.928 ± 0.095

Table 2: Evaluation on the mesh transfer task.

Chamfer (↓) Hausdorff (↓) Dirichlet (↓)

No Encoding 1.37 1.36 1.3
SIREN 0.74 1.32 4.75
RBFG 0.97 0.87 1.65
SAPE + RBFG 0.55 0.71 1.65
FF 1.27 0.94 2.22
SAPE + FF 0.39 0.49 1.82

1) No encoding: Basic ReLU MLP without en-
coding. 2) SIREN: An MLP with sine activa-
tions based on the implementation of Sitzmann
et al. [41]. 3) RBF-grid: An MLP with repeated
radial basis function as a first encoding layer. 4)
SAPE + RBF-grid. 5) FFN: An MLP network
with Fourier features as the first encoding layer,
see Eq. (2). 6) SAPE + FFN.

The bandwidths of encoding functions in 3) and 5) are optimally selected by a grid search over a
validation set or taken from a public implementation, depending on the task. For the SAPE variants
we use double the σ of these bandwidths, as SAPE is not sensitive to a particular value, as long as it
allows high frequency encodings. The quantitative results are summarized in Tables 1 and 2. Below
is an overview of each task.

2D image regression. In this task we optimize the networks to map 2D input pixel coordinates,
normalized to [−1, 1]2, to their RGB values. We conduct the evaluation on the same test sets as Tancik
et al. [43], which contain a dataset of natural images and a synthetic dataset of text images. Similar
to them, the network is trained on regularly spaced grid containing 25% of the pixels. We use the
evaluation metric of PSNR over the entire image, compared to the ground truth image. Quantitative
results are reported in Table 1 on the left.

3D occupancy. In this task, we use a similar setting to occupancy networks [28]: the model is trained
to classify an input 3D coordinate for being inside or outside the training shape. For training, we
sample 9 million points divided into 3 equal groups: uniformly sampled points in [−1, 1]3, surface
points perturbed with random Gaussian noise vectors using σ = 0.1 and σ = 0.01. We evaluate the
quality of the result by estimating the intersection-over-union (IoU) with respect to the ground truth
shape by sampling additional 1e6 random points and 1e6 more challenging samples near the surface,
and report the average IoU score.

We compare the networks on two test sets. The first set is composed of 10 selected models from
the Thingi10K dataset [50]. The second, more challenging test set is composed of 4 models from
TurboSquid2. The quantitative results are summarized in Table 1, middle section. Qualitative results
are shown in the appendix.

2D silhouettes. Here, we optimize an MLP to deform a unit circle represented as a polyline to a
target 2D point cloud of a silhouette shape. Fig. 9 shows a number of examples of such target shapes.
We start by calibrating the MLP to learn a simple mapping from p ∈ [0, 1] to the 2D unit circle:
f(p) = (cos(2πp), sin(2πp)). We then optimize the mapping function by minimizing the symmetric
chamfer distance between the network output and the silhouette.

To evaluate the performance of the different methods, we test the networks on 20 shapes from the
MPEF7 dataset [20] and measure the intersection over union between the resulting shape and the
target shape; the results are reported in Table 1. Fig. 9 shows qualitative results of this task and
snapshots from the optimization process. Due to the expressiveness of both FFN and SIREN networks,
the chamfer loss causes distortions in the early stage of the optimization that cannot be recovered,
leading to undesired results. The coarse-to-fine optimization of SAPE allows both avoiding distortions
and matching high frequencies of the target shape.

2https://www.turbosquid.com
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Figure 6: 2D Image regression comparing different distributions of bandwidths for Fourier Frequen-
cies. SAPE is more robust to the choice of σ, consistently producing pleasing results in terms of both
PSNR and visual quality.
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Figure 7: Left: PSNR as a function of the Fourier features’ standard deviation of the encoding for the
example in Fig. 6. Right: PSNR as a function of spatial grid resolution for the example in Fig. 8.

3D mesh transfer. In this task, we would like to transfer a 3D source mesh to a target shape
[45, 9, 12, 38, 39], which is represented by a mesh or a point cloud. The MLP receives the vertices
of the source mesh and outputs transformed vertices, such that together with the source tessellation,
the optimized mesh fits the target shape while respecting the structure of the source mesh in terms
of distortion. In addition, we may utilize a set of marked correspondence points between the input
shapes that enable the estimation of an initial affine transformation between the source and the target,
followed by a biharmonic deformation [17]. The optimization loss for this task is composed of two
terms: A distance loss that measures the symmetric chamfer distance between the optimized mesh
and the target shape, and a structural term that measures the discrete conformal energy between the
optimized mesh and the source mesh.

We test the different networks on 6 pairs of meshes and evaluate the results by measuring the
chamfer and Hausdorff distances between the target shape and the output mesh. The distortion of the
transferred meshing is measured by Dirichlet energy with respect to the source mesh. Table 2 shows
the quantitative results. Qualitative results are shown in Fig. 5.

Standard MLPs struggle to fit the target shape and remain close to the source mesh, therefore obtaining
low Dirichlet energy but also high Chamfer and Hausdorff distances and thus failing the task. SAPE’s
feedback specifies the regions on the mesh that are distanced from the target shape. That allows the
optimization to gradually increase the frequencies used in high curvature areas while avoiding large
distortions at the beginning of the optimization, when global deformations take place. For that reason,
contrary to other methods such as FFN and SIREN, SAPE is able to avoid solutions of bad local
minima and reconstruct the target signal better.

12 42 162 642 2562

Figure 8: Influence of the spatial grid resolution on output quality. Top row: Output of SAPE with grid
resolutions of 12, 42, 162, 642 and 2562. Bottom left: Interpolated heatmap of maximal frequency
unmasked per grid position. Bottom right: Enlarged results of area with a range of frequencies.
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target shape No encoding Siren FFN SAPE

No encoding

Siren

FFN

SAPE

Figure 9: Iterative deformation of 2D silhouettes. Left: comparison of different network configu-
rations when optimizing for the deformation of a unit circle to the target shape, represented by a
polyline. Right: snapshots of the optimization process. Notice that SAPE (bottom) avoids large
distortion at the beginning of the optimization, and can therefore fit the delicate details of the target
shape as the optimization progresses.

Training scene FFN
σ = 5

FFN
σ = 10

FFN
σ = 16

SAPE
σ = 20

Ground truth SAPE heat map

Figure 10: 3D occupancy scene regression. By spatially adapting the volumetric encoding for the
occupancy network, SAPE can fit small details such as the car wheels without introducing noise in
smooth or empty regions. To the right, we display cross sections of the 3D heat map of SAPE. Notice
that smooth surfaces, like the the trees and the roof, utilize lower frequency encodings compared to
detailed objects like the car and the slide.

5.2 Ablation

Progressive vs. non-progressive. Similar to the setting described in Section 5.1, we train an MLP
on randomly sampled pixels of images. We map 2D pixel coordinates to RGB values and measure
the PSNR over all pixels compared to the ground truth image.

Fig. 6 and Fig. 7 (left) show a comparison between the performance of FFN with and without SAPE
when training on 25% of the pixels. Our results show that due to progressive-spatial adjustment of the
encoding, SAPE is less sensitive to tuning of the standard deviation (σ) of distribution of frequencies
bi. By contrast, FFN suffers from a fragile trade-off between underfitting and overfitting, which
results in either blurry pixels in high frequency regions or noise in the smooth background areas.

A similar phenomena is shown in the 3D example in Fig. 10. In this task, we train an occupancy
network using the setting described in Section 5.1. For regulating the level of encoding across the
scene our method uses a voxel map of resolution 1283 for spatial encoding. This map is updated
based on feedback loss during training. Without SAPE, low frequency encodings cannot represent
detailed structures like the car object in the scene. Increasing the frequency bandwidth results in
noisy surfaces and undesired blob artifacts in empty spaces. By contrast, SAPE achieves better
representation of detailed regions, as well as of smooth surfaces.

Spatial progressive vs. non-spatial progressive. To demonstrate the advantage of using spatially
adaptive encoding, we compare it to a variant of SAPE that globally progresses the frequency level
of encodings for all spatial areas equally, and converges when all training samples fit. Fig. 2 shows
the advantage of using the spatial encoding in SAPE for a 1D regression task. In addition, Table 1
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shows quantitative improvement gained by SAPE applied on FF, compared to a global progression
(Progressive FF).

Note that the non-spatial variant is equivalent to SAPE with a spatial grid of resolution one. Fig. 8
and Fig. 7 (right) show the benefit of the spatial encoding component for a 2D image regression task
(similar to the one above). We also show how increasing the grid resolution affects the quality of the
result in a 2D image regression task. We observe that the quality stays at its highest when the spatial
grid resolution approximates the sampling ratio of coordinates during training.

6 Limitations and Future Work

When SAPE is employed with a sampling grid, the chosen resolution provides a trade-off between
memory and quality. Choosing a grid of low resolution may yield sub-optimal outputs (see examples
in the appendix). As SAPE’s varying frequencies sampling grid bears some resemblance to multi-
resolution analysis and wavelet transforms, future extensions to SAPE may solve this issue by
maintaining the masking parameters in a sparse structure such as an Octree [42] or GMM [10].

When using very high frequencies, SAPE may enhance inherent output noise, as the maximal
frequency encoding gets picked for the noisy portions of the signal.

In this work we investigated a linear progression policy for unmasking frequency encodings. Followup
works may extend our scheme to a more optimized curriculum, for example, using meta-learning.

7 Conclusions

We presented a policy for improving the quality of signals learned by coordinate based optimizations.
We rely on two major contributions: progressive introduction of positional encodings, and spatial
adaptivity, which allows different rates of progression per signal location. Our method is simple to
implement and improves the implicit neural representation result of MLP networks in various tasks.

Given the surge of applications that use positional encodings, and the ease of deploying SAPE, we
believe our approach will be useful for many problems in the vision and graphics domains. Specif-
ically, the fact that SAPE is encoding-agnostic and insensitive to most encoding hyperparameters
provides stable training and facilitates the use of positional encodings in novel tasks.

8 Broader Impact Statement

SAPE is a method for boosting the accuracy of learned implicit neural functions. It can be leveraged
to enable new applications or improve various downstream tasks that involve precise processing of
signals, like segmentation, or reconstruction of complex signals, such as streaming video or signed
distanced functions. Beyond the domains of vision and graphics, we conjecture SAPE might also
benefit applications in speech, audio, and signal processing in general. Depending on their use, all
mentioned applications may have a positive or negative impact. SAPE can be used to facilitate novel
applications that require accurate recovery of signals, like 3D reconstruction for AR and VR. It can
also be misused for the purpose of generating fake media, including audio, video and images.
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Richard. Relative positional encoding for transformers with linear complexity, 2021.

[25] Julien N.P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro, and Gordon
Wetzstein. Acorn: Adaptive coordinate networks for neural representation. ACM Trans. Graph.
(SIGGRAPH), 2021.

[26] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron, Alexey Doso-
vitskiy, and Daniel Duckworth. NeRF in the Wild: Neural Radiance Fields for Unconstrained
Photo Collections. In CVPR, 2021.

[27] Ishit Mehta, Michaël Gharbi, Connelly Barnes, Eli Shechtman, Ravi Ramamoorthi, and Man-
mohan Chandraker. Modulated periodic activations for generalizable local functional represen-
tations, 2021.

[28] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.
Occupancy networks: Learning 3d reconstruction in function space. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

[29] Mateusz Michalkiewicz, Jhony Kaesemodel Pontes, Dominic Jack, Mahsa Baktashmotlagh,
and Anders Eriksson. Implicit surface representations as layers in neural networks. In 2019
IEEE/CVF International Conference on Computer Vision (ICCV), pages 4742–4751, 2019. doi:
10.1109/ICCV.2019.00484.

[30] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi,
and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV,
2020.

[31] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

[32] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien Bouaziz, Dan B Goldman, Steven M.
Seitz, and Ricardo Martin-Brualla. Deformable neural radiance fields. arXiv preprint
arXiv:2011.12948, 2020.

[33] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger.
Convolutional occupancy networks. In European Conference on Computer Vision (ECCV),
2020.

[34] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht,
Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks. In International
Conference on Machine Learning, pages 5301–5310. PMLR, 2019.

[35] Rajesh Rao and Dana Ballard. Predictive coding in the visual cortex: a functional interpretation
of some extra-classical receptive-field effects. Nature neuroscience, 2:79–87, 02 1999. doi:
10.1038/4580.

[36] Basri Ronen, David Jacobs, Yoni Kasten, and Shira Kritchman. The convergence rate of neural
networks for learned functions of different frequencies. In NeurIPS, 2019.

12



[37] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo Kanazawa, and Hao
Li. Pifu: Pixel-aligned implicit function for high-resolution clothed human digitization. In The
IEEE International Conference on Computer Vision (ICCV), October 2019.

[38] Patrick Schmidt, Janis Born, Marcel Campen, and Leif Kobbelt. Distortion-minimizing injective
maps between surfaces. ACM Trans. Graph., 38(6), 2019.

[39] Patrick Schmidt, Marcel Campen, Janis Born, and Leif Kobbelt. Inter-surface maps via constant-
curvature metrics. ACM Trans. Graph., 39(4), 2020.

[40] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. Scene representation networks:
Continuous 3d-structure-aware neural scene representations. In Advances in Neural Information
Processing Systems, 2019.

[41] Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in Neural Information
Processing Systems, 33, 2020.

[42] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek
Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. Neural geometric level
of detail: Real-time rendering with implicit 3D shapes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[43] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let
networks learn high frequency functions in low dimensional domains. NeurIPS, 2020.

[44] Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi Schmidt, Pratul P. Srinivasan, Jonathan T.
Barron, and Ren Ng. Learned initializations for optimizing coordinate-based neural representa-
tions. In CVPR, 2021.

[45] Julien Tierny, Joel Daniels, Luis G. Nonato, Valerio Pascucci, and Claudio T. Silva. Inspired
quadrangulation. Comput. Aided Des., 43(11):1516–1526, November 2011.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[47] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Self-attention
with functional time representation learning. In Advances in Neural Information Processing
Systems, pages 15889–15899, 2019.

[48] Zhi-Qin John Xu, Yaoyu Zhang, and Yanyang Xiao. Training behavior of deep neural network
in frequency domain. In ICONIP, 2019.

[49] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelNeRF: Neural radiance fields
from one or few images. In CVPR, 2021.

[50] Qingnan Zhou and Alec Jacobson. Thingi10k: A dataset of 10,000 3d-printing models. arXiv
preprint arXiv:1605.04797, 2016.

13

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

	Introduction
	Related work
	Preliminaries
	Spatially-Adaptive Progressive Encoding (SAPE)
	Experiments
	Evaluations
	Ablation

	Limitations and Future Work
	Conclusions
	Broader Impact Statement

