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Abstract

In the context of lossy compression, Blau & Michaeli [5] adopt a mathematical
notion of perceptual quality and define the information rate-distortion-perception
function, generalizing the classical rate-distortion tradeoff. We consider the notion
of universal representations in which one may fix an encoder and vary the decoder
to achieve any point within a collection of distortion and perception constraints.
We prove that the corresponding information-theoretic universal rate-distortion-
perception function is operationally achievable in an approximate sense. Under
MSE distortion, we show that the entire distortion-perception tradeoff of a Gaussian
source can be achieved by a single encoder of the same rate asymptotically. We then
characterize the achievable distortion-perception region for a fixed representation
in the case of arbitrary distributions, and identify conditions under which the
aforementioned results continue to hold approximately. This motivates the study of
practical constructions that are approximately universal across the RDP tradeoff,
thereby alleviating the need to design a new encoder for each objective. We provide
experimental results on MNIST and SVHN suggesting that on image compression
tasks, the operational tradeoffs achieved by machine learning models with a fixed
encoder suffer only a small penalty when compared to their variable encoder
counterparts.

1 Introduction

Unlike in lossless compression, the decoder in a lossy compression system has flexibility in how to
reconstruct the source. Conventionally, some measure of distortion such as mean squared error, PSNR
or SSIM/MS-SSIM [36, 37] is used as a quality measure. Accordingly, lossy compression algorithms
are analyzed through rate-distortion theory, wherein the objective is to minimize the amount of
distortion for a given rate. However, it has been observed that low distortion is not necessarily
synonymous with high perceptual quality; indeed, deep learning based image compression has
inspired works in which authors have noted that increased perceptual quality may come at the cost
of increased distortion [1, 4]. This culminated in the work of Blau & Michaeli [5] who propose the
rate-distortion-perception theoretical framework.

The main idea was to introduce a third perception axis which more closely mimics what humans
would deem to be visually pleasing. Unlike distortion, judgement of perceptual quality is taken to
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be inherently no-reference. The mathematical proxy for perceptual quality then comes in the form
of a divergence between the source and the reconstruction distributions, motivated by the idea that
perfect perceptual quality is achieved when they are identical. Leveraging generative adversarial
networks [11] in the training procedure has made such a task possible for complex data-driven settings
with efficacy even at very low rates [33]. Naturally, this induces a tradeoff between optimizing for
perceptual quality and optimizing for distortion. But in designing a lossy compression system, one
may wonder where exactly this tradeoff lies: is the objective tightly coupled with optimizing the
representations generated by the encoder, or can most of this tradeoff be achieved by simply changing
the decoding scheme?

Our contributions are as follows. We define the notion of universal representations which are
generated by a fixed encoding scheme for the purpose of operating at multiple perception-distortion
tradeoff points attained by varying the decoder. We then prove a coding theorem establishing
the relationship between this operational definition and an information universal rate-distortion-
perception function. Under MSE distortion loss, we study this function for the special case of the
Gaussian distribution and show that the penalty in fixing the representation map with fixed rate can be
small in many interesting regimes. For general distributions, we characterize the achievable distortion-
perception region with respect to an arbitrary representation and establish a certain approximate
universality property.

We then turn to study how the operational tradeoffs achieved by machine learning models on image
compression under a fixed encoder compared to varying encoders. Our results suggest that there is
not much loss in reusing encoders trained for a specific point on the distortion-perception tradeoff
across other points. The practical implication of this is to reduce the number of models to be trained
within deep-learning enhanced compression systems. Building on [30, 31], one of the key steps in
our techniques is the assumption of common randomness between the sender and receiver which will
turn out to reduce the coding cost. Throughout this work, we focus on the scenario where a rate is
fixed in advance. We address the scenario when the rate is changed in the supplementary.

2 Related Works

Image quality measures include full-reference metrics (which require a ground truth as reference), or
no-reference metrics (which only use statistical features of inputs). Common full-reference metrics
include MSE, SSIM/MS-SSIM [36, 37], PSNR or deep feature based distances [16, 41]. No-reference
metrics include BRISQUE/NIQE/PIQE [23, 24, 35] and Fréchet Inception Distance [14]. Roughly
speaking, one can consider the former set to be distortion measures and the latter set to be perception
measures in the rate-distortion-perception framework. Since GANs capable of synthesizing highly
realistic samples have emerged, using trained discriminators as a proxy for perceptual quality in
deep learning based systems has also been explored [17]. This idea is principled as various GAN
objectives can be interpreted as estimating particular statistical distances [3, 25, 26].

Rate-distortion theory has long served as a theoretical foundation for lossy compression [7]. Within
machine learning, variations of rate-distortion theory have been introduced to address representation
learning [2, 6, 34], wherein a central task is to extract useful information from data on some sort of
budget, and also in the related field of generative modelling [15]. On the other hand, distribution-
preserving lossy compression problems have also been studied in classical information theory
literature [27, 28, 40].

More recently, in an effort to reduce blurriness and other artifacts, machine learning research in
lossy compression has attempted to incorporate GAN regularization into compressive autoencoders
[1, 5, 33], which were traditionally optimized only for distortion loss [21, 32]. This has led to highly
successful data-driven models operating at very low rates, even for high-resolution images [22].
An earlier work of Blau & Michaeli [4] studied only the perception-distortion tradeoff within deep
learning enhanced image restoration using GANs. This idea was then incorporated with distribution-
preserving lossy compression [33] to study the rate-distortion-perception tradeoff in full generality
[5].

The work most similar to ours is [39], who observe that an optimal encoder for the “classic” rate-
distortion function is also optimal for perfect perceptual compression at twice the distortion. Our
work investigates the intermediate regime and also includes common randomness as a modelling
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Figure 1: (a) The information Rate-Distortion-Perception function R(D,P ) for a standard Gaussian
source X . (b) Distortion-perception cross-sections across multiple rates. The tension between
perception and distortion is most visible at low rates. When both P and D are active, Theorem 3
implies that the rate needed to achieve an entire cross-section along fixed rate is the same as the rate
to achieve any single point on the cross-section in the asymptotic setting.

assumption, which in principle allows us to achieve perfect perceptual quality at lower than twice the
distortion. The concurrent work [10] also establishes the achievable distortion-perception region as
in our Theorem 4 and provides a geometric interpretation of the optimal interpolator in Wasserstein
space.

3 Rate-Distortion-Perception Representations

The backbone of rate-distortion theory characterizes an (operational) objective expressing what can be
achieved by encoders and decoders with a quantization bottleneck in terms of an information function
which is more convenient to analyze. Let X ∼ pX be an information source to be compressed
through quantization. The quality of the compressed source is measured by a distortion function
∆ : X × X → R≥0 satisfying ∆(x, x̂) = 0 if and only if x = x̂. We distinguish between the
one-shot scenario in which we compress one symbol at a time, and the asymptotic scenario in which
we encode n i.i.d. samples from X jointly and analyze the behaviour as n→ ∞. The minimum rate
needed to meet the distortion constraint D on average is denoted by R∗(D) in the one-shot setting
and by R(∞)(D) in the asymptotic setting. These are studied through the information rate-distortion
function

R(D) = inf
pX̂|X

I(X; X̂) s.t. E[∆(X, X̂)] ≤ D, (1)

where I(X; X̂) is the mutual information between a source X and reconstruction X̂ . The principal
result of rate-distortion theory states that R(∞)(D) = R(D) [7]. Furthermore, it is also possible to
characterize R∗(D) using R(D) as we will soon see.

In light of the discussion on perceptual quality, the flexibility in distortion function is not necessarily
a good method to capture how realistic the output may be perceived. To resolve this, Blau & Michaeli
[5] introduce an additional constraint to match the distributions of X and X̂ in the form of a non-
negative divergence between probability measures d(·, ·) satisfying d(p, q) = 0 if and only if p = q.
The one-shot rate-distortion-perception function R∗(D,P ) and asymptotic rate-distortion-perception
function R(∞)(D,P ) are defined in the same fashion as their rate-distortion counterparts, which we
will later make precise.

Definition 1 (iRDPF). The information rate-distortion-perception function for a source X is defined
as

R(D,P ) = inf
pX̂|X

I(X; X̂)

s.t. E[∆(X, X̂)] ≤ D, d(pX , pX̂) ≤ P.
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The strong functional representation lemma [19, 31] establishes relationships between the operational
and information functions:

R(∞)(D,P ) = R(D,P ), (2)
R(D,P ) ≤ R∗(D,P ) ≤ R(D,P ) + log(R(D,P ) + 1) + 5. (3)

These results hold also for R(D) = R(D,∞). We make note that they were developed under a
more general set of constraints for which stochastic encoders and decoders with a shared source of
randomness were used. In practice, the sender and receiver agree on a random seed beforehand to
emulate this behaviour.

3.1 Gaussian Case

We now present the closed form expression of R(D,P ) for a Gaussian source under MSE distortion
and squared Wasserstein-2 perception losses (see also Figure 1(a) and Figure 1(b)). Recall that the
squared Wasserstein-2 distance is defined as

W 2
2 (pX , pX̂) = inf E[∥X − X̂∥2], (4)

where the infimum is over all joint distributions of (X, X̂) with marginals pX and pX̂ . Let µX = E[X]
and σ2

X = E[∥X − µX∥2].

Theorem 1. For a scalar Gaussian source X ∼ N (µX , σ
2
X), the information rate-distortion-

perception function under squared error distortion and squared Wasserstein-2 distance is attained by
some X̂ jointly Gaussian with X and is given by

R(D,P ) =


1
2 log

σ2
X(σX−

√
P )2

σ2
X(σX−

√
P )2−(

σ2
X

+(σX−
√

P )2−D

2 )2

if
√
P ≤ σX −

√
|σ2
X −D|,

max{ 1
2 log

σ2
X

D , 0} if
√
P > σX −

√
|σ2
X −D|.

When
√
P > σX −

√
|σ2
X −D|, the perception constraint is inactive and R(D,P ) = R(D). The

choice of W 2
2 (·, ·) perception loss turns out to not be essential; we show in the supplementary that

R(D,P ) can also be expressed under the KL-divergence.

3.2 Universal Representations

Whereas the RDP function is regarded as the minimal rate for which we can vary an encoder-decoder
pair to meet any distortion and perception constraints (D,P ), the universal RDP (uRDP) function
generalizes this to the case where we fix an encoder and allow only the decoder to adapt in order
to meet multiple constraints (D,P ) ∈ Θ. For example, one case of interest is when Θ is the set
of all (D,P ) pairs associated with a given rate along the iRDP function; how much additional rate
is needed if this is to be achieved by a fixed encoder, rather than varying it across each objective?
The hope is that the rate to use some fixed encoder across this set is not much larger than the rate to
achieve any single point. As we will see for the Gaussian distribution, this is in fact the case in the
asymptotic setting, and also approximately true in the one-shot setting. Below, we define the one-shot
universal rate-distortion-perception function and the information universal rate-distortion-perception
function, then establish a relationship between the two. In these definitions we assume X is a random
variable and Θ is an arbitrary non-empty set of (D,P ) pairs.

Definition 2 (ouRDPF). A Θ-universal encoder of rate R is said to exist if we can find random
variable U , encoding function fU : X → CU and decoding functions gU,D,P : CU → X̂ , (D,P ) ∈ Θ
such that

E[ℓ(fU (X))] ≤ R, E[∆(X, X̂D,P )] ≤ D, d(pX , pX̂D,P
) ≤ P,

where CU is a uniquely decodable binary code specified by U , X̂D,P = gU,D,P (fU (X)), and
ℓ(fU (X)) denotes the length of binary codeword fU (X). The random variable U acts as a shared
source of randomness. The infimum of such R is called the one-shot universal rate-distortion-
perception function (ouRDPF) and denoted by R∗(Θ). When Θ = {(D,P )}, this specializes to the
one-shot rate-distortion-perception function R∗(D,P ).
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Definition 3 (iuRDPF). Let Z be a representation of X (i.e. generated by some random transform
pZ|X ). Let PZ|X(Θ) be the set of transforms pZ|X such that for each (D,P ) ∈ Θ, there exists
pX̂D,P |Z for which

E[∆(X, X̂D,P )] ≤ D and d(pX , pX̂D,P
) ≤ P,

where X ↔ Z ↔ X̂D,P are assumed to form a Markov chain. Define

R(Θ) = inf
pZ|X∈PZ|X(Θ)

I(X;Z). (5)

We refer to this as the information universal rate-distortion-perception function (iuRDPF) and say that
the random variable Z is a representation which is Θ-universal with respect to X . The conditional
distributions pX̂D,P |Z induce stochastic mappings transforming the representations to reconstructions

X̂D,P in order to meet specific (D,P ) constraints.

Note that we assume a shared source of stochasticity within the ouRDPF as a tool to prove the
achievability of the iuRDPF, but not within the definition of the iuRDPF itself. Moreover, source X ,
reconstruction X̂D,P , representation Z, and random seed U are all allowed to be multivariate random
variables.

Theorem 2. R(Θ) ≤ R∗(Θ) ≤ R(Θ) + log(R(Θ) + 1) + 5.

In practice, the overhead log(R(Θ)+ 1)+ 5 either makes the upper bound an overestimate of R∗(Θ)
or is negligible compared toR(Θ). This overhead vanishes completely in the asymptotic setting as we
will show in the supplementary. We can therefore interpret R(Θ) as the rate required to meet an entire
set Θ of constraints with the encoder fixed. Within the set Θ, it is clear that sup(D,P )∈ΘR(D,P )
characterizes the rate required to meet the most demanding constraint. Now define

A(Θ) = R(Θ)− sup
(D,P )∈Θ

R(D,P ), (6)

which is the rate penalty incurred by meeting all constraints in Θ with the encoder fixed. Let
Ω(R) = {(D,P ) : R(D,P ) ≤ R}. It is ideal to have A(Ω(R)) = 0 for each R so that achieving
the entire tradeoff with a single encoder is essentially no more expensive than to achieve any single
point on the tradeoff, thereby alleviating the need to design a host of encoders for different distortion-
perception objectives with respect to the same rate.

One can also take the following alternative perspective. The proof of Theorem 2 shows that every
representation Z can be generated from source X using an encoder of rate I(X;Z) + o(I(X;Z)),
and based on Z, the decoder can produce reconstruction X̂D,P by leveraging random seed U to
simulate conditional distribution pX̂D,P |Z . Therefore, the problem of designing an encoder boils
down to identifying a suitable representation. Given a representation Z ofX , we define the achievable
distortion-perception region Ω(pZ|X) as the set of all (D,P ) pairs for which there exists pX̂D,P |Z such

that E[∆(X, X̂D,P )] ≤ D and d(pX , pX̂D,P
) ≤ P . Intuitively, Ω(pZ|X) is the set of all possible

distortion-perception constraints that can be met based on representation Z. If Ω(pZ|X) = Ω(R) for
some representation Z with I(X;Z) = R, then Z has the maximal achievable distortion-perception
region in the sense that Ω(pZ′|X) ⊆ Ω(pZ|X) for any Z ′ with I(X;Z ′) ≤ R. In the supplementary
material we establish mild regularity conditions for which the existence of such Z is equivalent to the
aforementioned desired property A(Ω(R)) = 0. We shall show that that this ideal scenario actually
arises in the Gaussian case and an approximate version can be found more broadly.

Theorem 3. LetX ∼ N (µX , σ
2
X) be a scalar Gaussian source and assume MSE andW 2

2 (·, ·) losses.
Let Θ be any non-empty set of (D,P ) pairs. Then

A(Θ) = 0. (7)

Moreover, for any representation Z jointly Gaussian with X such that

I(X;Z) = sup
(D,P )∈Θ

R(D,P ), (8)

we have
Θ ⊆ Ω(pZ|X) = Ω(I(X;Z)). (9)
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Next we consider a general source X ∼ pX and characterize the achievable distortion-perception
region for an arbitrary representation Z under MSE loss. We then provide some evidence indicating
that every reconstruction X̂D,P achieving some point (D,P ) on the distortion-perception tradeoff
for a given R likely has the property Ω(pX̂D,P |X) ≈ Ω(R).

Theorem 4 (Approximate universality for general sources). Assume MSE loss and any perception
measure d(·, ·). Let Z be any arbitrary representation of X . Then

Ω(pZ|X) ⊆
{
(D,P ) : D ≥ E[∥X − X̃∥2] + inf

pX̂ :d(pX ,pX̂)≤P
W 2

2 (pX̃ , pX̂)

}
⊆ cl(Ω(pZ|X)),

where X̃ = E[X|Z] is the reconstruction minimizing squared error distortion with X under the
representation Z and cl(·) denotes set closure. In particular, the two extreme points (D(a), P (a)) =

(E[∥X − X̃∥2], d(pX , pX̃)) and (D(b), P (b)) = (E[∥X − X̃∥2] +W 2
2 (pX̃ , pX), 0) are contained in

cl(Ω(pZ|X)).

(D1, P1)

(D2, P2)

(D3, P3)

(D(a), P (a))

(D(b), P (b))

Distortion
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|X)

Figure 2: Approximate universality for a
general source. Illustrated are boundaries
of achievable distortion-perception regions
for three representations: minimal distor-
tion (D1, P1) for R(D1, P1) = R(D1,∞),
midpoint (D2, P2), and perfect perceptual
quality (D3, P3) where P3 = 0. We have
Ω(pX̂Di,Pi

|X) ≈ Ω(R), especially when R

is small. The extreme points (D(a), P (a))

and (D(b), P (b)) for X̂D1,P1
are shown.

(D(a), P (a)) coincides with (D1, P1).

To gain a better understanding, let Z be an opti-
mal reconstruction X̂D,P associated with some point
(D,P ) on the distortion-perception tradeoff for a
given R, i.e., I(X; X̂D,P ) = R(D,P ) = R (as-
suming that D and/or P cannot be decreased without
violating R(D,P ) = R), E[∥X − X̂D,P ∥2] = D,
d(pX , pX̂D,P

) = P . We assume for simplicity

that X̂D,P exists for every (D,P ) on the tradeoff.
Such (D,P ) is on the boundary of cl(Ω(pX̂D,P |X)).
Theorem 4 indicates that cl(Ω(pX̂D,P |X)) contains
two extreme points: the upper-left (D(a), P (a)) and
the lower-right (D(b), P (b)). Under the assump-
tion that d(·, ·) is convex in its second argument,
cl(Ω(pX̂D,P |X)) is a convex region containing the
aforementioned points.

Figure 2 illustrates Ω(R) and Ω(pX̂D,P |X) for sev-
eral different choices of (D,P ). When R = 0,
Ω(pX̂D,P |X) = Ω(R) for any such X̂D,P . So we
have Ω(pX̂D,P |X) ≈ Ω(R) in the low-rate regime
where the tension between distortion and percep-
tion is most visible. More general quantitative re-
sults are provided in the supplementary. Let σ2

X =

E[∥X − E[X]∥2]. If X̂D1,P1
is chosen to be the opti-

mal reconstruction in the conventional rate-distortion
sense associated with point (D1, P1), then the upper-left extreme points of Ω(pX̂D1,P1

|X) and Ω(R)

coincide (i.e., (D(a), P (a)) = (D1, P1)) and the lower-right extreme points of Ω(pX̂D1,P1
|X) and

Ω(R) (i.e., (D(b), 0) and (D3, 0) with R(D3, 0) = R(D1,∞)) must be close to each other in the
sense that

1

2
σ2
X ≥ D(b) −D3

D1≈0 or σ2
X≈ 0, 2 ≥ D(b)

D3

D1≈σ2
X≈ 1, (10)

which suggests that Ω(pX̂D1,P1
|X) is not much smaller than Ω(R). Moreover, in this case we have

D(b) ≤ 2E[∥X − X̃∥2] ≤ 2D1, (11)

which implies that (2D1, 0) is dominated by extreme point (D(b), 0) and consequently must be
contained in cl(Ω(pX̂D1,P1

|X)). Therefore, the optimal representation in the conventional rate-
distortion sense can be leveraged to meet any perception constraint with no more than a two-fold
increase in distortion. As a corollary, one recovers Theorem 2 in Blau & Michaeli (R(2D, 0) ≤
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)

h3

· · ·
W1(pX , pX̂3

)

Figure 3: An illustration of the experimental setup for the universal model. A single encoder f is
trained for an initial perception-distortion tradeoff and has its weights frozen. Subsequently many
other decoders {gi} are optimized for different tradeoff points using the representations z produced by
f . The sender and receiver have access to a shared source of randomness u for universal quantization
[30, 42]. Q denotes the quantizer. Separate critic networks {hi} are trained along with each decoder
to promote perceptual quality. In this figure, the top decoder places most weight on distortion loss
whereas the bottom decoder places most weight on perceptual loss. This has the effect of reducing
the blurriness, but comes at the cost of a less faithful reconstruction of the original (in extreme cases
even changing the identity of the digit). The perception losses W1(pX , pX̂i

) are estimated using the
critics {hi} by replacing the expectations in Equation (14) with samples from the test set.

R(D,∞)). Hence, the numerical connection between R(2D, 0) and R(D,∞) is a manifestation of
the existence of approximately Ω(I(X;Z))-universal representations Z. These analyses motivate
the study of practical constructions for which we seek to achieve multiple (D,P ) pairs with a single
encoder.

3.3 Successive Refinement

Up until now, we have established the notion of distortion-perception universality for a given
rate. We can paint a more complete picture by extending this universality along the rate axis as
well, known classically as successive refinement [9] when restricted to the rate-distortion function.
Informally, given two sets of (D,P ) pairs Θ1 and Θ2, we say that rate pair (R1, R2) is (operationally)
rate-distortion-perception refinable if there exists a base encoder optimal for R(Θ1) which, when
combined with a second refining encoder, is also optimal for R(Θ2). In other words, bits are
transmitted in two stages and each stage achieves optimal rate-distortion-perception performance.
This nice property is not true of general distributions but we show in supplementary section A.3
that it holds in the asypmtotic Gaussian case, thus generalizing Theorem 3. Nonetheless, building
on [18] we prove an approximate refinability property of general distributions and in section B.3
provide experimental results demonstrating approximate refinability on image compression using
deep learning.

4 Experimental Results

The rate-distortion-perception tradeoff was observed as a result of applying GAN regularization
within deep-learning based image compression [5, 33]. Therein, an entire end-to-end model is trained
for each desired setting over rate, distortion, and perception. In practice it is undesirable to develop
an entire system from scratch for each objective and we would like to reuse trained networks with
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Figure 4: (a) (c) Rate-distortion-perception tradeoffs along various rates. Points with black outline
are losses reported for the end-to-end encoder-decoder pairs trained jointly for a particular perception-
distortion objective. Other points are the losses for universal models, in which decoders are trained
over a frozen encoder optimized for small P (MNIST: λ = 0.015, SVHN: λ = 0.002). Universal
model performance is very close to performance of end-to-end models across all tradeoffs {λi}. (b) (d)
Outputs of selected models (MNIST: R = 6, SVHN: R = 60). As the emphasis on perception loss λi
increases, the outputs become sharper. The visual quality of both the end-to-end and universal models
are on average comparable for each λi. More experiment details are given in the supplementary.

frozen weights if possible. It is of interest to assess the distortion and perception penalties incurred
by such model reusage, most naturally in the scenario of fixing a pre-trained encoder.

Concretely, we refer to models where the encoder and decoder are trained jointly for an objective
as end-to-end models, and models for which some encoder is fixed in advance as (approximately)
universal models. The encoders used within the universal models are borrowed from the end-to-end
models, and the choice of which to use will be discussed later in this section. Within the same dataset,
universal models and end-to-end models using the same hyperparameter settings differ only in the
trainability of the encoder.

4.1 Setup and Training

The architecture we use is a stochastic autoencoder with GAN regualarization, wherein a single
model consists of an encoder f , a decoder g, and a critic h. Details about the networks can be found
in the supplementary; here, we summarize first the elements relevant to facilitating compression
then the training procedure. Let x be an input image. The final layer of the encoder consists of
a tanh activation to produce a symbol f(x) ∈ [−1, 1]d, with the intent to divide this into L-level
intervals of uniform length 2/(L− 1) across d dimensions for some L. This gives an upper bound
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of d log(L) for the model rate, and it was found to be only slightly suboptimal by Agustsson et
al. [1]; we found the estimate to be off by at most 6% on MNIST. To achieve high perceptual
quality through generative modelling, stochasticity is necessary1 [33]. In accordance with the shared
randomness assumption within the ouRDPF, our main experimental results use the universal/dithered
quantization2 [12, 29, 30, 42] scheme where the sender and receiver both have access to a sample
u ∼ U [−1/(L− 1),+1/(L− 1)]d. The sender computes

z = Quantize(f(x) + u) (12)

and gives z to the receiver. The receiver then reconstructs the image by feeding z − u to the decoder.
The soft gradient estimator of [21] is used to backpropogate through the quantizer. Compared to
alternate schemes where noise is added only at the decoder, this scheme has the advantage of reducing
the quantization error by centering it around f(x) and can be emulated on the agreement of a random
seed. Since this is not always possible in practice, the results for a more restrictive quantization
scheme where the sender and receiver do not have access to common randomness are included in
Figure 5 in the supplementary.

The rest of the design follows closely the design of Blau & Michaeli [5]. We first produce the
end-to-end models, in which f, g and h are all trainable. We use MSE loss for the distortion metric
and estimate the Wasserstein-1 perception metric. The loss function is given by

L = E[∥X − X̂∥2] + λW1(pX , pX̂), (13)

where pX̂ is the reconstruction distribution induced by passing X through f , transmitting the
representations via (12) then subtracting the noise and decoding through g. The particular tradeoff
point achieved by the model is controlled by the weight λ. Kanotorovich-Rubinstein duality allows
us to write the Wasserstein-1 distance as

W1(pX , pX̂) = max
h∈F

E[h(X)]− E[h(X̂)], (14)

which expresses the objective as a min-max problem and allows us to treat it using GANs. Here, F is
the set of all bounded 1-Lipschitz functions. In practice, this class is limited by the discriminator
architecture and the Lipschitz condition is approximated with a gradient penalty [13] term. Optimiza-
tion alternates between minimizing over f, g with h fixed and maximizing over h with f, g fixed.
In essence, g is trained to produce reconstructions that are simultaneously low distortion and high
perception, so it acts as both a decoder and a generator. The reported perception loss is estimated
using Equation (14) through test set samples. Figure 3 provides an overview of the entire scheme.

After the end-to-end models are trained, their encoders can be lent to construct universal models. The
parameters of f are frozen we introduce a new decoder g1 and critic h1 trained to minimize

L1 = E[∥X − X̂1∥2] + λ1W1(pX , pX̂1
),

where λ1 is another tradeoff parameter and pX̂1
is the new reconstruction distribution. The weights

of g1 are initialized from random while the weights of h1 are initialized from h. This was done for
stability and faster convergence but in practice, we found that initializing from random performed
just as well given sufficient iterations. The rest of the training procedure follows that of the first
stage. This second stage is repeated over many different parameters {λi} to generate a tradeoff curve.
Further model and experimental details can be found in the supplementary material.

4.2 Results

Figure 4 shows rate-distortion-perception curves at multiple rates on MNIST and SVHN, obtained
by varying λ from 0 to a selected upper bound for which training with the given hyperparameters
remained stable. Note that the rate for each individual curve is fixed through using the same quantizer
across all models. As the rate is increased by introducing better quantizers, optimizing for distortion
loss has the side effect of reducing perception loss. The rates are thus chosen to be low as the tension
between distortion and perception is most visible then. The points outlined in black are losses for
end-to-end models and the other points correspond to the universal models sharing an encoder trained

1This prevents us from passing noiseless quantizated representations to the decoder.
2The use of the word "universal" here is unrelated to our notion of "universality".
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from the end-to-end models. As can be seen, the universal models are able to achieve a tradeoff
which is very close to the end-to-end models (with outputs that are visually comparable) despite
operating with a fixed encoder.

For any fixed rate, decreasing the perception loss P induces outputs which are less blurry, at the
cost of a reconstruction which is less faithful to the original input. This is especially evident at
very low rates in which the compression system appears to act as a generative model. However, our
experiments indicate that an encoder trained for small P can also be used to produce a low-distortion
reconstruction by training a new decoder. Conversely, training a decoder to produce reconstructions
with high perceptual quality on top of an encoder trained only for distortion loss is also possible as
the decoder is sufficiently expressive to act purely as a generative model.

5 Discussion

Limitations. One limitation of these experiments is that we can slightly reduce the distortion loss by
using deterministic nearest neighbour quantization rather than universal quantization, but there would
no longer be stochasticity to train the generative model. A comparison of quantization schemes for
the case of λ = 0 can be found in Table 1 of the supplementary. It may be beneficial to employ more
sophisticated quantization schemes and explore losses beyond MSE as well.

Potential Negative Societal Impacts. The goal of our work is to advance perceptually-driven lossy
compression, which conflicts with optimizing for distortion. We presume that this will be harmless
in most multimedia applications but where reconstructions are used for classification or anomaly
detection this may cause problems. For example, a low-rate face reconstruction deblurred by a GAN
may lead to false identity recognition.

6 Conclusion

The use of deep generative models in data compression has highlighted the tradeoff between opti-
mizing for low distortion and high perceptual quality. Previous works have designed end-to-end
systems in order to achieve points across this tradeoff. Our results suggest that this may not be
necessary, in that fixing a good representation map and varying only the decoder is sufficient for
image compression in practice. We have also established a theoretical framework to study this scheme
and characterized its limits, giving bounds for the case of specific distributions and loss functions.
Future work includes evaluating the scheme on more diverse architectures, as well as employing the
scheme to high-resolution images and videos.
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