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Abstract—Reinforcement learning (RL) algorithms typically
require a substantial amount of data, which may be time-
consuming to collect with a robot, as well as the ability to
freely return to an initial state to continue practicing a task,
which requires laborious human intervention in the real world.
Moreover, robotic policies learned with RL often fail when
deployed beyond the carefully controlled setting in which they
were learned. In this work, we demonstrate that these varied
challenges of real-world robotic learning can all be tackled by
effective utilization of diverse offline interaction datasets collected
from previously seen tasks. While much prior work on robotic
RL has focused on learning from scratch, and has attempted
to solve each of the above problems in isolation, we devise a
system that uses prior offline datasets to tackle all of these
challenges together. Our system first uses techniques from offline
reinforcement learning to extract useful skills and representations
from prior offline data, which gives the agent a baseline ability to
perceive and manipulate the world around it. Then, when faced
with a new task, our system adapts these skills to quickly learn
to both perform the new task and return the environment to an
initial state, effectively learning to perform its own environment
reset. We show that training on prior data gives rise to behaviors
that generalize to far more varied conditions, than simply not
using this data. We evaluate our method on a suite of challenging
robotic manipulation tasks, involving high-dimensional visual
observations and sparse binary reward functions, both in the
real world and in simulation. Our empirical results demonstrate
that incorporating prior data into robotic reinforcement learning
enables autonomous learning, substantially improves sample-
efficiency of learning, and results in policies that generalize better.

I. INTRODUCTION

Reinforcement learning (RL) provides a concise and appeal-
ing abstraction that captures the problem of learning behav-
ioral skills for embodied systems such as robots: by framing
the problem as experiential utility maximization, RL provides
a general learning-based framework that, in principle, could
be utilized to acquire any goal-directed behavior. However, in
practice, the standard RL problem formulation overlooks many
of the challenges that arise in real-world robotic learning.
RL problems are classically (though not exclusively) situated
in settings where ample exploration can be performed from
scratch, the environment can be reset episodically, and the
focus is more on attaining the highest possible performance
rather than good generalization, as for example in the case
of playing a board game or video game. However, real-world
robotic learning problems have very different constraints. With
real-world robots, online interaction and exploration is often at
a premium, the robot must figure out how to reset the environ-
ment itself between attempts, and the natural variability and
uncertainty of the real world makes generalization far more
essential than squeezing out every bit of final performance.
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Fig. 1. Overview of our system. In the offline stage (left), we train a
multi-task policy that captures prior knowledge from an offline dataset of
previously experienced tasks. Then, in the online stage (right), this multi-
task policy is used to initialize learning for a new task, providing both a
forward policy and a backward (reset) skill, and improving learning speed
and generalization. We demonstrate that this approach leads to sample-efficient
learning of generalizable policies with a significant reduction in the need for
manual interventions (i.e., resets).

Of course, humans and animals that must also deal with
the real world also need to handle each of these challenges.
However, in contrast to standard robotic RL settings, humans
do not approach each new problem with a blank slate: we
leverage prior experience to help us acquire new skills quickly,
scaffold the process of learning that skill (e.g., by using skills
we already have to practice and try again), and utilize repre-
sentations learned from prior experience to ensure that the new
skill is represented in a robust and generalizable way. We study
an analogous approach in this work: while prior work has
discussed many of the challenges associated with real world
robotic learning in isolation, and proposed individual technical
solutions [10, 19, 17, 61, 56, 16, 48, 35, 25, 26, 3, 38], we
instead ask whether all of these issues can be alleviated by
appropriately incorporating prior data. Our central thesis is
that prior experience that the robot collected for performing a
variety of other related tasks can facilitate many seemingly
distinct aspects of autonomous robotic learning, including
better sample-efficiency, better generalization of skills learned
in a narrow setting, and learning with infrequent resets.

The strategy of accelerating learning by initially pretraining
on a broad prior dataset is supported by the widespread success
of pretraining and finetuning in supervised learning. Prior
work in computer vision and natural language processing has
demonstrated that pretraining on large and diverse datasets
enables both data efficiency and broad generalization [2, 23,
44, 1]. Thus, extending the idea of pretraining on diverse data



to robotics is a natural step towards more effective real-world
learning. With the goal of taking a data-driven approach to
robotics, prior work has explored offline RL to leverage static
datasets [42, 25, 55, 13, 30, 41, 53, 31, 38, 12, 28, 29], multi-
task and meta RL to handle diverse multi-task data [54, 39,
51, 9, 21, 59, 57, 58, 50, 26, 60], and reset-free learning to
collect data autonomously [10, 19, 17, 61, 56, 16, 48, 35].
However, addressing the full real-world learning problem, as
we discussed before, requires not only algorithms for learning
from prior data, but the right system that combines these
algorithms into a multi-task, reset-free framework. To this end,
we propose a complete system for extracting useful skills from
prior data and applying them to learn new tasks autonomously.
Although the individual components of our system are based
on previously proposed principles and methods for offline
RL [38], multi-task learning with task embeddings [26, 20],
and reset-free learning with forward-backward controllers [19,
10, 61, 56, 48], our system combines these components into
a novel framework that effectively enables real-world robotic
learning and leverages prior data for all of these parts.

Our system consists of two phases: offline learning using
the prior data, and mostly autonomous online finetuning on
a new task (see Figure I), where only occasional resets are
provided. In the offline phase, our goal is to extract skills
and representations from the prior data that may be useful on
the new task. Accordingly, we use an offline RL algorithm to
obtain a multi-task policy capable of performing the different
behaviors in the offline data. Then, in the online phase, we
adapt the learned skills to the new task. To enable autonomous
learning, we finetune two distinct skills for each new task,
alternating between attempting the task and resetting the
environment. If the behaviors required to perform the target
task and reset the environment are structurally similar to those
in the prior data, the skills learned offline will succeed at
performing and resetting the task with non-negligible prob-
ability, providing a learning signal that allows the agent to
adapt its behavior with only a small amount of online data.
Moreover, initially training on a broad dataset of experience
encourages learning representations that are robust to axes of
variation that are irrelevant to performing the task. Where
polices learned from narrow data may overfit to unimportant
details of the environment and fail when those details change,
polices learned from diverse multi-task data can generalize to
new conditions with little to no adaptation.

Our main contribution is demonstrating that incorporating
prior data into a reinforcement learning setup simultaneously
addresses several key challenges in real-world robotic RL:
sample-efficiency, zero-shot generalization, and autonomous
non-episodic learning. Prior work has addressed parts of the
real-world learning problem with specific technical solutions,
but we build a complete system for robotic reinforcement
learning that leverages prior data. The individual components
of our system, such as the choice of RL algorithm, are not
novel, but the combination of these parts is a system with novel
capabilities to bootstrap effective real-world online RL with
multi-task prior data. We validate our approach on real-world

robotic manipulation, where we show that our method makes it
possible to learn to manipulate new objects via RL in settings
where prior approaches struggle to make progress, reach final
performance that is comparable to what the algorithm can
attain when provided with “oracle” demonstration data for the
new task, and acquire policies that generalize more broadly
than those trained only on single-task data.

II. RELATED WORK

In this section we review prior work that has explored
learning behaviors from offline datasets, leveraging multi-task
data, and reinforcement learning with minimal resets. We build
on techniques from each area to devise a complete system for
automated robot learning.

Accelerating online RL with offline data. Our method
is not the first to propose learning behaviors from offline
data to improve the efficiency of RL. Methods for imitation
learning use offline data in the form of demonstrations to learn
behavior, and imitation learning can be used to accelerate re-
inforcement learning [47, 22, 45, 40, 52, 27, 15, 37]. However,
when the offline data is sub-optimal, offline reinforcement
learning methods typically perform better [42, 25, 55, 13, 30,
41, 53, 31, 38, 12, 28, 29] and can also be combined with
online finetuning [38, 24, 26]. We use an offline RL method
to extract useful skills and representations from prior data, but
our system includes additional components that allow us to use
multi-task offline data and autonomously finetune the policy
online by learning to both perform the task and reset.

Multi-task and meta-RL. Offline RL methods typically
assume the data is labeled with rewards for a single task. Meth-
ods for multi-task RL [54, 39, 51, 9, 21, 59, 57, 58, 50, 26, 60]
address the additional challenges that arise when learning from
multi-task data, like sharing model parameters between tasks.
Some approaches share parameters by learning a single policy
conditional on a space of tasks [26, 20]. We similarly adopt
the strategy of learning a task conditioned policy, however
unlike multi-task RL methods our focus is adapting this multi-
task policy to unseen tasks. Meta-RL methods [8, 11, 46, 62]
share our goal of using data from prior tasks to quickly adapt
to new tasks, but typically operate in the online setting. We
only assume access to offline data from previous tasks. Offline
meta-RL methods [32, 7, 43, 36] are capable of using offline
data, but do not address adaptation with minimal resets like
our system. Perhaps the closest prior system to ours in this area
is Kalashnikov et al. [26], which studies multi-task learning for
a similar class of grasping-based robotic manipulation tasks.
However, in contrast to this prior work, our focus is not on
how to train a multi-task policy, but specifically on how prior
offline data from varied tasks can be leveraged to improve
the autonomy and generalization when learning a new task.
While Kalashnikov et al. [26] also evaluates finetuning to new
tasks, our system goes significantly further, aiming to automate
resets (which the prior work does not address, instead using an
instrumented bin setup), and evaluating the benefits in terms
of generalization and efficiency for the new task.



Reset-free RL. Our system aims to utilize prior data to
autonomously learn robotic skills, leveraging prior experience
to both accelerate the learning of a new behavior and the
process of learning how to reset between attempts. Prior work
has tackled this “reset-free” learning problem [49] in a number
of ways. Some techniques exploit the the observation that
when learning several tasks simultaneously, some tasks reset
others, thus forming a curriculum [16, 35, 17, 19]. While
Gupta et al. [16] also uses a multi-task setup to automate
resets, this prior paper involves a small number of tasks
that all focus on enabling reset-free learning for a particular
(single) skill, whereas our focus is specifically on using prior
data for other tasks to enable a new task to be learned as
autonomously as possible. Other work learns separate con-
trollers for performing the task and resetting the environment
[19, 10, 61, 56, 48]. We also learn separate controllers, but
initialize them with potentially useful skills extracted from
prior data. Most similar to our work, Sharma et al. [48] use
prior data in the form of demonstrations to accelerate learning
forward and reset behaviors. However, our system does not
rely on expert demonstrations of the target task. Instead, we
use potentially sub-optimal data from other tasks.

III. PRELIMINARIES

The goal in standard reinforcement learning (RL) is to
learn a policy π(a|s) that maximizes the long-term cumulative
discounted reward in a Markov decision process (MDP), which
is defined as a tuple M := (S,A, P, r, ρ, γ) where S is the
state space, A is the action space, P : S × A → ∆(S) is the
transition function, r : S × A → R is the reward function,
ρ ∈ ∆(S) is the initial state distribution, and γ ∈ [0, 1] is the
discount factor. The objective in standard RL is to optimize
the policy against the cumulative discounted return objective,
starting from the initial state distribution ρ:

Jstandard(π) := E s0∼ρ,ai∼π,
s′i+1∼P (·|si,ai)

[∑
i

γir(si,ai)

]
(Standard).

(1)
The Q-function Qπ(s,a) for a policy π(a|s) is the long-term
discounted reward obtained by executing action a at state s
and following π(a|s) thereafter. Qπ(s,a) is the fixed point of
Q(s,a) := R(s,a) + γEs′∼P (·|s,a),a′∼π(·|s′) [Q(s′,a′)], which
is known as the Bellman equation. While the standard RL
objective can be optimized in several ways, in this work we
build on the class of actor-critic methods [33, 18, 29]. A typical
actor-critic method alternated between two phases, policy
evaluation and policy improvement. In the policy evaluation
phase the current policy π(a|s) is evaluated by fitting an
action-value function Qπ(s,a). In the policy improvement
phase, the policy or actor π(a|s) is updated to maximize the
expected Q-value.

Autonomous RL. The standard RL objective is typically
optimized in an “episodic” manner, where between each trial,
the agent is reset into an initial state sampled indendently
from ρ(s). However, in this paper, we study the problem
of reinforcement learning with minimal external resets, also

known as autonomous reinforcement learning [49]. This re-
quires the policy to be trained without resetting after each
trial (though we do use occasional resets in our experiments).
This is important in real-world settings, where it may take
considerable effort to provide manual resets after every single
attempt. Sharma et al. [49] formalize autonomous RL in terms
of two MDPs: a non-episodic training MDP, MT , where the
environment resets only occasionally or never at all, and the
corresponding episodic evaluation MDP M, where the agent
must successfully perform the task from initial states sampled
from ρ(s). The transition dynamics P and the reward function
r are the same in the two MDPs. The agent must learn to
perform the task in MT , but will be evaluated in terms of its
performance on M. Since only infrequent resets are allowed
during training inMT , simply maximizing the original reward
r(s,a) in MT may not lead to the best performance on
M [49], and so the agent must learn to reset itself while
training so that it can learn to attain good performance from
the initial states it will encounter at test-time in M.

Offline reinforcement learning via AWAC. In this paper,
we utilize an offline RL method, advantage-weighted actor
critic (AWAC) [38], to extract skills from prior data. AWAC
is an actor-critic method that alternates between a policy
evaluation phase (Equation 2), where it trains a parameteric
Q-function, Qϕ(s,a), to minimize the error between two sides
of the Bellman equation on the samples from the offline
dataset, and a policy improvement phase (Equation 3) where it
improves a parametric policy πθ(a|s) via advantage-weighted
updates. Advantage-weighted updates perform policy improve-
ment by cloning actions that are highly advantageous under
the learned Q-function and are hence, more likely to improve
upon the data-collection policy. Denoting the offline dataset as
D = {(si,ai, s′i, ri)}Ni=1, where (si,ai, s

′
i, ri) denotes a single

transition, the training objectives for AWAC are given by:

Q̂π
ϕ ← argmin

ϕ
Es,a,s′∼D

[
(Qϕ(s,a)− (r + γQϕ(s

′,a′)))2
]

(2)

π̂ ← argmax
θ

Es,a∼D

[
log πθ(a|s) · exp(Âπ(s,a))

]
,

where Âπ(s,a) := Q̂π
ϕ(s,a)− Ea′∼π

[
Q̂π

ϕ(s,a
′)
]
. (3)

IV. PROBLEM STATEMENT

In this section, we will formalize our problem statement
and describe our evaluation setup. Our goal is to utilize
data from previous tasks to address three key challenges in
robotic reinforcement learning: sample-efficiency, autonomous
learning and generalization and robustness to unseen test
conditions, all together. To this end, we assume access to a
prior dataset Dprior of experience collected from a multiple
training tasks, Π = {τ1, τ2, · · · , τN}:

Dprior = ∪Nj=1Dj ; Dj =
{(

sji ,a
j
i , s

′j
i , r

j
i

)}K

i=1
, (4)

where Dj denotes the chunk of the prior data corresponding
to task τj . Our goal will be to extract a rich repertoire of
skills from this diverse, multi-task prior dataset, Dprior, and



use them to quick solve a new target task τ∗ that was not
seen in training, i.e., τ∗ /∈ Π. Additionally, we require that
this new task must be solved with minimal resets: when
the robot is practicing on the target task τ∗, it will only
be infrequently provided with external resets, in accordance
with the autonomous RL paradigm. The learned agent is then
evaluated on the same task τ∗, but this time it gets reset after
every episode.

V. AUTONOMOUS ROBOTIC REINFORCEMENT LEARNING
WITH PRIOR DATA

We will now present our approach for leveraging data from
previous tasks to address key challenges in robotic reinforce-
ment learning: sample-efficiency, non-episodic learning, and
generalization. Our system is designed to extract knowledge
from Dprior that enables learning new tasks more efficiently,
with fewer resets, and in a way that results in broader
generalization to variations in the environment.

Our method, which we call Autonomous RobotIc REin-
forcement Learning (ARIEL), consists of two phases (see
Figure I). First, we extract useful skills and representations
from Dprior using offline reinforcement learning, as discussed
in Section V-A. This essentially provides our method with
the “prior knowledge” that it will use to then perform near-
autonomous training for new tasks. We use this prior knowl-
edge to both quickly learn the new task, and to bootstrap a
separate policy that resets the environment back to an initial
state, so that the agent can continue practicing without the
need for external resets after every attempt.

A. Learning From Prior Data with Offline RL

Given a dataset from previous tasks, we first aim to extract
skills and representations that could be useful for learning
downstream tasks. The multi-task dataset Dprior can come from
many different sources: human demonstrations, sub-optimal
data from previous reinforcement learning experiments, or
even data collected using (imperfect) hand-engineered policies.
We assume that the tasks in this dataset are structurally similar
to the new tasks we wish to learn, so a (multi-task) RL agent
that has been trained on this dataset should explore new en-
vironments much more effectively than a randomly initialized
policy. For example, the prior data might of consist picking
and placing a variety of objects under a wide variety of lighting
conditions and backgrounds. An agent that successfully learns
the skill of picking and placing from this prior data would
then be well-prepared to learn how to pick up a previously
unseen object, and place it in a previously unseen container.

The provided prior dataset Dprior is partitioned into indi-
vidual task datasets (Equation 4), and to make use of this
multi-task dataset for downstream tasks, we train a conditional
policy πθ(a|s, z) using offline RL. This policy is conditioned
on a task index z (represented as a one-hot vector) that
informs the agent which task it is performing. Conditioning
on task indices is a common strategy while training multi-
task policies [26]. Training a single multi-task policy offers
several advantages over training separate policies on the prior

dataset. First, we are able to learn a representation of policy
inputs and outputs (in this case, images and desired change in
end-effector pose, respectively) which is shared across tasks,
and is therefore more likely to generalize well when faced
with new inputs: both through interpolation (if the new task is
similar to previously seen tasks), and extrapolation (for novel
tasks). Second, when attempting a new task, we only need to
sample actions from a single pre-trained policy, as opposed to
choosing from an ensemble of pre-trained policies. Finally, this
also allows our method to gracefully scale with the number
of tasks in the prior dataset. After the offline learning phase,
we have a multi-task policy πθ(a|s, z) that can perform each
of the tasks in the prior data. In Section VI we discuss the
specific tasks we use in our prior data and how we generate
the prior dataset for our experiments.

B. Autonomous Online Training

The main goal of our system is to enable the robot to
efficiently learn a new task with minimal externally provided
environment resets, leveraging the prior knowledge distilled
into the offline multi-task policy discussed in the previous
section. Since the environment is not frequently reset, the agent
must simultaneously learn to perform the task and reset the
environment to the initial state so it can continue practicing.
Prior work has tackled this problem by learning distinct for-
ward and backward controllers, alternating between applying
the forward controller to perform the task and applying the
backward controller to reset the task [19, 10, 61, 56, 48].
We adopt an analogous strategy, but we leverage the multi-
task policy described in the previous section to bootstrap
learning in both the forward and backward direction, which
both helps to overcome the exploration challenge and provide
automated resets more quickly than if the backward controller
were trained from scratch.

To enable this, we fine-tune the parameters of the policy
πθ(a|s, z) obtained after the offline phase with online data
from the new task τ∗, that we denote as Dτ∗ , similar to prior
work that uses online fine-tuning to improve upon policies
learned via offline RL alone [38]. However, since we have
a multi-task policy, we must confront the question of which
skill(s), parameterized by task indices z, should be chosen
to start finetuning for the forward and backward controller.
In order to automatically determine which prior skill (or
combination of prior skills) to finetune, we treat the task
index z as a continuous, learnable parameter and use data
collected during online reinforcement learning to select the
z’s best suited for the given new task. In this sense, we treat
z as a task embedding [20] that is automatically adapted for
the task at hand, similar to prior work in meta-reinforcement
learning [46].

Since we aim to learn both a forward and backward
controller, we optimize for two skills, parameterized by two
distinct task embeddings zf and zb, that respectively perform
the task and reset the environment. Conditioning the policy on
zf results in the forward controller πθ(a|s, zf ) that performs
the task, whereas conditioning the policy on zb results in the



backward controller πθ(a|s, zb) that resets the environment
according to the initial state distribution of the task τ∗.
During fine-tuning we alternate between applying the forward
controller and backward controller, optimizing the forward
controller with rewards for completing the task rf (s,a) and
the backward controller with rewards for returning to the initial
state distribution rb(s,a). We optimize the parameters zf and
zr in tandem with the policy and value function parameters
θ and ϕ. The parameters of the policy and value function are
updated using using an actor-critic algorithm; we utilize the
AWAC [38] algorithm in our experiments. The embeddings zf
and zr are optimized differently, as we discuss next.

Optimizing task embeddings zf and zb. Since our goal is
to learn on the target task τ∗ as quickly as possible, and with
minimal resets, we need to effectively explore the environment
during online training. An ideal approach that explores effec-
tively must not prematurely commit to a particular value of
zf and zb until the online experience clearly indicates so, and
at the same time, it should be fast at collapsing to the correct
values of zf and zb, when it is very much apparent from the
online experience gathered till then. While one straightforward
approach to optimize zf and zb is to simply treat them as
additional parameters and update them via gradient descent,
however this requires initializing zf and zb to an initial guess,
which means that only these randomly chosen skills will be
fine-tuned. Furthermore, the local nature of gradient updates
may simply inhibit fast adaptation of these embeddings.

Instead, we found that the cross-entropy method (CEM) [?
] provided us with a favorable balance between exploration
and exploitation. CEM provides a way to initialize the task
embedding to a distribution, which ensures that we do not
have to commit to fine-tuning any one particular skill. How
is this CEM procedure performed? Since we want to optimize
both the forward and backward embeddings zf and zb, we fit
two sampling distributions with CEM, qf (z) and qb(z). The
distribution of tasks in the prior data Dprior provides us with
a natural (and hopefully informative) prior to initialize qf (z)
and qb(z). On each iteration of training, we sample a z from
either qf (z) or qb(z) and roll out the policy conditioned on
this z value for M steps. These M -step trajectories would
essentially correspond to an episode in episodic RL, however
the environment is (typically) not reset afterward. We alternate
between sampling the z from qf (z) or qb(z) to alternate
between applying the forward and reset controllers. The
reward function correspondingly alternates between rf (s,a)
and rb(s,a). We periodically refit qf (z) and qb(z) to the J
most recently sampled z’s that resulted in trajectories that
successfully completed or reset the task, respectively. We
update the policy and value function parameters θ and ϕ using
the update steps from an RL algorithm as summarized in
Algorithm 2. Every N steps, we provide an external reset
to the environment. However, N >> M , so the external
resets are infrequent. For example, in one of our real world
tasks, M = 20, and N = 400. In theory, we could run our
method without any manual resets at all, but we found a small
number of manual resets necessary to recover from certain

states, similarly to prior work in the area [10].

C. Algorithm Summary

To summarize, we first perform offline learning on the
provided dataset Dprior (see Algorithm 1). We use offline RL
to obtain a multi-task policy πθ(a|s, z) and value function
Qϕ(s,a, z). Then, in the online phase (see Algorithm 2), we
adapt this policy and value function to a new task. Notably,
the offline phase occurs only once, but the online phase can
be run many times to efficiently learn many new tasks. Online
adaptation begins by fitting two CEM sampling distributions,
qf (z) and qb(z), which are initialized to the distribution of task
indices seen during offline learning. Then, we collect data for
the new task by sampling a task embedding z from a CEM
model and rolling out the policy conditioned on this z for
M steps. If the trajectory obtains reward for completing or
resetting the task, we switch to sampling from the opposite
CEM model. This corresponds to alternating between applying
a forward and backward controller. We use the online data to
refine the sampling distributions qf (z) and qb(z) with CEM
and the policy and value function with RL. Every N steps
we manually reset the environment, sampling a state from the
initial state distribution s ∼ ρ(s0). Our system allows us to
learn the new task efficiently and with minimal environment
resets by leveraging prior data from previous tasks.

Algorithm 1 ARIEL offline phase
Input: offline dataset Dprior

Initialize policy πθ(a|s, z), value function Qπ
ϕ(s,a, z)

πθ(a|s, z), Qπ
ϕ(s,a, z)← OfflineRL(Dprior)

D. Implementation Details

We choose advantage-weighted actor-critic (AWAC) as the
underlying RL algorithm for both the offline and online
phase because it addresses the specific challenges that arise
when learning behaviors offline and then finetuning them
online [38]. We present a technical description of AWAC
in Section III and provide the specific hyperparameters that
we use in our experiments in the Appendix. Notably, since
AWAC is an off-policy RL algorithm, we have the option of
continuing to train on the prior data during the online phase.
We hypothesize that including the prior data during online
adaptation prevents the agent from overfitting to the new task
and improves generalization, so we continue to train on the
prior data even during the online fine-tuning phase.

As our goal is to make robotic learning as autonomous as
possible, we use images observations as part of our input to the
RL agent. Image observations allow our system to learn from
a diverse range of different tasks without needing to hand-
engineer state representations suitable for each task. Because
we are learning from images we use convolutional neural
networks to model the policy and Q-function (see Figure 2).
We provide the specific architecture in the Appendix. The
observations additionally consist of the state of the robot’s



Algorithm 2 ARIEL online adaptation
Input: pre-trained policy πθ(a|s, z) and value function
Qπ

ϕ(s,a, z)

1: Initialize buffer B, CEM models qf , qr
2: Fit qf (z) and qb(z) to offline task indices
3: d← f // task direction, f is forward, b is backward
4: while not done do
5: s ∼ ρ(s0) // sample initial state (i.e external reset)
6: for N steps do
7: // sample new task embedding if you reach max

episode length
8: if steps % M == 0 then
9: z ∼ qd

10: end if
11: Sample a ∼ π(·|s, z), observe s′ ∼ p(·|s,a)
12: B ← B ∪ {(s,a, rd(s′,a), s′, z}
13: if rd(s′,a) then
14: switch(d) // switch task direction
15: end if
16: update πθ, Q

π
ϕ with RL

17: update qf (z), qb(z) with CEM
18: s← s′

19: end for
20: end while

joints, and the task embedding z. We use a Gaussian mixture
model as the sampling distribution for CEM. For our eval-
uations in simulation we fit the CEM sampling distributions
to the J = 25 most recent successful embeddings. For our
evaluations in the real world, we fit the CEM models to the
J = 10 most recent successful embeddings.

Fig. 2. CNN architecture we use for our policy. Our method learns robotic
manipulation skills from raw image inputs, and fine-tunes to new skills with
minimal resets while leveraging prior experience.

VI. EXPERIMENT SETUP

We now describe the system and experiment setup in our
evaluation, as well as the data collection and training process.

Robotic platform. We evaluate our approach using a 6-
DoF WidowX robotic arm. The 7D action space of the system
consists of 6D Cartesian end-effector motion, corresponding
to relative changes in pose, as well as one dimension to
control the opening and closing of the parallel jaw gripper. The
state observations consist of the joint angles and RGB images
from an overhead camera, which are 48×48 in simulation and
64×64 in the real world.

Evaluation tasks. The tasks, some of which are shown in
Fig. 4, involve interacting with objects and either containers
or drawers, with each task corresponding to a different object

Fig. 3. Objects used to construct the container placing tasks in our
experiments. The upper part of the figure shows containers and objects used
in the offline data for pretraining, the lower part shows test objects that are
used as part of new tasks for online training.

Fig. 4. Three downstream tasks on our real-world robotic setup. Each row
shows snapshots from a single episode, from left to right. The top row depicts
the drawer task, where the objective is to open the drawer, and place an object
inside the drawer. The middle and bottom rows depict different container tasks,
where the goal is pick an object from the workspace, and place it either on a
plate, or inside a pot, depending on the task.

and a different container. For container picking and placing
tasks, there are 20 possible training objects and 4 possible
training containers, including plates and cups (see Fig. 3,
and 2 unseen test objects and 2 unseen test containers. The
prior data for the offline phase consists of 20 forward and 20
backward tasks with random object-container combinations.
The simulated experiments have 16 possible objects and 1
container. For the drawer tasks, there are 4 possible training
objects and 1 unseen test object, corresponding to 4 forward
and 4 backward tasks. When a container is present, the tasks
involve picking up an object from the table and placing it
inside the container, whereas the drawer task additionally
requires closing the drawer after inserting the object, and
resetting requires opening the drawer and taking the object
out. The new test tasks that we finetune in the online phase
involve test objects that were not seen in training, but the
same types of picking and placing behaviors. If indicated, the
new task may also include a new type of container, as shown
in Fig. 3. All tasks have sparse rewards evaluated using a
simple hand-designed vision system, with a reward of +1 if
the robot completes the forward (or backward) task, and 0
otherwise. While such rewards are easy to define, they present
a substantial challenge for RL.

Generating prior data. Our system can use prior data from
any reasonable source, including demonstrations and prior
RL runs, but for simplicity and consistency we employ a



simple scripted policy to collect the prior data that we use
for the offline phase. This provides a largely autonomous
strategy to collect mediocre data for a variety of objects.
While this scripted policy fails very frequently, offline RL can
make use of such mediocre data effectively to pretrain value
functions and policies for downstream fine-tuning. Since the
prior dataset needs to provide an initialize for both the forward
and backward directions for new tasks, we perform scripted
collection in a reset-free manner, with the robot attempting
to move the objects both into and out of containers. We
collected about 500 trajectories for each of the 40 (20 forward,
20 backward) container pick and place tasks, and about 150
trajectories for each of the 8 (4+4) object/drawer tasks. All
trajectories have a length of 30 time steps. The average success
rates of the scripted policy were 0.38 for the simulated object-
container tasks, 0.35 for the real-world object-container tasks,
and 0.93 for the real-world object-drawer tasks.

Online training setup. Online training includes infrequent
resets, to address the case where an object becomes stuck in
a hard-to-reach (or unreachable) part of the workspace, but
otherwise requires the robot to train autonomously. The resets
are provided every 80 trials in simulation (about every hour),
about every 20-30 trials (or about every 20-30 minutes) in the
real world. Additionally, the pose of the robot is moved to a
neutral position at the beginning of every trial, since there is
no physical limitation that prevents doing this automatically,
but the robot must still handle the fact that the objects in the
scene maintain their position across trials.

VII. RESULTS

Our experiments aim to evaluate the hypothesis that lever-
aging prior data from other tasks can simultaneously address
multiple challenges in autonomous real-world robotic RL.
To this end, we evaluate ARIEL on a suite of simulated
robotic manipulation tasks, and evaluate real-world online
training with three new downstream tasks involving objects
not seen in the prior offline data. Our goal is to answer the
following questions: (1) Does leveraging prior data enable
mostly autonomous learning of a new task in simulation and
in the real-world? (2) How does ARIEL compare to prior
methods for leaning with minimal resets that do not use prior
data? (3) Does leveraging prior data via ARIEL lead to gains
in sample-efficiency for a new task? and (4) Does ARIEL
produce policies that better generalize to new conditions?

Videos of the experiments can be found on the anonymous
website: https://sites.google.com/view/ariel-paper/

A. Evaluating ARIEL in Simulation

We begin our empirical evaluation by comparing ARIEL to
prior approaches that also aim to tackle the challenges of au-
tonomous learning or sample-efficient learning, in simulation.

1) ARIEL enables effective autonomous learning with
minimal resets: We compare to two prior approaches in our
simulated experiments. To comparatively evaluate how well
our method enables learning with minimal resets, we compare
to the perturbation controller approach in R3L [61], which

alternates between training a forward controller to optimize a
task-completion reward and training a perturbation controller
that optimizes a novelty exploration bonus. This method has
been proposed specifically to handle reset-free learning for
real-world RL problems. We initialize the forward controller
in R3L with the policy obtained by running offline multi-
task RL on the prior data that used by our approach. We
also compare to a method that does not optimize the task
embeddings zf and zb over the course of autonomous online
fine-tuning. We refer to this approach as Multi-task RL. This
is equivalent to first running multi-task offline RL on the
prior dataset, and then fine-tuning the policy using a fixed
task index (that was unused during pre-training) in an online
phase afterwards. This method is conceptually similar to MT-
Opt [26], but adapted to our pre-training and then fine-tuning
setup, as opposed to the re-training from scratch approach
followed by Kalashnikov et al. [26]. For instructive purposes,
we also compare to an “oracle” version of our approach,
labeled (ARIEL + resets), which assumes access to external
resets at the end of each episode. While resetting every episode
is prohibitively expensive in the real-world, we can still run
this method in simulation for our understanding.

The results in Figure 5 show that ARIEL is the only
approach (and its oracle reset variant) are the only methods
that succeed at learning the new tasks, and the full ARIEL
method closely matches final oracle performance. While the
poor performance of prior methods might be surprising, recall
that these tasks require using raw image observations and
sparse 0/1 rewards, which present a significant challenge for
any RL approach. While R3L and Multi-Task RL both
succeeded at learning the tasks in the offline phase (see the
Appendix for the offline RL learning curves), they are unable
to make progress during online training of the new task. The
comparison to Multi-task RL indicates the importance of
adapting the task embeddings: if the task embeddings are
not adapted to the new task, distributional shift in the task
embeddings may severely hamper effective reset-free learning.
Thus, we find that these methods cannot use skills learned
offline to efficiently explore the new task. Our method solves
this challenge with an explicit mechanism for searching in the
space of task embeddings, starting from those used during
offline learning, to induce substantially better-than-random
initial exploratory behavior.

2) ARIEL enables sample-efficient learning of the new
task: Next, we aim to evaluate whether our method, ARIEL,
enables better sample-efficiency than learning from scratch.
To study the effect on sample complexity in isolation, we
conduct experiments in which the environment is reset at the
end of every episode (as opposed to the infrequent manual
reset setting studied in the rest of this paper). We compare
our method to simply applying RL to the target task, using the
same RL algorithm as our system (AWAC (no prior data)).
We also compare to an oracle method which is trained offline
on data coming from only the single new task of interest and
then trained online on the same task. Perhaps unsurprisingly,
we found that learning from scratch fails in the challenging

https://sites.google.com/view/ariel-paper/
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Fig. 5. Experiments on simulated domains comparing our method to prior works in reset-free and multi-task learning. We see that ours is the only method
that is able to learn in this limited-reset setting.
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Fig. 6. Experiments in simulated domains comparing our method to learning without any prior data, and against an oracle approach which assumes access to
offline dataset from the downstream task of interest. We see that our method adapts almost as quickly as the oracle approach, whereas reinforcement learning
from scratch fails to make any progress. Note that this experiment is not in a limited-reset settings, resets were conducted at the end of every episode.

setting of learning from images and sparse rewards. However,
our method learns just as efficiently as the oracle despite only
having access to offline data for other tasks and not the new
task of interest. Thus, our method demonstrates that properly
leveraging prior data can improve sample-efficiency even when
data is only available for other tasks.

B. Real-World Experiments

Next we evaluate the performance of ARIEL when training
online to solve new instances of the pick and place and drawer
tasks, with previously unseen objects, in the real world. We
aim to study how offline data can enable near-autonomous
real-world RL with sparse rewards, and also study question
(4), understanding the effect that the prior data has on the
generalization of the resulting policies. After pretraining on
the datasets discussed in Section VI, we evaluate ARIEL by
training three tasks that involve objects not seen in the prior
data: placing a toy tiger in a drawer (which requires also
closing the drawer, then opening it again to reset), placing
a toy elephant in a pot, and placing a toy tiger on a lid. The
pot, lid, elephant, and tiger were not seen in the prior data.
We evaluate success rates of the policy learned in the offline
phase, the policy learned after 100 trials of online training,
and the final policy after fine-tuning for 600 trials.

1) Autonomous fine-tuning with infrequent resets with
ARIEL significantly improves performance in the real world:
Observe in Tables I and II that the performance of both the

forward and backward controllers increases moderately after
100 trials (e.g., from 1/10 to 2/10 for the forward controller
and from 1/10 to 8/10 for the backward controller on put
elephant in pot) and substantially by the end of online training
(e.g., from 2/10 to 7/10 for the forward controller and 8/10
to 10/10 for the backward controller) indicating that ARIEL
successfully optimizes the embeddings and policy parameters,
with minimal resets, to perform the new task. Since prior au-
tonomous training methods did not make any learning progress
in our simulated experiments, we did conduct additional real-
world comparisons, but instead use the real-world setup to
confirm that our method can enable real-world training, and
then use it to study generalization as discussed below.

2) Training on diverse prior data improves zero-shot
generalization in the real world: In our final experiment, we
aim to understand whether initializing from prior data provides
ARIEL with more robust representations that facilitate learning
policies that generalize more effectively to new conditions with
any further adaptation. In principle, if our only goal is to attain
good performance on a single task, the best possible source of
data should come from that task itself. But in the real world,
we might often instead prefer a policy that is robust to variation
in the task. In this case, we might hypothesize that the larger
diversity present in the prior data might provide ARIEL with
representations that, even after online training on a single task,
lead to better generalization.

To study this hypothesis, we additionally evaluate the fine-



Put Tiger in
Drawer

Put Elephant
in Pot

Put Tiger on
Lid

Offline only 2/10 1/10 0/10
100 Trials 4/10 2/10 4/10
600 Trials 9/10 7/10 7/10

TABLE I
REAL-WORLD EVALUATION OF THE FORWARD CONTROLLER IN THE

CONTAINER AND DRAWER SETTING. FINETUNING IS MOSTLY
AUTONOMOUS WITH A RESET EVERY 30 TRIALS.

Put Tiger in
Drawer

Put Elephant
in Pot

Put Tiger on
Lid

Offline
Learning

5/10 1/10 2/10

100 Trials 6/10 8/10 6/10
600 Trials 7/10 10/10 6/10

TABLE II
REAL-WORLD EVALUATION OF THE BACKWARD CONTROLLER IN THE

CONTAINER AND DRAWER SETTING. FINETUNING IS MOSTLY
AUTONOMOUS WITH A RESET EVERY 20 TRIALS.

tuned policies for the tiger in drawer and tiger on lid tasks
in a setting where we swap out the object (but keep the
same container). We do not expect the policies to succeed
consistently in this case, but we see in Tables III and IV that
the policies learned by ARIEL exhibit some generalization,
attaining an average success rate of 61.67% when evaluated
at Epoch 15. We include a baseline that uses only the data
for each online task (i.e., either only tiger in drawer or only
tiger on lid) and no prior data. This baseline only succeeds
in 26.67% of trials on the new objects. This suggests that
pretraining on prior data does effectively boost generalization.

Interestingly, we observe that while the success rate of
ARIEL during fine-tuning improves as more steps are per-
formed (see 100 trials vs 600 trials in Tables III and IV), this
also adversely affects the zero-shot generalization performance
on a new object. This is to be expected, since even though our
online training procedure replays the prior data, we train with
a larger proportion of online data so with sufficient training
we expect the policy to become more specialized to the fine-
tuning task. This observation is also consistent with prior RL
works [5, 14] that note a drop in performance on test tasks
as more updates are made on the training tasks. We anticipate
the more principled early stopping or replay of the prior data
could alleviate this issue, which is an interesting avenue for
future work.

VIII. DISCUSSION

In this work, we proposed overcoming the numerous chal-
lenges of real-world robotic reinforcement learning through

Our Method (ARIEL) No Prior Data
Number of trials → 100 360 600 Best Epoch

Monkey 5/10 6/10 5/10 6/10
Rabbit 2/10 4/10 0/10 0/10
Hippo 3/10 5/10 0/10 0/10

Tiger (fine-tuning) 2/10 6/10 6/10 7/10

TABLE III
GENERALIZATION RESULTS, ZERO-SHOT PERFORMANCE ON NEW TASK OF

PICKING SEVERAL OBJECTS UP AND PLACING THEM IN A CONTAINER.

Our Method (ARIEL) No Prior Data
Number of trials → 100 360 600 Best Epoch

Pickle 3/5 5/5 3/5 1/5
Turtle 1/5 4/5 2/5 2/5
Dog 2/5 2/5 4/5 2/5

Tiger (fine-tuning) 3/5 3/5 3/5 1/5

TABLE IV
GENERALIZATION RESULTS, ZERO-SHOT PERFORMANCE ON OPENING A

DRAWER AND PLACING SEVERAL OBJECTS.

better leveraging prior datasets. While reinforcement learning
often involves acquiring a skill from scratch, such a formalism
is not well-suited to real world conditions where running
online data collection is expensive, and previously collected
datasets are often accessible. While the use of previously
collected datasets for tackling a particular challenge (such as
that of sample efficiency [38], or better generalization [34])
has been addressed in prior work, our work aims to address
such challenges jointly in a single robotic learning system,
which leverages prior data as the primary mechanism to
facilitate autonomy during online training, improve efficiency,
and boost generalization. In our experiments, we show that our
method is able to make consistent progress in online finetuning
despite having to learn from sparse rewards, matching or
exceeding the final performance of an oracle baseline that
receives prior data of the actual test task, and significantly
outperforming a baseline without prior data. This supports
our central hypothesis that prior data can be a significant
facilitator for real-world robotic RL. One limitation of our
analysis is that our new online training tasks are structurally
quite similar to the prior data used for offline pretraining.
While the objects during online training are different, they
do not require significantly distinct physical skills. We believe
that, as the breadth and diversity of the available prior data
increases, the offline pretrained model will correspondingly
be useful for a broader range of new tasks. Exploring this
direction by scaling up the proposed approach is an exciting
avenue for future work.
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APPENDIX

A. Implementation Details and Hyperparameters

We now provide details of the various hyperparameters used
in our experiments.

• AWAC: Our hyperparameters for AWAC are listed in
Table V.

• Multi-Task RL: We use the same hyperparameters as
AWAC. We modify the policy and Q function architec-
tures to accept two additional one-hot task indices. These
task indices go unused during offline learning, but we use
them to label the new data during online training.

• R3L: For this method, we keep the same RL hyperparam-
eters as Table V. For the RND networks we use the same
CNN architecture as the policy and Q function networks
but set the output dimension to 5.

• Oracle: For this method, we keep the same RL hyperpa-
rameters as Table V, but learn a single-task policy. The
offline dataset consists of 512 trajectories.

• ARIEL: During online fine-tuning on new tasks with
ARIEL, we keep the same hyperparameters as Table V,
but use the path lengths listed in Table VI, VII, and VIII.
For CEM, we use a Gaussian mixture model as the sam-
pling distributions with a number of components equal to
the number of tasks in the prior data. In simulation, we
update the sampling distributions every 10 trajectories,
fitting them to the J = 25 most recent successful task
embeddings. In the real world domains, we update the
sampling distributions every 10 trajectories, fitting them
to the J = 10 most recent successful task embeddings.

Hyperparameter Value
Target Network Update Frequency 1 step
Discount Factor γ 0.9666
Beta 0.01
Batch Size 64
Meta Batch Size 8
Soft Target τ 5e−3

Policy Learning Rate 3e−4

Q Function Learning Rate 3e−4

Reward Scale 1.0
Alpha 0.0
Policy Weight Decay 1e−4

Clip Score 0.5

TABLE V
HYPERPARAMETERS FOR AWAC FOR SIMULATED DOMAINS

B. Simulation

We utilize a Pybullet-based simulation [6] containing 3D
object models from the Shapenet dataset [4] to test our method
on diverse objects. We utilize a near-convex decomposition of
the models in order to maintain good contact physics. The
following is an example trajectory picking up an cylindrical
object and placing it into a container.

Fig. 7. Example pick and place trajectory in simulation.

C. Simulation Dataset Details

In this section, we provide additional details on the envi-
ronments and datasets used in our simulation experiments, the
results for which were presented in Section VII-A. In Figure 8,
we show the set of training and testing objects used in the
various pick and place tasks. In Table we provide details
on number of tasks, number of episodes and other dataset
properties.

Fig. 8. Simulation training (upper) and test (lower) objects. Our offline prior
dataset consists of only training objects.

Attribute Value
Timesteps per Offline Trajectory 30
Timesteps per Exploration Trajectory 40
Forward Tasks 8
Backward Tasks 8
Number of Trajectories Per Task 512

TABLE VI
SIMULATED TASKS PRIOR DATA DETAILS

D. Real-World Dataset Details

In this section, we provide additional details in Tables VII
and VIII on the environments and datasets used in our real
world experiments, the results for which were presented in
Section VII-B. The real-robot dataset consists of a carefully-
selected set of stuffed animals, rigid shapes, and more visually-
complex toys. We utilize scripted policies in order to collected
a large amount of data interacting with these objects.In the
container environment, there two objects in the scene at once
to provide better task specification.



Attribute Value
Timesteps per Offline Trajectory 15
Timesteps per Exploration Trajectory 20
Forward Tasks 20
Backward Tasks 20
Number of Trajectories Per Task 500

TABLE VII
REAL-WORLD PICK AND PLACE PRIOR DATA DETAILS

Attribute Value
Timesteps per Offline Trajectory 30
Timesteps per Exploration Trajectory 35
Forward Tasks 4
Backward Tasks 4
Number of Trajectories Per Task 150

TABLE VIII
REAL-WORLD DRAWER PRIOR DATA DETAILS

E. Generalization Test Objects

To test the generalization performance of our fine-tuned
policy, we utilize 6 different objects depicted in Figure 9. The
top 3 objects are used for testing the robustness of the tiger
container policy, while the bottom 3 objects are for the drawer
task. Note that although the objects chosen to test drawer
generalization are seen in the training set for the container
task, they are not contained in the offline buffer for the drawer
task.

Fig. 9. Generalization objects for tiger (upper) and drawer (lower) tasks.

F. Architecture Details

In Table IX, we provide details of the CNN architecture
used for our policy and Q-function networks.

G. Simulation Offline Success Rate Plots

In Figure 10, we provide the learning curves for the offline
phase of the R3L and Multi-task RL baselines.

Attribute Value
Input Width 48
Input Height 48
Input Channels 3
Kernel Sizes [3, 3, 3]
Number of Channels [16, 16, 16]
Strides [1, 1, 1]
Fully Connected Layers [1024, 512, 256]
Paddings [1, 1, 1]
Pool Type Max 2D
Pool Sizes [2, 2, 1]
Pool Strides [2, 2, 1]
Pool Paddings [0, 0, 0]
Image Augmentation Yes
Image Augementation Padding 4

TABLE IX
CNN ARCHITECTURE FOR POLICY AND Q-FUNCTION NETWORKS

Fig. 10. We see that the multitask pick and place success rates learned by
our offline RL baselines show a significant amount of learning, even though
they perform poorly on test tasks as seen in Figure 5.
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