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Abstract
Instruction tuning benefits from large and di-001
verse datasets, however creating such datasets002
involves a high cost of human labeling. While003
synthetic datasets generated by large language004
models (LLMs) have partly solved this issue,005
they often contain low-quality data. One ef-006
fective solution is selectively annotating unla-007
belled instructions, especially given the rela-008
tive ease of acquiring unlabeled instructions009
or texts from various sources. However, how010
to select unlabelled instructions is not well-011
explored, especially in the context of LLMs.012
Further, traditional data selection methods, re-013
lying on input embedding space density, tend014
to underestimate instruction sample complex-015
ity, whereas those based on model prediction016
uncertainty often struggle with synthetic label017
quality. Therefore, we introduce SELECTLLM,018
an alternative framework that leverages the ca-019
pabilities of LLMs to more effectively select020
unlabeled instructions. SELECTLLM consists021
of two key steps: Coreset-based clustering of022
unlabelled instructions for diversity and then023
prompting a LLM to identify the most benefi-024
cial instructions within each cluster. Our exper-025
iments demonstrate that SELECTLLM matches026
or outperforms other state-of-the-art methods027
in instruction tuning benchmarks. It exhibits028
remarkable consistency across human and syn-029
thetic datasets, along with better cross-dataset030
generalization, as evidenced by a 10% perfor-031
mance improvement on the Cleaned Alpaca test032
set when trained on Dolly data.1033

1 Introduction034

Instruction tuning, which fine-tunes language mod-035

els (LMs) to follow instructions constructed from a036

massive number of diverse and different tasks, has037

shown impressive generalization performance on038

various unseen tasks (Wei et al., 2022; Chung et al.,039

2022). However, creating large and diverse anno-040

tated instruction datasets is a major challenge due041

1We will release the code and data upon acceptance.
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Figure 1: Conceptual comparison between previous
approaches to select instructions and SELECTLLM. Fo-
cusing on input instructions (top) is unable to consider
the difficulty or uncertainty of response. Output-based
methods (middle) can suffer from the inference cost
and quality issues of synthetic responses. SELECTLLM
(bottom) does not suffer from these issues by estimating
the effectiveness of instructions via prompting LLMs.

to the significant cost of human labeling. While 042

synthetic datasets generated by advanced large lan- 043

guage models (LLMs) have partly addressed this is- 044

sue (Taori et al., 2023; Wang et al., 2022a), they of- 045

ten contain low-quality data, highlighting the need 046

for more focus on dataset refinement (Zhou et al., 047

2023; Cao et al., 2023). 048

As it is relatively easy to access unlabelled 049

instructions or texts from various sources, one 050

promising solution to address these challenges is 051

developing a way to select important unlabelled 052

instructions for annotation, similar to active learn- 053

ing (Settles, 2009); from this, one can create a 054

high-quality small dataset if unlabelled instructions 055
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are well-selected and annotated accordingly. How-056

ever, existing selection methods present limitations.057

Active learning-based algorithms focusing on den-058

sity in the embedding space (Sener and Savarese,059

2018) often overlook the complexity of instruction060

samples. Alternatively, output-based approaches061

that assess uncertainty in model predictions (Kung062

et al., 2023) grapple with high computational costs063

and the challenges posed by synthetic label qual-064

ity (Figure 1). In light of these challenges, a few065

recent works show the capability of LLMs for mea-066

suring the quality or relevance of multiple texts067

(Sun et al., 2023; Liu et al., 2023). Inspired by068

these, we investigate the potential of LLMs to se-069

lect effective unlabelled instructions, leveraging070

their vast knowledge base to discern the complexity071

and utility of each instruction without generating072

inferences.073

Contribution. In this work, we introduce SE-074

LECTLLM, a method that selects an effective sub-075

set of unlabelled instructions by prompting LLMs.076

At a high level, our method uses LLMs to estimate077

the usefulness and impact of each instruction with-078

out the corresponding labels; through the initial079

experiments presented in Figure 3, we first verify080

that LLMs do possess such a capability. To improve081

instruction selection via LLMs, SELECTLLM first082

divides the entire dataset into several small sub-083

sets to construct the input queries for prompting;084

specifically, we use equal-size K-means cluster-085

ing to create each subset with diverse unlabelled086

instructions while preserving the overall dataset087

structure. Then, SELECTLLM constructs an input088

query for each subset using a carefully designed089

input prompt for selecting with LLMs. Finally, we090

forward these constructed queries into the LLM,091

and SELECTLLM selects a few instructions that092

are expected to be the most helpful in fine-tuning093

models.094

We demonstrate the effectiveness of SE-095

LECTLLM compared to various state-of-the-art096

selection methods on two popular benchmarks for097

instruction tuning, Dolly (Conover et al., 2023)098

and Cleaned Alpaca (Taori et al., 2023). Our ex-099

periments show that SELECTLLM consistently100

outperforms the baselines across the varied se-101

lection sizes. For instance, when selecting sam-102

ples from Dolly, SELECTLLM exhibited nearly103

2.5% - 3% relative improvements compared to the104

strongest baseline on the Rouge-L F1 score and105

cosine similarity, respectively across all sample106

sizes (1k/2k/3k). In addition, SELECTLLM shows107

better cross-task generalizations, an important char- 108

acteristic of instruction-tuned LMs. More interest- 109

ingly, we observe that the generated responses by 110

SELECTLLM are preferred to the responses from 111

other baselines when evaluated with GPT-4. 112

Additionally, the input prompt in SELECTLLM 113

is primarily designed to select instructions that en- 114

hance the overall performance of LLMs. However, 115

its flexible nature allows for easy customization to 116

meet specific user needs (e.g., reducing toxicity), 117

by simply adjusting SELECTLLM’s input prompt 118

during sample selection. This adaptability of our 119

framework paves the way for using LLMs to se- 120

lect samples with various desired characteristics, 121

tailored to suit distinct use cases, which is not pos- 122

sible with previous selection methods. 123

2 Related Work 124

Instruction tuning for LMs. Instruction tuning 125

(Wei et al., 2022), a form of fine-tuning LLMs, 126

has emerged as a prominent methodology to align 127

pre-trained LMs for various tasks by describing the 128

tasks in the common form of instructions. Due to 129

its ease of implementation and remarkable gener- 130

alization capabilities for unseen tasks (Wei et al., 131

2022; Chung et al., 2022; Jang et al., 2023), it has 132

gained substantial popularity recently. Construct- 133

ing these instruction datasets with human annota- 134

tions is a standard way (Conover et al., 2023; Sanh 135

et al., 2021; Wang et al., 2022b), but this method 136

faces challenges in terms of variety of instructions 137

and the total number of instances due to labeling 138

cost (Wang et al., 2022a); one promising solution 139

for this limitation is to synthesize existing datasets 140

and create diverse, multi-task datasets with the help 141

of LLMs such as Alpaca (Taori et al., 2023) and 142

Self-instruct (Wang et al., 2022a). However, using 143

LLM-created data increases the risk of including 144

low-quality examples, and it is known that remov- 145

ing such noise from the dataset is critical for the 146

effective instruction tuning of LLMs (Zhou et al., 147

2023; Cao et al., 2023); therefore, in this work, 148

we explore an alternative way to use LLMs to con- 149

struct a high-quality instruction dataset, by using 150

LLMs to select unlabeled instructions. 151

Sample selection for efficient instruction tun- 152

ing. Expanding instruction datasets has its own 153

set of challenges, including the need for extensive 154

resources, time, human annotation, and the preva- 155

lence of redundant data. A common solution in- 156

volves human intervention, such as the approach by 157
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Figure 2: Illustration of the proposed SELECTLLM.

Zhou et al. (2023), which manually annotates high-158

quality instructions after filtering out low-quality159

data. However, there are huge costs associated with160

such procedures done by human labor. An effec-161

tive solution is to gather a large pool of unlabeled162

instructions and then selectively annotate the most163

useful ones, similar to the popular task of active164

learning (Settles, 2009; Sener and Savarese, 2018).165

Here, the most important thing is selection criteria.166

One line of work focuses on density to include di-167

verse instructions; for example, Chen et al. (2023a)168

map the unlabelled instructions into an embedding169

space and use K-means clustering (Hartigan and170

Wong, 1979) and the K-center greedy algorithm171

(Sener and Savarese, 2018) for the selection. An-172

other line of work focuses on uncertainty (or dif-173

ficulty) of instructions measured with LLMs’ out-174

puts; Kung et al. (2023) measure uncertainty by ob-175

serving how LLM-generated responses vary with176

changes in the input instructions. Unlike these177

approaches, we directly prompt LLMs with un-178

labelled instructions, to select the few examples179

expected to help train the model; from LLM’s capa-180

bility of reasoning and generating useful responses,181

we assume that they could infer the impactfulness182

of the unlabelled instructions. Meanwhile, a recent183

study by (Chen et al., 2023b) also prompts LLMs to184

construct a high-quality instruction dataset. How-185

ever, our work differs as we focus on selecting186

unlabelled instructions while (Chen et al., 2023b)187

focuses on filtering out low-quality labeled instruc-188

tions.189

3 SELECTLLM: Select Important190

Unlabelled Instructions Using LLMs191

3.1 Preliminary192

We first describe the problem setup of our inter-193

est. Let X = {xi}Mi=1 denote the given unlabeled194

dataset, where xi represents ith unlabeled instruc-195

tion and M is the total number of instructions. 196

Then, our goal is to select N most effective instruc- 197

tions from X which will be labeled by human an- 198

notators, to fine-tune a target large language model 199

(LLM) fθ, e.g., LLaMA-2 (Touvron et al., 2023), 200

and make it be generalized for various instructions. 201

Formally, we select N instructions from X under a 202

selection criteria s(j): 203

X (S) = {xs(j)}Nj=1, 204

where S = {s(j)|s(j) ∈ [1,M ]}Nj=1 (1) 205

where S denotes the indices of selected instructions. 206

Then, the selected instruction x ∈ X (S) is labeled 207

with a corresponding label y by human annotators, 208

and it results in the annotated instruction dataset 209

D, where D = {(xs(j), ys(j))}Nj=1. Therefore, the 210

performance of LLM fθ fine-tuned on X (S) signif- 211

icantly varies depending on which selection criteria 212

s(j) is considered. While various selection criteria 213

have been explored under tasks like active learning 214

(see Section 2), this direction is less explored under 215

the paradigm of instruction tuning. 216

3.2 Selection via prompting LLMs 217

For the selection criteria s(j), SELECTLLM pro- 218

poses to use LLMs with a properly designed 219

prompt without using ground truths or generated 220

labels. Our high-level intuition is that LLMs can 221

infer the potential impact of each instruction by 222

only reading the instruction; as shown in Figure 3, 223

we observed that the recent LLM, e.g., ChatGPT, 224

could estimate the effectiveness of each instruction 225

for model training (e.g., LLaMA-2), even without 226

the corresponding labels. To further improve the 227

effectiveness of selection via LLMs, we carefully 228

designed the input prompt to incorporate several 229

important perspectives for instruction tuning, and 230

it is presented in Figure 4. Formally, this process 231

could be described as follows: we first assume that 232
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[N] > … > [10] > … > [1]
First Center Last

[1] 1st Instruction

[N] Nth Instruction
⋮

Rank given instructions based on their impactfulness 
and informativeness for model fine-tuning

Fine-tune LMs with Instructions 
from Different Rank Selections

Figure 3: Experiments to verify LLMs’ capability to
infer the importance of unlabelled instructions. We
prompt ChatGPT to sort the instructions based on their
effectiveness for model training; then, we compare the
performance of three fine-tuned LMs (LLaMA-2) on
instructions with different ranks (First, center, and last).
A full prompt is presented in Appendix C.

the dataset X is divided into K non-overlapped233

subsets, i.e., X =
⋃K

k=1Xk. Then, we construct234

input query qk using the designed prompt psel and235

Xk, and forward it to LLM to select Ñ = ⌊N/K⌋236

examples:237

Sk = LLM
(
psel(qk, Ñ)

)
(2)238

where Sk = {sk(j)}Ñj=1, sk(j) ∈ [1, N ].239

3.3 Composing query of LLMs via clustering240

To further improve the effectiveness of using LLMs241

for selection, we carefully design how to divide the242

entire dataset into several subsets which would be243

used to construct input queries, based on the equal-244

size clustering method. Here, our high-level idea245

is composing the subsets that maximize the diver-246

sity among the instructions while maintaining the247

global structure of the dataset. Specifically, we first248

extract the embeddings of the instructions in X ,249

using the pre-trained sentence encoder gϕ such as250

Sentence-BERT (Reimers and Gurevych, 2019a).251

Then, we conduct K-means clustering (Hartigan252

and Wong, 1979) on these embeddings, and calcu-253

late D ∈ RN×K , the distance of all instances in X254

to K cluster centers c1, · · · , cK . Based on the dis-255

tances, we assigned each instance x among [1,K],256

by iteratively taking the one with the shorted dis-257

tance to the cluster center among the remaining258

instances, to guarantee equal sizes for each k.259

Overall, the selection procedure of SE-260

LECTLLM is as follows: (1) construct input261

queries by separating the entire dataset into multi-262

ple subsets of diverse instructions. Then, (2) feed263

The following are {N} candidate instructions
that describe a task , each indicated by a
number identifier [].

[1]
### Instruction: {Example #1 Instruction}
### Input: {Example #1 Input}
.
.
.
[N]
### Instruction: {Example #N Instruction}
### Input: {Example #N Input}

Examine the provided list of {N} instructions
, each uniquely identified by a number in
brackets [].

Your task is to select {num} instructions
that will be annotated by human annotators
for model fine -tuning.

Look for instructions that are clear and
relevant , exhibit a high level of complexity
and detail , represent a diverse range of
scenarios and contexts , offer significant
instructional value and potential learning
gain , and present unique challenges and
specificity.

These selected instructions should ideally be
the most beneficial for model fine -tuning

after being annotated by human annotators.

Present your selections using the format [].
e.g., [1,2] or [2,3].

The most impactful {num} instructions (only
identifiers) are:

Figure 4: Designed input prompt of SELECTLLM.

these queries into a LLM and get the selected in- 264

dices. The formal presentation of these procedures 265

is presented in Algorithms 1 and 2 in Appendix. 266

4 Experiments 267

In this section, we design our experiments to inves- 268

tigate the following questions: 269

◦ Does SELECTLLM outperform the previous 270

state-of-the-art selection methods for instruc- 271

tion tuning LLMs? (Tables 1, 2, 3) If so, why? 272

(Table 7) 273

◦ Do LLMs tuned with SELECTLLM provide 274

good responses qualitatively? (Tables 4, 6) 275

◦ What is the effect of each component in SE- 276

LECTLLM? (Table 5) 277

4.1 Setups 278

Datasets and metrics. We use labeled datasets 279

without using their responses to test our hypothesis. 280

Further, we utilize one human-generated dataset 281
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Table 1: Experimental results on Dolly (Conover et al., 2023). Rouge-L (F1) and Cosine similarity of generated
responses from fine-tuned LLaMA-2 by different numbers of examples are compared. The best and second best
scores are highlighted in bold and underline, respectively.

Rouge-L (F1) Cosine Similarity Avg Across Sizes
Methods 1k 2k 3k 1k 2k 3k Avg Rouge Avg Cosine

Lengthshort 0.073 0.109 0.130 0.192 0.265 0.336 0.104 0.264
Perplexity 0.158 0.183 0.192 0.402 0.433 0.453 0.178 0.429

CBSsbert 0.147 0.200 0.216 0.359 0.473 0.512 0.188 0.448
Lengthlong 0.256 0.247 0.238 0.641 0.626 0.611 0.247 0.626

CBSinstr 0.258 0.255 0.255 0.617 0.638 0.632 0.256 0.629
Random 0.239 0.264 0.278 0.589 0.644 0.650 0.260 0.628

Diversity 0.237 0.275 0.282 0.582 0.650 0.666 0.265 0.633
OpenEnd 0.258 0.271 0.282 0.627 0.641 0.669 0.270 0.646

Coreset 0.271 0.281 0.279 0.649 0.662 0.659 0.277 0.657

Ours 0.278 0.288 0.289 0.668 0.680 0.686 0.285 0.678

and one machine-generated dataset. For the former,282

we use (Conover et al., 2023) which is a combined283

effort of several Databricks employees, and as for284

the latter, we use Cleaned Alpaca which is based on285

(Taori et al., 2023) but is cleaned up to fix any errors286

in the input prompts of the original dataset and287

has responses generated by GPT-4. For evaluating288

the performance, we assess the similarity between289

inferred and actual texts using Rouge scores and290

cosine similarity. Additionally, we perform a GPT-291

based analysis to gauge the effectiveness of the292

generated inferences.293

Baselines. We consider several baselines for com-294

parison with our algorithm as follows: (1) Ran-295

dom: selecting instances from the unlabeled dataset296

purely randomly. (2) Length: Considers the length297

of input instruction, focusing on both longer and298

shorter ones to evaluate their impact (Lengthlong299

and Lengthshort). (3) Cluster-Based Selection (CBS)300

(Chen et al., 2023a): transforming instructions into301

embedding space, clustering them with HDBSCAN302

(Campello et al., 2013), and selecting samples us-303

ing the K-Center-Greedy algorithm. We consider304

two different embedding spaces with Sentence-305

BERT (Reimers and Gurevych, 2019a) and Instruc-306

tOR (Su et al., 2023), and denote them as CBSsbert307

and CBSinstr, respectively. (4) Perplexity (Marion308

et al., 2023): selecting samples based on low per-309

token perplexity, indicating high model certainty310

and fluency. (5) Diversity (Wang et al., 2022a):311

for each instruction in the dataset, Rouge score is312

computed against a randomly selected subset com-313

prising n samples (n ≪ M ). Then, we select k314

samples that exhibit the minimum Rouge scores.315

(6) Open-Endedness (OpenEnd) (Li et al., 2023): 316

generating three inferences per prompt, counting 317

unique bigrams, and selecting samples with the 318

greatest variety of bigrams. (7) Coreset (Sener 319

and Savarese, 2018): Similar to CBS, transforming 320

instructions into embedding space with Sentence- 321

bert, then selecting samples with K-Center-Greedy 322

algorithm (Sener and Savarese, 2018). 323

Implementation Details. We utilize the Dolly and 324

Cleaned Alpaca datasets for training and evalua- 325

tion. Due to the absence of predefined train-test 326

splits in these datasets, we allocated 1k samples 327

from each for testing, leaving 14k and 51k sam- 328

ples in the Dolly and Cleaned Alpaca datasets, re- 329

spectively, for training. We employed sampling 330

algorithms to select subsets of 1k to 3k samples 331

from each train set. The LLaMA-2 (7B) model was 332

fine-tuned using QLoRa (Touvron et al., 2023) to 333

optimize memory usage during training. For in- 334

struction selection with SELECTLLM, ChatGPT 335

(gpt-3.5-turbo-0613) was utilized. To ensure ro- 336

bustness in our results, we conducted experiments 337

using three different random seeds. The models’ 338

evaluation scores were averaged to derive a final 339

score for each method. Further details regarding 340

the training process are provided in the Appendix. 341

4.2 Main Results 342

In this section, we present our main experimental 343

results. Our comprehensive evaluation, incorpo- 344

rating both Rouge scores and Cosine Similarity 345

metrics, provides a detailed insight into the per- 346

formance variations across different sample sizes 347

(1k, 2k, and 3k), as well as the average perfor- 348
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Table 2: Experimental results on Cleaned Alpaca (Conover et al., 2023). Rouge-L (F1) and Cosine similarity of
generated responses from fine-tuned LLaMA-2 by different numbers of examples are compared. The best and
second best scores are highlighted in bold and underline, respectively.

Rouge-L (F1) Cosine Similarity Avg Across Sizes
Methods 1k 2k 3k 1k 2k 3k Avg Rouge Avg Cosine

Lengthshort 0.219 0.263 0.261 0.519 0.632 0.625 0.248 0.592
Perplexity 0.264 0.278 0.272 0.628 0.646 0.640 0.271 0.638

CBSsbert 0.254 0.264 0.288 0.598 0.618 0.665 0.269 0.627
Lengthlong 0.228 0.266 0.297 0.550 0.618 0.683 0.264 0.617

CBSinstr 0.257 0.280 0.292 0.610 0.655 0.673 0.276 0.646
Random 0.281 0.281 0.271 0.653 0.662 0.656 0.278 0.657

Diversity 0.268 0.286 0.297 0.650 0.673 0.690 0.284 0.671
OpenEnd 0.250 0.247 0.276 0.616 0.601 0.645 0.258 0.621

Coreset 0.277 0.267 0.299 0.650 0.635 0.695 0.281 0.660

Ours 0.276 0.277 0.301 0.661 0.667 0.707 0.285 0.678

mance across these sizes. The results for Dolly349

are detailed in Table 1 and for Alpaca in Table 2,350

respectively. To be specific, our analysis leads to351

several nuanced observations:352

Dominant performance of SELECTLLM. Se-353

lectLLM consistently outperforms other methods354

in the Dolly dataset, maintaining a lead with an355

average improvement of 2.6% in Rouge Score and356

3% in Cosine Similarity across all sample sizes.357

This highlights SELECTLLM’s adaptability and ef-358

fectiveness in processing human-generated data. In359

the Cleaned Alpaca dataset, SELECTLLM shows360

its strength particularly at the 1k and 3k sample361

sizes, outperforming others on the cosine similar-362

ity metric. While its performance at the 2k size363

is slightly lower, the overall trend underscores its364

reliability across various data volumes.365

Consistent effectiveness across datasets. SE-366

LECTLLM exhibits unparalleled consistency in367

both human and synthetic datasets. This unifor-368

mity across sample sizes sets it apart from other369

baselines and demonstrates its broad applicability.370

In contrast, other methods like Coreset, Diversity,371

and Lengthlong show fluctuating performances de-372

pending on the dataset and sample size. For exam-373

ple, Coreset varies notably with sample size, while374

Diversity and Lengthlong excel in the Cleaned Al-375

paca dataset but falter in the Dolly dataset. Ope-376

nEndedness performs better in Dolly but shows377

decreased effectiveness in Cleaned Alpaca. This378

further highlights the robust and adaptable nature379

of SELECTLLM.380

Cross-dataset generalization. We analyze how381

well models trained on dolly samples using various382

Table 3: Cross-dataset generalization for 3k sample size.
Rouge-L (F1) / Cosine similarity of generated responses
from LLaMA-2. The best scores are highlighted in bold,
and column names indicate the dataset trained on.

Methods Dolly Cleaned Alpaca

Random 0.205 / 0.589 0.260 / 0.669
OpenEnd 0.208 / 0.627 0.244 / 0.640
Coreset 0.208 / 0.651 0.271 / 0.684

SELECTLLM 0.229 / 0.668 0.263 / 0.683

sampling techniques generalize to cleaned alpaca 383

data, and vice versa. Our results are presented in 384

Table 3 for both datasets. We made an intriguing 385

observation with regards to models trained on dolly 386

data - the model trained using our approach re- 387

markably performed better than all the baselines by 388

10% on the cleaned alpaca test set. On the Cleaned 389

Alpaca dataset, Coreset shows comparable perfor- 390

mance to SELECTLLM in terms of Cosine Sim- 391

ilarity and slightly better performance in Rouge 392

scores. Further, Cleaned Alpaca appears to be a 393

better dataset for cross-evaluation generalization 394

when observing the performance of all baselines 395

trained on it. 396

Evaluation with GPT-4. We evaluate the quality 397

of generated responses between LLaMA-2 fine- 398

tuned with SELECTLLM and other methods on a 399

1k size instruction dataset, randomly sampled from 400

the Dolly dataset. We ask GPT-4 to choose the bet- 401

ter response to a given instruction, similar to (Liu 402

et al., 2023). As shown in Table 4, SELECTLLM 403

wins in 52% of the cases when compared to Ran- 404

dom sampling, and 44% cases when compared to 405

Coreset sampling, further showcasing better infer- 406
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Table 4: Win-Tie-Draw from GPT-4 evaluation (%) on
SELECTLLM against Random and Coreset with Dolly.

Compared Methods Win Tie Lose

SELECTLLM vs Random 52.1 18.4 29.5
SELECTLLM vs Coreset 44.2 25.4 30.4

Table 5: Ablation study. Rouge and cosine similarity
of generated responses from fine-tuned LLaMA-2 by
selecting 1k examples on Dolly with different methods
are compared. The best scores are highlighted in bold.

Division Selection Rouge-L (F1) Cosine Sim

Random Random 0.239 0.589
Random OpenEnd 0.258 0.627
Random LLM 0.274 0.651

SimKMeans LLM 0.264 0.625

DivKMeans Random 0.236 0.585
DivKMeans OpenEnd 0.251 0.617
DivKMeans LLM 0.278 0.668

ence quality of SELECTLLM. The prompt for the407

evaluation is provided in the appendix (Figure 6).408

4.3 More Analyses with SELECTLLM409

4.3.1 Ablation study410

To show the effectiveness of each component of411

SELECTLLM, we ablate against different combi-412

nations of local selection prompting methods (Sec413

3.2) and global division algorithms (Sec 3.3) on 1k414

samples from Dolly. Table 5 shows the results.415

Local selection. We first compare our prompting-416

based selection method in section 3.2 with dif-417

ferent non-prompting techniques, under the same418

global division method such as Random and SE-419

LECTLLM’s method (called DivKmeans). We ob-420

serve that other selection methods, Random and421

OpenEndedness, are not as effective in compar-422

ison, highlighting the superiority of LLM-based423

selection in selecting higher-quality instructions424

for training other LLMs, without true labels.425

Global division. Next, we compare the global426

division method, DivKmeans, with SimKmeans and427

random sampling. SimKmeans is a method that clus-428

ters instruction embeddings and constructs input429

queries with similar instructions, rather than di-430

verse ones. We observe that SimKmeans performs431

the worst, indicating that having diverse instruc-432

tions to choose from helps LLMs perform a better433

local selection. This is also highlighted by the434

result that Random division performs better than435

SimKmeans, but worse than DivKmeans.436

Instruction 1:
….
Instruction 3: Let’s solve the following math problem. Each rabbit has 4
feets and each duck has 2 feets. If there are in total 25 heads and 88 feets,
how many rabbits and how many ducks are there?
….
Instruction 11: Why are all the planets and moons round in shape? What
makes them round? Does there exist another shape?
….

Instruction [3] was chosen because it meets several criteria for model
fine-tuning.

First, it is clear and relevant, as it presents a math problem … Second, it
exhibits a high level of complexity and detail, as it involves multiple
variables and requires solving a system of equations. Third, … Fourth, …
Lastly, …

Overall, annotating this instruction can contribute to model fine-tuning by
improving the model's ability to understand and solve math problems, as
well as enhance its reasoning and problem-solving capabilities.

Instruction 1: … Instruction 3: 116 … Instruction 11: 207 (highest), …

OpenEndedness

Reasoning of Selection by SelectLLM

Input (unlabeled) Instructions

Figure 5: Qualitative example of selection with a given
query composed of 14 instructions on Dolly.

4.3.2 Qualitative results 437

Comparison of outputs from fine-tuned LLMs. 438

We evaluate responses from LLMs fine-tuned with 439

SELECTLLM against Random and Coreset base- 440

lines, focusing on their handling of closed and open 441

QA formats. Key examples are in Table 6, with 442

more in the appendix (Table 9). 443

In the first example in Table 6, SELECTLLM 444

demonstrates superior precision and adherence to 445

the instruction compared to the other methods. 446

While the Coreset and Random methods provide 447

correct responses, they tend to replicate the input 448

text without much specificity. In contrast, SE- 449

LECTLLM generates a response that is not only 450

precise and direct but also effectively extracts and 451

succinctly presents the relevant information. 452

The second example, based on an Open-ended 453

task further underscores SELECTLLM’s nuanced 454

understanding and response capability. While Ran- 455

dom and Coreset give basic, concise answers, SE- 456

LECTLLM adds personalized, empathetic elements 457

(highlighted in blue), showing deeper instruction 458

comprehension. This reflects the advanced re- 459

sponse capabilities essential in instruction-tuned 460

models. 461

Analysis of chosen instructions. We provide addi- 462

tional experiments to examine why SELECTLLM 463

could be effective compared to other selection meth- 464

ods. To this end, we first conduct statistical analysis 465

for the instructions selected by Random, Coreset, 466

OpenEnd, and SELECTLLM (Table 7). The results 467

show that (1) SELECTLLM selects high quality 468

7



Table 6: Examples of generated sentences from fine-tuned LLMs with different selection methods.

Instruction (#1): Where was Sarah Schechter born?
Input: Schechter was born in Boston and grew up in Brookline, Massachusetts and New York City. Her father, Danny Schechter,
a grandson of Russian-Jewish immigrant socialists, was a human rights activist, author, filmmaker and television producer.
Ground Truth: Sarah Schechter was born in Boston, Massachusetts.

Random Coreset Ours
Sarah Schechter was born in Boston
and grew up in Brookline, Massachusetts
and New York City. Her father, Danny
Schechter, a grandson of Russian-Jewish
immigrant socialists, was a human rights
activist, author, filmmaker and television
producer.
### Instruction: · · · ### Input: · · · ###
Response: · · · ### Instruction:

Sarah Schechter was born in Boston
and grew up in Brookline, Massachusetts
and New York City. Her father, Danny
Schechter, a grandson of Russian-Jewish
immigrant socialists, was a human rights
activist, author, filmmaker and television
producer.

Sarah Schechter was born in Boston,
Massachusetts.

Instruction (#2): Write an email to the head of academic coaching at Services for Students with Disabilities sharing that I’ve
applied to the coaching position. I have experience volunteering with children on the autism spectrum.
Ground Truth:
Hi,
I hope you are having a wonderful day. My name is _, and I just applied for the Program Staff position at the Services for
Students with Disabilities to empower students who have disabilities to reach their academic dreams. My background working in
higher education and volunteering with kids on the Autism spectrum combine to bring an empathetic and impactful perspective.
Please let me know if there is anything else I can do at this time to be considered for this position.
With gratitude,

Random Coreset Ours
Dear Head of Academic Coaching,
I am writing to share that I have applied
to the coaching position. I have experi-
ence volunteering with children on the
autism spectrum.
Thank you for your time.
Sincerely,
Katie

I’m writing to share that I’ve applied to
the coaching position. I have experience
volunteering with children on the autism
spectrum.

Dear Head of Academic Coaching,
I am writing to share that I have applied
to the coaching position. I have experi-
ence volunteering with children on the
autism spectrum. I am passionate about
helping children with disabilities and I
believe that I would be a great asset to
your team. I am confident that I can
make a positive impact on the lives of
the students that I work with.

Table 7: Analysis of 1k selected instructions with differ-
ent approaches on Dolly. Diversity is measured using
kNN distance (Carbonera and Abel, 2015) with k = 1.
Perplexity is measured with GPT2-large (Radford et al.,
2019), and Length is the number of characters.

Methods Diversity (↑) Perplexity (↓) Length

Random 0.721 89 460
Coreset 0.931 47 847

OpenEnd 0.710 71 646
SELECTLLM 0.796 30 1417

(i.e., lower perplexity) instructions with more de-469

tails (i.e., longer length), and (2) the selected in-470

structions are considerably diverse; it demonstrates471

the effectiveness of selection by LLMs and com-472

posing diverse query via clustering, respectively.473

Next, to further explore the advantage of selection474

via LLMs over existing approaches, we conduct475

an additional comparison between SELECTLLM476

and the method that uses OpenEnd for local se-477

lection and DivKmeans for global division, which478

is presented in 6th row in Table 5. Similar to the479

experiments in Table 4, we provide two different in-480

dices selected by these methods, and ask ChatGPT 481

which selection is better (Full prompt is presented 482

in Figure 8). Here, we find that the selection by 483

SELECTLLM is more preferred (31.8% vs 28.0%), 484

and it indicates that the selection itself is beneficial 485

from LLMs not only during fine-tuning. Lastly, we 486

present specific examples of the selections with two 487

methods, along with the rationales for the selection 488

with SELECTLLM generated via zero-shot chain- 489

of-thought with ChatGPT (Kojima et al., 2022). As 490

shown in Figure 5, we observe the several under- 491

lying rationales considered by LLM in making its 492

selection. More examples are in Appendix D. 493

5 Conclusion 494

We introduce SELECTLLM, a new approach that 495

uses LLMs to choose an efficient subset from a 496

set of unlabelled instructions. Our experiments on 497

two popular benchmarks show that SELECTLLM 498

is more effective than previous selection methods. 499

This demonstrates how LLMs can improve the effi- 500

ciency of instruction tuning for language models. 501
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Limitations502

Despite the impressive performance of SE-503

LECTLLM, it is not without its limitations. A pri-504

mary concern is the expense associated with utiliz-505

ing LLMs like ChatGPT for data selection, which506

can be substantial. Additionally, the scalability507

of SELECTLLM when dealing with exceptionally508

large datasets, or in scenarios requiring real-time509

data annotation, remains an area that needs fur-510

ther exploration. This aspect is particularly crucial511

given the ever-increasing size of datasets and the512

imperative for efficient processing in a wide range513

of practical applications. Hopefully, these limita-514

tions will be addressed in the future upon our work.515

Broader Impact and Ethical Implications516

The findings from our research not only estab-517

lish the proficiency of LLMs in autonomously518

selecting high-quality data for training but also519

open new paths for future investigation in this do-520

main. The successful application of LLMs in data-521

constrained environments is demonstrated by the522

exceptional ability of SELECTLLM. This study,523

therefore, marks a significant stride in the field of524

instruction tuning for LLMs, paving the way for525

more efficient and effective training methodologies526

and expanding the scope of autonomous capabil-527

ities of LLMs. In terms of ethical implications,528

the potential for any risk is limited to the applica-529

tion of LLMs in our framework, and the general530

risks associated with them such as LLMs showing531

bias in selecting certain instructions according to532

what it believes to be an impactful instruction. Fur-533

ther, bias can also be introduced based on how the534

prompt is designed by the user, when querying the535

LLMs in our framework.536
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A More Details about Experiments698

A.1 Datasets699

1) Dolly (Conover et al., 2023): The Dolly dataset,700

developed by Databricks, Inc., is a comprehen-701

sive collection of over 15,000 human-generated702

instruction-following records. It encompasses a703

variety of behavioral categories such as brainstorm-704

ing, classification, closed and open QA, generation,705

information extraction, and summarization. This706

dataset was created by Databricks employees and707

is designed to enhance the interactivity and respon-708

siveness of large language models (LLMs) similar709

to ChatGPT.710

2) Cleaned Alpaca: Cleaned Alpaca is based on711

(Taori et al., 2023) but with responses generated712

by GPT-4. It addresses several issues found in the713

original dataset, which was generated using GPT-714

3. The cleaned dataset incorporates approximately715

52,000 instructions.716

A.2 Baselines717

1) Random: As the name suggests, random sam-718

pling involves selecting instances from the unla-719

beled dataset purely at random, without consider-720

ing their informativeness or representativeness.721

2) Cluster-Based Selection (CBSsbert and722

CBSinst) (Chen et al., 2023a; Su et al., 2023):723

Uses clustering for sample selection. CBSsbert724

involves transforming instructions into vector rep-725

resentations with Sentence-BERT (Reimers and726

Gurevych, 2019b), whereas the CBSinst method727

involves transforming the sentences into embed-728

dings using a pre-trained embedder called Instruc-729

tOR, derived from (Su et al., 2023). InstructOR is730

supposed to be faster in the conversion of sentences731

into embeddings. Once we have the embeddings,732

both these methods have similar steps. We then733

carry out clustering of the respective embeddings734

with HDBSCAN (Campello et al., 2013), followed735

by selecting samples using the K-Center-Greedy736

algorithm which focuses on cluster centroids.737

3) Perplexity (Li et al., 2023): Selects samples738

based on low per-token perplexity, indicating high739

model certainty and fluency, akin to the approach740

in (Li et al., 2023).741

4) Diversity (Wang et al., 2022a): This method742

utilizes Rouge scores to evaluate the diversity of743

prompts. For each instruction in the dataset, Rouge744

scores are computed against a randomly selected745

subset comprising n samples, where n is strictly746

less than the total size of the dataset (n < Dataset747

Size). The selection criterion is based on the ag- 748

gregation of these Rouge scores. Specifically, we 749

select samples that exhibit the minimum aggregated 750

Rouge scores, thereby ensuring a diverse represen- 751

tation in the final dataset. 752

5) Open-Endedness (Li et al., 2023): Determines 753

prompt open-endedness by generating three infer- 754

ences per prompt, counting unique bigrams be- 755

tween the generated inferences, and selecting sam- 756

ples with the greatest variety of bigrams. This pro- 757

cess follows the open-endedness criteria defined for 758

samples with a broader range of chain of thought 759

reasonings in (Li et al., 2023). 760

6) Coreset (Sener and Savarese, 2018): Similar to 761

CBS, this method involves transforming data points 762

into their embedding space with Sentence-BERT, 763

then iterates a process to get subsets that maximize 764

the coverage and diversity within each subset with 765

a predetermined subset size. The algorithm selects 766

samples by prioritizing those that maximize the 767

distance to the nearest point already included in 768

the subset, ensuring that the selected samples are 769

diverse within each subset. 770

7) Length: Considers the length of prompts (In- 771

struction + Input), focusing on both longer and 772

shorter ones to evaluate their impact. 773

A.3 SELECTLLM 774

In Algorithms 1 and 2, we describe the proposed 775

algorithms, presented in Section 3. In addition, we 776

present examples of generated sentences from fine- 777

tuned LLMs with different selection methods, in 778

Table 9. 779

A.4 Implementation details 780

For our experiment, we utilize the Dolly and 781

Cleaned Alpaca datasets for both the training and 782

evaluation phases. As there were no explicit train 783

and test split for these datasets, we randomly sam- 784

pled 1k samples from each dataset to form our test 785

sets. This allocation leaves us with 51k samples in 786

the Cleaned Alpaca dataset and 14k samples in the 787

Dolly dataset for training purposes. Then, we ap- 788

ply one of our sampling algorithms to each training 789

dataset to select a subset of data, varying the subset 790

size between 1k to 3k samples for training, with an 791

80:20 training and validation split. We fine-tune 792

LLaMA-2 (7B) model (Touvron et al., 2023) by 793

employing QLoRa (Dettmers et al., 2023), a model 794

optimization technique, to reduce the memory re- 795

quirements during the fine-tuning and inference 796

processes. For the experiments, we use three dif- 797

11



Question: Given the following responses to
the target question , determine which is more
informative and plausible to answer a given
question properly.

Response 1:
{Method #1 response}

Response 2:
{Method #2 response}

Target Question:
{question}

Your Task:
Identify which response (Response 1 or
Response 2) is more informative and plausible
to answer a given question at hand. Choices:
[Response 1, Response 2]. Answer with less

than 3 words.

Answer:

Figure 6: Prompt for GPT-4 evaluation on SELECTLLM
against Random and Coreset. {blues} indicate the place
for the inputs. To prevent order bias of LLMs, we ask
GPT-4 twice with changed order of responses.

Algorithm 1 SELECTLLM
Input: Un-annotated instructions X , large lan-
guage model LLM, input prompt psel, sentence
encoder gϕ, number of samples in query K, num-
ber of queries T , number of output O
Output: Selected indices Sall

/* Construct input queries */
q1, · · · , qT ← Diverse-query(X , gϕ,K, T )
Sall ← ∅
for t = 1 to T do

/* Selection via LLM */
St ← LLM

(
psel(qt, O)

)
Sall ← Sall ∪ St

end for

ferent random seeds and then compute the average798

of the evaluation scores from these three models to799

derive a final score for each method. We run a total800

of 20 epochs with a batch size of 6. We use the801

Paged optimizer and set the gradient accumulation802

steps at 2. To avoid overfitting and select the best803

model, we integrate an Early Stopping Callback804

with a patience of 3 epochs and a threshold of 0.01.805

Also, for selecting instructions with SELECTLLM,806

we commonly use ChatGPT (gpt-3.5-turbo-0613).807

Algorithm 2 Diverse-query

Input: Un-annotated instructions X , sentence
encoder gϕ, number of clusters K, number of
queries T
Output: Set of queries {qt}Tt=1

c1, · · · , cK ← K-means({gϕ(x)},K)
d1,1, · · · , dN,K ← l2-dist({gϕ(x)}, {ck})
for k = 1 to K do

Ik ← argsort{d1,k, · · · , dN,k}
end for
A = {1, · · · , N}
for t = 1 to T do

qt ← ∅
for k = 1 to K do

s← 1
while |qt| < k do

if Ik(s) ∈ A then
qt ← qt ∪ {xIk(s)}

else
s← s+ 1

end if
end while

end for
end for

Table 8: Comparison of different selection methods.

Sources Complexity Information Flexibility Cost

Input Low Low Low Low
Response High High Low Medium

LLMs Medium High High High

B Comparison with Previous Selection 808

Methods 809

In this section, we provide a detailed comparison 810

between SELECTLLM and previous approaches 811

for sample selection. First, we divide the existing 812

approaches for sample selection into two differ- 813

ent categories: input-based and response-based 814

ones. Input-based approaches only use the input 815

text to select samples, e.g., given instruction with- 816

out the corresponding label. For example, Chen 817

et al. (2023a) transforms input instruction into em- 818

bedding space, and then applies clustering and K- 819

Center-Greedy algorithms. In contrast, response- 820

based approaches first generate responses with the 821

external model, and then select samples using both 822

instruction and artificial response; for instance, one 823

can utilize the fine-tuned LLMs with small labeled 824

instructions (Kung et al., 2023) or fixed pre-trained 825

LLMs (Wang et al., 2023). 826

Since the two approaches rely on different 827
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sources to extract the information for the samples,828

they have distinct characteristics. First, in terms829

of the complexity of the method, an input-based830

one is much simpler than a response-based one as831

it does not require additional processes like model832

fine-tuning or generation of the response. How-833

ever, response-based one can utilize more infor-834

mation about the sample, thanks to the generated835

response, while it requires more cost to obtain that.836

In the case of SELECTLLM, it’s not very com-837

plex as the user can easily select the samples using838

the APIs. Also, SELECTLLM utilizes extensive839

information within LLMs while inferring the im-840

portance of each sample to select the important841

ones with prompting. Although it requires the cost842

for prompting with APIs in our experiments, we843

remark that SELECTLLM exhibits the unique capa-844

bility that could be flexibly adapted for the desired845

property. We summarize the comparison of differ-846

ent approaches in Table 8.847

C Verifying Capability of LLMs for848

Selecting Unlabelled Instruction849

In this section, we present the full input prompt to850

verify whether LLMs could infer the importance851

of unlabelled instructions, which is presented in852

Figure 3. We adapted the prompt from the recent853

work using LLMs for text re-ranking (Sun et al.,854

2023) and the prompt is presented in Figure 7.855

D More Analyses with Chosen856

Instructions857

In this section, we provide more details about ad-858

ditional analyses of chosen instructions. First, in859

Figure 8, we present a full prompt to generate rea-860

soning for the selection by SELECTLLM, which861

is used in Figure 5. We analyze 10 clusters, each862

containing 14 instructions, unveiling the LLM’s863

intricate selection criteria. Key factors influencing864

the LLM’s choices include clarity and relevance,865

complexity and detail, and the potential for instruc-866

tional value and learning gains. The LLM shows a867

propensity for instructions that require a nuanced868

understanding and provide substantial learning op-869

portunities, such as querying specific information870

about diverse topics like the Lollapalooza music871

festival, process mining, and the top speed of a872

Kia Stinger. Moreover, LLM consistently selects873

instructions that pose unique challenges and de-874

mand specificity, thereby testing and expanding875

its knowledge across various domains. Figures 9876

This is RankGPT , an intelligent assistant
that can rank instructions based on their
impactfulness and informativeness for model
fine -tuning , when labeled by humans , like
active learning.

The following are {num} examples of
instructions that describe a task , each
indicated by a number identifier [].

[1]
### Instruction: {Example #1 Instruction}
### Input: {Example #1 Input}
.
.
.
[N]
### Instruction: {Example #N Instruction}
### Input: {Example #N Input}

I will rank the {num} instructions above
based on their impactfulness and
informativeness for model fine -tuning when
labeled by humans , like active learning. The
examples will be listed in descending order
using identifiers , and the most impactful
examples should be listed first , and the
output format should be [] > [] > etc , e.g.,
[1] > [2] > etc.

The ranking results of the {num} examples (
only identifiers) is

Figure 7: Full prompt to investigate the capability of
LLM to infer the importance of instructions without
labels.

and 10 show more such detailed examples with the 877

rationales provided by the LLM for its selection 878

compared against the selection by OpenEndedness. 879

E Comparison of Selected Sample with 880

the Entire Dataset 881

We compared the SELECTLLM-3k sampled model 882

with models trained on full Dolly and Cleaned 883

Alpaca datasets. As detailed in 10 and 11, SE- 884

LECTLLM-3k nearly equals the full Dolly dataset 885

model in performance, and achieves 85% of the 886

full dataset’s performance on the Cleaned Alpaca 887

dataset, as per the Rouge score. This underscores 888

SELECTLLM’s efficiency in filtering out noise 889

from the entire dataset, especially in the case of 890

Dolly. While our results are akin to the data filter- 891

ing approach in (Chen et al., 2023b), which also 892

samples 3k instructions from the Dolly dataset, 893

there are notable differences. Their method out- 894

performs the full dataset, possibly due to their in- 895

clusion of sample outputs in the filtering process, 896

an aspect not considered in our approach. 897
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Table 9: Another instance of a closed QA example asking to differentiate between two terms. All three models
arrive at the correct answer, however only SELECTLLM clearly distinguishes between the two terms by providing
detailed definitions, highlighting its capacity to deliver more informative and contextually rich explanations

Instruction (#3): Which is a species of fish? Red snapper or Red Sox
Ground Truth: Red snapper

Random Coreset Ours
Red snapper
### Instruction:
What is the name of the first person to
win the Tour de France?
### Input:
### Response:
Maurice Garin
### Instruction:
What is the name of the first person to
win the Tour de France?
### Input:

### Response:
Maurice Garin

Red snapper is a species of fish. Red snapper is a species of fish.
Red Sox is a baseball team.

Table 10: Experimental results on Dolly (Conover et al.,
2023). Rouge-L (F1) and Cosine similarity of generated
responses from fine-tuned LLaMA-2 models on the en-
tire dolly dataset are compared with a model trained on
only 3k samples chosen by SELECTLLM.

Methods Rouge-L (F1) Cosine Similarity

Dolly-15k 0.292 0.689

SELECTLLM-3k 0.289 0.686

Table 11: Experimental results on Cleaned Alpaca
(Conover et al., 2023). Rouge-L (F1) and Cosine simi-
larity of generated responses from fine-tuned LLaMA-2
models on the entire Cleaned Alpaca dataset is com-
pared with a model trained on only 3k samples chosen
by SELECTLLM.

Methods Rouge-L (F1) Cosine Similarity

Dolly-15k 0.292 0.689

SELECTLLM-3k 0.289 0.686

The following are {N} candidate instructions
that describe a task , each indicated by a
number identifier [].

[1]
### Instruction: {Example #1 Instruction}
### Input: {Example #1 Input}
.
.
.
[N]
### Instruction: {Example #N Instruction}
### Input: {Example #N Input}

Examine the provided list of {N} instructions
, each uniquely identified by a number in
brackets [].

Your task is to select {num} instructions
that will be annotated by human annotators
for model fine -tuning.

Look for instructions that are clear and
relevant , exhibit a high level of complexity
and detail , represent a diverse range of
scenarios and contexts , offer significant
instructional value and potential learning
gain , and present unique challenges and
specificity.

These selected instructions should ideally be
the most beneficial for model fine -tuning

after being annotated by human annotators.

Present your selections using the format [].
e.g., [1,2] or [2,3].

The most impactful {num} instructions (only
identi -fiers) are: {prev_selection}

Explain why it was chosen , focusing on how it
meets the above criteria and its potential

contribution to model fine -tuning. Rationale
for selection:

Figure 8: Prompt to generate reasoning for the selection.
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Instruction 1:
What is best Playstation or Xbox

Instruction 2:
When did Virgin Australia start operating?

Instruction 3:
Which is a species of fish? Tope or Rope

Instruction 4:
Which Dutch artist painted “Girl with a Pearl Earring”?

Instruction 5:
Alice's parents have three daughters: Amy, Jessy, and what’s the name of
the third daughter?

Instruction 6:
Given a reference text about Lollapalooza, where does it take place, who
started it and what is it?

Instruction 7:
If I have more pieces at the time of stalemate, have I won?

Instruction 8:
From the passage list down the areas for which Dar es Salaam is Tanzani
a's most prominent city. List the results in comma separated format.

Instruction 9:
When was Tomoaki Komorida born?

Instruction 10:
Why mobile is bad for human

Instruction 11:
Who is Thomas Jefferson?

Instruction 12:
Who gave the UN the land in NY to build their HQ

Instruction 13:
Without quoting directly from the text give me a summary of the history
of the Key Lime Pie.

Instruction 14:
What is a polygon?

Instruction [6] was chosen because it meets several of the criteria for model
fine-tuning.

First, it is clear and relevant, asking for specific information about the
location, founder, and nature of the Lollapalooza music festival. This specifici
ty allows for a focused annotation task.

Second, it exhibits a high level of complexity and detail. The instruction requ
ires understanding and extraction of multiple pieces of information from the
input text, including the location, founder, and description of the festival.

Third, it represents a diverse range of scenarios and contexts. The task invol
ves extracting information about a music festival, which is a distinct topic
from the other instructions in the list.

Fourth, it offers significant instructional value and potential learning gain.
Annotating this instruction would help train the model to accurately extract
specific details about events and their background information.

Finally, it presents unique challenges and specificity. The instruction requires
the model to identify and extract specific information about the location,
founder, and nature of the Lollapalooza festival, which may require understa
nding and disambiguation of certain terms and concepts.

Overall, annotating this instruction would contribute to the model's ability
to accurately extract specific details about events and their background infor
mation, making it a valuable choice for model fine-t

Instruction 1: 153

Instruction 2: 188

Instruction 3: 94

Instruction 4: 128

Instruction 5: 121

Instruction 6: 157

Instruction 7: 190

Instruction 8: 72

Instruction 9: 68

Instruction 10: 189

Instruction 11: 174

Instruction 12: 173

Instruction 13: 81

Instruction 14: 142

OpenEndedness

LLM Based

Instruction 7:
If I have more pieces at the
time of stalemate, have I won?

Instruction 1:
What is the best bidding system in duplicate bridge?

Instruction 2:
From a financial perspective, tell me five things should be considered
when retiring.

Instruction 3:
Which is a species of fish? Sea bream or Sea shell

Instruction 4:
Identify which instrument is string or woodwind: Balaban, Lute

Instruction 5:
Name some books that Jane Austen is best known for.

Instruction 6:
What are the pros and cons of working from home rather than going
into an office downtown?

Instruction 7:
Which of these games are traditionally considered to be board games,
and which are card games? Monopoly, Trivial Pursuit, Poker, Snap, Chess,
Backgammon, Bridge and Scrabble.

Instruction 8:
What was the primary mode of transportation across the San Francisco
bay prior to the Golden Gate Bridge?

Instruction 9:
Which notable person in this list with surname Liebers was born last?

Instruction 10:
How can I avoid sunburn?

Instruction 11:
What was the Battle of Midway?

Instruction 12:
Which country is alphabetically last

Instruction 13:
Who is Hugo Chavez?

Instruction 14:
How do you brew beer?

I have selected instruction [6] because it meets the criteria for clear and
relevant instructions, exhibits a high level of complexity and detail,
represents a diverse scenario and context, offers significant instructional
value and potential learning gain, and presents a unique challenge and
specificity. This instruction asks for the pros and cons of working from home
rather than going into an office downtown.

It requires the annotators to provide a comprehensive analysis of the advan-
tages and disadvantages of remote work, considering factors such as
productivity, work-life balance, social interaction, and potential challenges.

This instruction can contribute to model fine-tuning by providing valuable in
sights into the benefits and drawbacks of remote work, which is a relevant a
nd timely topic in today's work environment.

Instruction 1: 125

Instruction 2: 157

Instruction 3: 133

Instruction 4: 117

Instruction 5: 104

Instruction 6: 148

Instruction 7: 142

Instruction 8: 168

Instruction 9: 78

Instruction 10: 156

Instruction 11: 172

Instruction 12: 136

Instruction 13: 161

Instruction 14: 202

OpenEndedness

LLM Based

Instruction 14:
How do you brew beer?

Figure 9: Selection of an Instruction from a given cluster using LLM Based prompting (Red) along with its Chain
of Thought Reasoning compared to selection based on the OpenEndedness scores of the given instructions (Blue).
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Instruction 1:
Which team was relegated from the league at the conclusion of the 1991
Season?

Instruction 2:
How did Alfred Nobel make his money

Instruction 3:
Let’s solve the following math problem. Each rabbit has 4 feets and each
duck has 2 feets. If there are in total 25 heads and 88 feets, how many ra
bbits and how many ducks are there?

Instruction 4:
Identify which instrument is string or woodwind: Wheelharp, Clarinet

Instruction 5:
Give me a list of the best bravo tv shows

Instruction 6:
Is Paris a good city to live in?

Instruction 7:
What is Game of Thrones based on?

Instruction 8:
Extract the names of the cities and rank them in alphabetical order?

Instruction 9:
Without quoting from the text, can you summarise from wikipedia who
Denis-Benjamin Viger was?

Instruction 10:
How do I cast on a knitting project?

Instruction 11:
Why are all the planets and moons round in shape? What makes them
round? Does there exist another shape?

Instruction 12:
How is the The U.S. Naturalization Interview and test done?

Instruction 13 :
Cauliflower rice is not that fun to eat in its bland form. Is there anything
interesting and tasty I can cook with cauliflower rice?

Instruction 14:
When was the 8088 processor released?

Instruction [3] was chosen because it meets several criteria for model fine-
tuning.

First, it is clear and relevant, as it presents a math problem that requires
solving for the number of rabbits and ducks based on given information
about their feet and heads.

Second, it exhibits a high level of complexity and detail, as it involves
multiple variables and requires solving a system of equations.

Third, it represents a diverse range of scenarios and contexts, as it involves a
math problem that can be applied to various real-life situations.

Fourth, it offers significant instructional value and potential learning gain, as
it requires critical thinking and problem-solving skills.

Lastly, it presents a unique challenge and specificity, as it requires
understanding the relationship between the number of heads, feet, and the
types of animals.

Overall, annotating this instruction can contribute to model fine-tuning by
improving the model's ability to understand and solve math problems, as
well as enhance its reasoning and problem-solving capabilities.

Instruction 1: 126

Instruction 2: 163

Instruction 3: 116

Instruction 4: 117

Instruction 5: 159

Instruction 6: 185

Instruction 7: 181

Instruction 8: 176

Instruction 9: 155

Instruction 10: 176

Instruction 11: 207

Instruction 12: 175

Instruction 13: 154

Instruction 14: 112

OpenEndedness

LLM Based

Instruction 11:
Why are all the planets and
moons round in shape? What
makes them round? Does there
exist another shape?

Figure 10: Selection of an Instruction from a given cluster using LLM Based prompting (Red) along with its Chain
of Thought Reasoning compared to selection based on the OpenEndedness scores of the given instructions (Blue).
This is based on the example shown in the main paper.
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