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Abstract

Deep neural networks have relieved the feature engineering burden on human1

experts. However, comparable efforts are instead required to determine an effective2

architecture. In addition, as the sizes of networks have over-grown, a considerable3

amount of resources is also invested in reducing the sizes. The sparsification of an4

over-complete model addresses these problems as it removes redundant parameters5

or connections. In this study, we propose a fully differentiable sparsification6

method for deep neural networks, which allows parameters to be zero during7

training with the stochastic gradient descent. Thus, the proposed method can8

simultaneously learn the sparsified structure and weights of networks in an end-9

to-end manner, which can be directly applies to modern deep neural networks10

and imposes minimum overhead to the training process. To the authors’ best11

knowledge, it is the first fully [sub-]differentiable sparsification method that zeroes12

out components, and it provides a foundation for future structure learning and13

model compression methods.14

1 Introduction15

The success of deep neural networks has changed the paradigm of machine learning and pattern16

recognition from feature engineering to architecture engineering [16, 14, 22, 7, 32]. Although deep17

neural networks have relieved the burden of feature engineering, comparable human efforts are instead18

required to determine an effective architecture, such as the number of neurons or layers and the19

connections between nodes. In addition, as deep neural networks have over-grown (even up to 10–6820

million parameters) [8, 10, 15, 32], considerable effort is also being invested in reducing existing21

model sizes and in meeting the demands of deploying such networks on constrained platforms at22

inference time [26, 25].23

These problems can be addressed by the sparsification of an over-complete model [20]. A network24

structure can be carved out of an over-complete model by removing redundant blocks [3, 29] or25

deleting unnecessary connections between nodes or blocks [2, 18, 30], which also reduces the network26

size. Among several approaches, pruning has long been adapted [17, 6, 26, 19, 5]. It typically requires27

a pre-trained model and several steps (select unimportant parameters of a pre-trained model, delete28

the parameters, and retrain the pruned model) and may repeat the process multiple times. Another29

approach is a sparsity regularizer with the proximal gradient [21, 3, 29, 33] which shrinks redundant30

parameters to zero during training and requires no pre-trained model. Among the most popular ones31

is l1-regularizer [28]. However, as it acts on an individual parameter, it often produces unstructured32

irregular models; thus, it diminishes the benefit of parallel hardware computation, such as GPUs [29].33

In order to obtain regular sparse structures, a sparse regularization with l2-norm [3, 29] was adopted34

on a group of parameters so that all parameters under the same group are either retained or zeroed-35

out together. By zeroing-out parameters at a group level, the number of neurons or layers can be36

automatically determined as a part of training. However, the optimization of a regularization term is37

performed as a separate step separately from the gradient descent-based optimization for prediction38
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loss. The update rules should be implemented manually and the approach is limited to the cases39

where closed form solutions for the proximal operation are known.40

In this work, we propose a fully [sub-]differentiable sparsification method for deep neural networks,41

which directly optimizes a regularized objective function and allows parameters to be exactly zero42

during training with the stochastic gradient descent. Thus, it can simultaneously learn the sparsified43

structure and weights of deep neural networks in an end-to-end manner. It leads to simpler implemen-44

tation and it does not require to manually code a pruning step or an update rule like a soft-thresholding45

operator. It can adopt various norms as a regularizer regardless of whether their closed form solutions46

for the proximal operator are known or not. Another advantage of the proposed method is that it47

can be easily applied on a group of parameters or a building block; thus, it can produce a structured48

model and maximize the benefits of parallel hardware computation (e.g., GPUs) and it well suits the49

trend of a modularized design in deep learning [22, 27, 7, 32].50

2 Related Work51

2.1 Proximal Gradient52

Our proposed method is related to sparsity regularization with the proximal gradient [21]. A regular-53

ized objective function is written as54

L (D,W ) + λR (W ) , (1)

where L denotes a prediction loss,R is a regularization term, D is a set of training data, W is a set55

of model parameters, and λ controls the trade-off between prediction loss and model complexity. The56

most popular regularizer is l1-norm,57

R (W ) =
∑
i

|wi| , (2)

where wi is an individual element of W . To optimize the regularization term, parameter updating is58

performed with a proximal operator,59

wi ← sign (wi)
(
|wi| − ηλ

)
+
, (3)

where← denotes an assignment operator, η is a learning rate, and (·)+ represents max(·, 0). As this60

approach acts on an individual parameter, it often produces unstructured irregular models. In order61

to obtain regular sparse structures, the sparse regularization with l2,1-norm can be adopted [3, 29].62

All parameters in the same group are either retained or zeroed-out together. The regularization with63

l2,1-norm is written as64

R (W ) =
∑
g

∥∥wg

∥∥
2
=
∑
g

√∑
i

w2
g,i, (4)

where W = {wg} and wg represents a group of model parameters. The regularization term is65

optimized with a proximal operator,66

wg,i ←

(∥∥wg

∥∥
2
− ηλ∥∥wg

∥∥
2

)
+

wg,i. (5)

When a group has only one single parameter, it degenerates to the l1-norm regularization.67

Another group regularization is exclusive lasso with l1,2-norm [34, 33]. Rather than either retaining68

or removing an entire group altogether, it promotes the competition or sparsity within a group. The69

regularization term is written as70

R (W ) =
1

2

∑
g

∥∥wg

∥∥2
1
=

1

2

∑
g

∑
i

∣∣wg,i

∣∣2

, (6)

and its updating rule is derived as71

wg,i ← sign
(
wg,i

) (∣∣wg,i

∣∣− ηλ∥∥wg

∥∥
1

)
+
. (7)
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These proximal operators consist of weight decaying and thresholding steps, and they are performed72

at every mini-batch or epoch in a sperate step after the optimization of a prediction loss. It requires73

some extra efforts to implement the update rules manually and applications are limited to the cases74

where closed form solutions for the proximal operator are known. In contrast, our approach optimizes75

a regularized objective function directly and allows parameters to be zero during training with the76

stochastic gradient descent. It leads to simpler implementations and it can employ various norms77

regardless of whether closed form solutions for proximal operators are known or not, for example78

p-norm with p < 1.79

2.2 Differentiable Approach80

Similar to our work, previous differentiable approaches [2, 18] learn the structure of a neural81

network by optimizing architecture parameters in a relaxed continuous domain, where architecture82

parameters represent the importance scores of building blocks or the connection strengths between83

them. However, as the architecture parameter magnitudes cannot be zero during training, the84

top k connections or components are stochastically or deterministically selected according to the85

architecture parameter values to derive a discretized architecture. Therefore, the approach may suffer86

from the discrepancy between a learned architecture and a final discretized one. Moreover, the87

value of k should be pre-specified manually; thus, the same value is set for all blocks or modules,88

which may be sub-optimal. Our approach drives the architecture parameters to zero by optimizing a89

regularized objective function. This can minimize the model discrepancy, and a network can choose90

the different numbers of components or connections in each module through training.91

3 Proposed Approach92

3.1 Base Model93

We assume that there are n components in a module. A component can be any building block for a94

deep neural network or its output. For example, it can be a channel or a layer of convolutional neural95

networks such as ResNet [7, 8] and DenseNet layer [10]. It can also represent a node in a neural96

graph [30] or a convolutional neural network [11]. A module represents a composite of components,97

such as a group of channels or nodes. For illustration purposes, we assume that a module y can be98

written as the linear combination of components fi:99

y (x) =
n∑

i=1

aifi (x;wi), (8)

where x denotes a module input, wi model parameters for component fi, and ai an architecture100

parameter. Model parameters wi denote ordinary parameters, such as a filter in a convolutional layer101

or weight in a fully connected layer. The value of ai represents the importance of component i, and it102

represents the connection strength between nodes in another context. Enforcing ai to be zero amounts103

to removing component fi or zeroing-out wi. Thus, by creating the competition between elements of104

a and driving them to be zero, we can eliminate unnecessary components or connections. The sample105

model is simple, but we will show that it can be applied to various cases.106

3.2 Differentiable Sparse Parameterization107

First, we show how to parameterize architecture parameters with non-negative constraints, which is108

useful for the attention mechanism with the softmax. To set up the competition between the elements109

of a and allow them to be zero, we parameterize the architecture parameters as follows:110

γi = exp (αi) (9)

111

γ̃i =
(
γi − σ (β) ·‖γ‖1

)
+

(10)

112

ai =
γ̃i∑n
j=1 γ̃j

, (11)
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where αi and β are unconstrained free parameters, σ(·) denotes a sigmoid function, and (·)+ rep-113

resents relu(·) = max(·, 0). When a parameter is non-negative, the proximal operator of Eq. (7)114

is reduced to Eq. (10). Although the forms are similar, they have completely different meanings.115

The proximal operator is a learning rule, whereas Eq. (10) is the parameterized form of architecture116

parameters, which is part of a neural network.117

We can easily verify that ai is allowed to be zero and is also differentiable from a modern deep118

learning perspective. The free parameters αi and β are real-valued and they do not restrict a training119

process with the stochastic gradient descent. Thus, we can train ai through αi and β. The exponential120

function in Eq. (9) ensures that the architecture parameters are non-negative. Typically, ai cannot121

be zero due to the exponential function of Eq. (9). However, γ̃i in Eq. (10) can be zero by the122

thresholding operation; hence, ai can be zero as well. The term σ (β) ·‖γ‖1 plays the role of a123

threshold, and the thresholding operation is interpreted as follows: if the strength of component i124

in a competition group is small compared to the total strength, it is dropped from the competition.125

Note that the scalar parameter β in Eq. (10), which determines the magnitude of a threshold, is126

not a hyper-parameter, but its value is automatically determined through training. Mathematically,127

the thresholding operator is not differentiable, but this should not pose an issue considering the128

support of relu as a built-in differentiable function in a modern deep learning tool. Additionally, γ is129

non-negative; thus, its l1-norm is simply the sum of γi (i.e.,‖γ‖1 =
∑
γi). The softmax of Eq. (11)130

is also differentiable. The softmax is optional but useful when we need to promote the competition131

between components as in the attention mechanism.132

By relaxing the differentiability, singed architecture parameter can be similarly formed as133

ai = sign (αi)
(
|αi| − σ (β)‖α‖1

)
+
, (12)

where α and β are free parameters. The gradient of the sign function is zero almost everywhere, but134

it does not cause a problem for a modern deep learning tool. The equation can be rewritten as135

ai =


(
αi + σ (β)‖α‖1

)
− if αi < 0(

αi − σ (β)‖α‖1
)
+

otherwise,

where (·)− = min(·, 0). The gradient can be computed separately according to whether its value136

is negative or not. To the authors’ understanding, sign function is already taken care in the ex-137

plained manner by TensorFlow [1], and thus tf.math.sign() can be simply used without the manual138

implementation of the conditional statement.139

3.3 Sparsity Regularizer140

In the proposed approach, an objective function is written as141

L (D,W, a) + λR (a) , (13)
where a denotes the vector of architecture parameters. Sparsifying a is equivalent to sparsifying a142

deep neural network. Therefore, we can use the regularization term on a to encourage the sparsity of143

a. The proposed method is not limited to a particular norm and we can drive different sparsity patterns144

depending on the types of norms. For example, the most popular choice for parameter selection is145

l1-norm, but it is unsuitable on a in Eq. (11) as it is normalized using the softmax. Its l1-norm is146

always 1, i.e.,‖a‖1 =
∑n

i=1|ai| = 1. Therefore, we should employ p-norm with p < 1:147

R (a) =

 n∑
i=1

|ai|p
 1

p

=

 n∑
i=1

api

 1
p

, (14)

where the second equality holds as ai is always non-negative. To the authors’ best knowledge, a closed148

form solution for the proximal operator of p-norm with p < 1 is unknown, but the regularization term149

is differentiable almost everywhere as relu is. Thus, the proposed approach can directly optimize the150

regularized objective function and zero-out components with the stochastic gradient descent.151

By simply switching one norm to another one for a regularizer, different sparsity patterns can be152

derived. For example, an individual component can be removed with l1-norm (Eq. 2) and a group of153

components or an entire module can be zeroed-out with l2,1-norm (Eq. 4). Note that we do not need154

to manually implement different updating rules as in the proximal gradient approach. We just need to155

rewrite a regularization term in the objective function. Examples codes and experiment results are156

shown in the supplementary material.157
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3.4 Rectified Gradient Flow158

If γi Eq. (10) or αi in Eq. (12) is less than the threshold, the gradient will be zero, and it will159

not receive learning signals. However, note that it does not necessarily mean that a component160

dies permanently once its importance score is less than the threshold. The component still has a161

chance to recover because the threshold is adjustable and the importance scores of other components162

may decrease. Nevertheless, to ensure that the architecture parameters of dropped components163

continuously receive learning signals, we propose approximating the gradient of the thresholding164

function. As in [31] where the gradient of a step function was approximated using that of leaky relu165

or soft plus, we suggest employing elu [4] as a variant of the proposed method: relu is used in the166

forward pass, but elu is used in the backward pass.167

This heuristic approach leads to a similar learning mechanism proposed in [30], where the gradient168

flows to dropped (or zeroed out) edges but does not flow through these dropped edges. The architecture169

parameters in our proposed method correspond to the edges in [30]. Note that our approach can170

be easily implemented, and it does not require additional codes to control the gradient flow. The171

implementation codes are shown in the appendix.172

4 Application and Experiment173

In this section, we show that the proposed approach can be applied to reduce the size of a network as174

well as to learn the structure. Our aim is not to achieve state-of-the-art performance but to validate the175

idea and the broad applicability of the proposed approach. In order to show the broad applicability176

with limited computing resources, we perform experiments with relative small datasets such as177

CIFAR-10/100 [13]. Our implementations closely follow those of baseline models, including model178

structures and hyper-parameter settings.179

4.1 Channel Pruning in Convolutional Network180

Table 1: Performance on CIFAR-10, DenseNet-100-BC-K12

Model Sparsity(%) Top-1 Error(%) Parmas FLOPs

Avg. Std. Avg. Std. Avg. Std. Avg. Std.

Base 00.0 0.0 5.44 0.11 7.6× 105 0.0 5.8× 108 0.0

NS 70.0 0.0 6.53 0.19 2.9× 105 9.3× 102 1.9× 108 5.0× 106

NS 80.0 0.0 8.39 0.28 2.0× 105 2.0× 103 1.4× 108 3.4× 106

DS 70.3 0.1 5.77 0.09 2.7× 105 2.3× 103 1.8× 108 1.6× 106

DS 80.4 0.1 6.64 0.11 1.7× 105 0.6× 103 1.3× 108 2.0× 106

Network-slimming(NS) [20] prunes unimportant channels in convolutional layers by leveraging the181

scaling factors in batch normalization. Let xi and yi be the input and output of batch normalization182

for channel i and then the operation can be written as183

x̃i =
xi − µi√
σ2
i + ε

; yi = aix̃i + bi,

where µi and σi denotes the mean and standard deviation of input activations, a and b are scale184

and shift parameters, ε is a small constant for numerical stability. The scaling parameter a can be185

considered as an importance score or an architecture parameter, and the affine transformation can be186

re-written as187

yi = a (x̃i + bi) .

By pushing ai to be zero, a corresponding channel can be removed. Network-slimming trains an188

initial network with l1-regularization on a to identify insignificant channels. After the training,189

channels with small values of a are pruned. To compensate the damage caused by pruning, a pruned190

network is fine-tuned. In our approach, we parameterize the scaling parameter using Eq. (12) and train191

a network with l1-norm on a using the stochastic gradient descent without pruning and fine-tuning.192

We perform comparison experiments on CIFAR-10/100 [13]. The training and test sets contain193

50, 000 and 10, 000 samples respectively, and the final test error is reported at the end of training or194
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fine-tuning on all training images. We adopt a standard data augmentation scheme (random shifting195

and flipping) as in [7, 8]. In network-slimming, λ in Eq. 13 is fixed to 10−5, but in our approach196

we vary its value to induce different level of sparsity. DenseNet-BC-K12 with 100 layers [10] and197

ResNet with 164 layers [7, 8] are employed as base networks. In network-slimming, pre-trained198

models are obtained by training networks for 160 epochs with the initial learning of 0.1. The learning199

rate is divided by 10 at 50% and 75% of the total number of training epochs. After the training,200

channels with small values of a are pruned and a slimmed network is fine-turned for another 160201

epochs with the same setting as in the initial training, but learned weights are not re-initialized. In our202

approach, we train networks for 320 epochs without fine-tuning or re-training. Network-slimming203

initializes the scaling factor to be 0.5 and we set α = 0.5 (n+ 1) /n and β = log
(
n2 + n− 1

)
in204

Eq. 12 so that a starts with 0.5.205

Table 1 shows experiment results on CIFAR-10 with DenseNet. More experiments, including ResNet206

and CIFAR-100, are given in the supplementary materials due to page limitation. The authors strongly207

urge readers to see the supplementary materials. We ran each experiments 5 times and showed the208

average and the standard deviation. Our proposed method is denoted by Differentiable Sparsification209

(DS). We controlled the value of λ such that similar pruning rate with that of the network-slimming210

approach. In the tables, sparsity denotes the number of removed channels in hidden layers. The211

experiments show that the proposed differentiable approach more effectively learns slimed models.212

4.2 Discovering Neural Wirings213

Table 2: Performance on CIFAR-10, Discovering Neural Wirings

Model Top-1 Error(%) Parmas Mult-Adds

Avg. Std. Avg. Std. Avg. Std.

MobileNetV1(×0.25) 13.44 0.24 2.2× 105 0.0 3.3× 106 0.0

No Update(×0.225) 13.86 0.27 2.2× 105 3.7× 101 4.5× 106 3.7× 104

DNW(×0.225) 10.30 0.20 1.8× 105 6.7× 101 3.1× 106 4.6× 104

PG-l1-norm 12.17 0.44 2.1× 104 9.4× 102 3.3× 106 1.7× 105

PG-l1,2-norm 13.62 0.56 9.6× 104 1.6× 104 3.4× 106 8.6× 104

DS-No Rectified Grad. 10.55 0.23 6.1× 104 5.7× 102 3.4× 106 4.5× 104

DS-Rectified Grad. 9.36 0.27 4.7× 104 8.4× 102 3.3× 106 6.7× 104

Discovering Neural Wirings(DNW) [30] relaxes the notion of layers and treats channels as nodes214

in a neural graph. By allowing channels to learn connections between them, it jointly discovers the215

structure and learns the parameters of a neural network. An input to node v, xv , is expressed216

yv =
∑

(u,v)∈E

wu,vxu,

where xu denotes the state of a proceeding node, E represents a edge set and wu,v is a connection217

weight of an edge. The structure of a neural graph can be determined by choosing a subset of edges.218

At each iteration of training, DNW chooses the top k edges with the highest magnitude, which is219

called a real edge set, and refers to the remaining edges as a hallucinated edge set. On the forwards220

pass or at inference time, real edges are only used. As DNW allows the magnitude of the weights221

in both sets to change throughout training, a hallucinated edge may replace a real edge when it222

strengthens enough. The weights of real edges are updated in an ordinary manner with the stochastic223

gradient descent, but those of hallucinated edges are updated by a specialized leaning rule: the224

gradient flows to hallucinated edges but does not flow through them.225

The architecture parameters in our proposed method correspond to the edges in DNW. We parame-226

terize the edges using Eq. (12) and train a network with l1-norm on edges to induce sparsity. The227

rectified gradient leads to an update rule which is similar to that of DNW: the rectified gradient228

ensures that dropped architecture parameters continuously receive learning signals by approximating229

the gradient of the thresholding function. However, we do not need to keep track of the real and230

hallucinated edge sets. We simply optimize the objective function with approximated gradients. The231

rectified gradient can be implemented in a couple of lines using modern deep learning tools and the232

code is shown in the supplementary material.233
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Figure 1: Left: Structure of a GCN block. Each block consists of a shared adjacency, an input feature,
and a weight matrix. Each row and column of an adjacent matrix are treated as groups to enable
the learning of relationship between a node (indexed by i) and its neighbors. Right: Row grouping
creates the competition between in-coming nodes, and column grouping creates the competition
between out-going nodes.

We perform experiments on CIFAR-10/100 [13]. The final test error is reported at the end of training234

without using separate validation data set. MobileNetV1 (×0.25) [9] is employed as a base model235

and our implementation closely follows that of DNW. We train for 160 epochs with initial learning236

rate 0.1. The learning rate is scheduled using Cosine Annealing. DNW chose the value of k such that237

a final learned model has similar Mult-Adds with the base model, and we also set the value of λ in238

the same manner.239

Table 2 shows experiment results on CIFAR-10. We ran each experiments 5 times and showed the240

average and the standard deviation. Our proposed method is denoted by DS. DNW without the update241

rule corresponds to DS without the rectified gradient method. Even without the rectified gradient, the242

performance of the proposed method is close to that of DNW with the update rule. It validates the243

effectiveness of our approach. We also performed experiments with the proximal gradients of Eq.(3)244

and Eq.(7), which is denoted by PG in Table 2. PG-l1-norm also uses the l1-norm as a regularizer,245

but the learning is not as effective as ours. Similarly, PG-l1,2-norm uses the update rule of Eq.(7)246

whose shape is similar to our sparse parameterization Eq. (12), but the performance is worse than247

ours. More experiments, including CIFAR-100, are given in the supplementary materials due to page248

limitation.249

DNW determines the size and the structure of a network by choosing k edges. However, there is no250

clear notion how to choose k for different stages (or blocks) and thus it uses the same pruning rate for251

all stages, which may be restrict because each stage may play a different role and need a different252

amount of resources. In contrast, our approach controls the model complexity by adjusting the value253

of λ in the objective function, and a different amount of resources is allocated for each stage through254

training. As shown in Table 2, the proposed method uses model parameters more efficiently.255

4.3 Learning relationship between Nodes in Graph256

In this section, we applied the proposed approach to learn the structure of an adjacency matrix in a257

graph convolutional network (GCN). The purpose of this case study is to test whether our approach258

can learn semantic structure from data rather than reducing the size of a neural network.259

We adopted the model of [11], one of the most successful GCN models. A GCN block or a layer is260

defined (see Fig. 1) as261

H l+1 = F
(
AH lW l

)
,

where A is an adjacency matrix; H l and W l are an input feature and a weight matrix for layer l,262

respectively; and F is a nonlinear activation function. In general, A is non-negative and shared263

across GCN blocks. It is obtained by normalization. For example, A = D̃−1Ã or A = D̃−
1
2 ÃD̃−

1
2 ,264

where Ã is an unnormalized adjacency matrix; and D̃ is a diagonal matrix, where D̃i =
∑

j Ãi,j .265

The adjacency matrix represents the connections or relationships between nodes on a graph and is266

usually given by prior knowledge. Learning the value of Ai,j amounts to determining the relationship267

between nodes i and j. If the value of Ai,j is zero, it can be considered that the two nodes are268

unrelated.269
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Figure 2: The gray lines represent 170 road links where the experimental data were collected.

As shown in Fig. 1, we defined each row and column as a group. Row grouping creates the competition270

between in-coming nodes, whereas column grouping creates the competition between out-going271

nodes. Each row and column of unnormalized adjacency matrix Ã can be parameterized similarly as272

in γ̃ of in Eq. (10):273

γi,j = exp
(
αi,j

)
274

Ãi,j =

(
γi,j − σ (βr

i ) ·
∥∥γi,:∥∥1 − σ (βc

j

)
·
∥∥γ:,j∥∥1)

+

.

The softmax normalization of Eq. (11) is replaced with Sinkhorn normalization [23, 24, 12] to make275

A is doubly-stochastic: each row and column sum up to 1. Initializing A with Ã, we can convert Ã276

into a doubly stochastic matrix by iteratively applying the following equations:277

A = D−1r A and A = AD−1c ,

where Dr and Dc are diagonal matrices; [Dr]i =
∑

j Ai,j ; [Dc]j =
∑

iAi,j . Note that although the278

normalization is iterative, it is differentiable. Balanced normalization is also possible by iteratively279

applying280

A = D
− 1

2
r AD

− 1
2

c .

We verified through numerical experiments that iteratively applying the above equation also makes Ã281

to doubly stochastic, but we could not find a theoretical justification. We leave the mathematical proof282

as an open question for a future work. As competition groups are created in row- and column-wise283

approaches, a regularized objective function can be written as284

L (D,W,A) + λ

2

N∑
i=1

{
R
(
Ai,:

)
+R

(
A:,i

)}
,

where W = {W l}, N is the size of square matrix A, and Ai,: and A:,i denote ith row and column285

vector of A, respectively. We employ lp-norm of Eq. (14) with p = 0.5 for a regularizer.286

To validate our purposed method, we applied a GCN to estimate future traffic speeds in a road network.287

The traffic speed data were collected from 170 road segments.Thus, the sizes of an adjacent matrix is288

170× 170. The map of the data area collected is shown in 2. One-step ahead observation is estimated289

from eight past observations and an output layer generates 170 estimates, one for each road segment.290

A prediction loss is measured using the mean relative error (MRE). More detailed specifications of291

the experimental data and our GCN model can be found in the supplementary material. A prediction292

loss is measured using the mean relative error (MRE).293

Three baseline models were used: two were given the road connectivity and the other was not. For294

the first baseline, we set the value of Ai,j as a constant such that Ai,j =
1
ni

if node (or road) i and j295

are adjacent to each other (ni is the number of neighbors of node i), and Ai,j = 0 otherwise. The296

second baseline was taken in a similar approach, but we set Ãi,j = exp
(
αi,j

)
if node i and j were297

adjacent to each other to ensure that the strengths of the connections were learned. For the third298

baseline, the connectivity was not given. However, we set Ãi,j = exp
(
αi,j

)
for all i, j regardless of299

the actual connections. For the proposed method, we parameterized the adjacency matrix as in the300
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third baseline but applied the sparsification technique. The balanced normalization was applied to all301

cases except the first baseline, for which the row sum is 1.302

To measure the learned relationship between nodes, we propose the following scoring function:303

1

2N

N∑
i=1

N∑
j=1

[
(Ar +Ac)�Mk

]
i,j
,

where Ar = D−1r A, Ac = AD−1c , � denotes the element-wise product, and [Mk]i,j = 1 if the304

geodesic distance between node i and j is less than or equal to k, whereas [Mk]i,j = 0 otherwise.305

The maximum value is 1, and the minimum is 0. For example, the first and second baselines always306

have the maximum value because their adjacency matrices have exactly the same structure of M1.307

We calculated the scores for k = 1 and 2. Note that we used Ar and Ac instead of A because a308

sparsified matrix is not guaranteed to be doubly stochastic even if the original Sinkhorn normalization309

is adopted.310

Table 3: Traffic speed prediction with GCN

Model #N.Z. MAPE(%) L.R.(×100)

k = 1 k = 2

I 878 5.6623 100.00 100.00
II 878 5.5160 100.00 100.00
III 28,900 5.6343 13.76 20.87

(a) Baseline models

λ #N.Z. MAPE(%) L.R.(×100)

k = 1 k = 2

0.050 1,220 5.4744 87.06 89.94
0.075 1,009 5.4957 88.62 91.39
0.100 835 5.5336 89.79 92.13

(b) Proposed method

The performance of the baseline models is shown in Table 4a. We ran each experiment five times and311

selected the median among the five lowest validation errors. For the first and second baselines, the312

road connectivity is given, and the number of non-zero elements of the adjacent matrices is 878. Note313

that the value of the learned relationship for Baselines I and II is constant, but we show it for reference.314

The road connectivity is not given for the third baseline, and the number of non-zero elements of315

the adjacent matrix is 28, 900(= 170× 170). The performance of the proposed model is shown in316

Table 4b. The experiment of Baseline III shows that a GCN finds a nonlinear mapping between input317

and target values simply in the way of reducing the prediction loss without learning the semantic318

relationships between nodes, but the proposed approach finds actual relationships between nodes. We319

further compared the proposed method with the proximal gradient method. The experimental results320

are reported in the supplementary material due to page limitation.321

5 Scope and Limitation322

Our aim is not to achieve state-of-the-art performance but to validate the idea and the broad applicabil-323

ity of the proposed approach. To the authors’ best knowledge, it is the first fully [sub-]differentiable324

sparsification method that zeroes out components, and we wish our work would provide a foundation325

for future structure learning and model compression methods. The limitation of our approach is that326

a sparsity rate cannot be explicitly specified before training as in conventional pruning approaches. If327

a specific sparsity rate is required, it should be obtained by a try-and-error. The rectified gradient is328

effective as shown in the experiments of discovering neural wirings, but it is not clear in which cases329

it is effective or not. We need more theoretical analysis and leave it for a future work.330

6 Conclusion331

In this study, we proposed a fully differentiable sparsification method that can simultaneously learn332

the sparsified structure and weights of deep neural networks. Our proposed method is versatile in that333

it can be seamlessly integrated into different types of neural networks and various problems.334
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