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ABSTRACT

Learning with few labeled tabular samples is often an essential requirement for in-
dustrial machine learning applications as varieties of tabular data suffer from high
annotation costs or have difficulties in collecting new samples for novel tasks.
Despite the utter importance, such a problem is quite under-explored in the field
of tabular learning, and existing few-shot learning schemes from other domains
are not straightforward to apply, mainly due to the heterogeneous characteris-
tics of tabular data. In this paper, we propose a simple yet effective framework
for few-shot semi-supervised tabular learning, coined Self-generated Tasks from
UNlabeled Tables (STUNT). Our key idea is to self-generate diverse few-shot
tasks by treating randomly chosen columns as a target label. We then employ
a meta-learning scheme to learn generalizable knowledge with the constructed
tasks. Moreover, we introduce an unsupervised validation scheme for hyperpa-
rameter search (and early stopping) by generating a pseudo-validation set using
STUNT from unlabeled data. Our experimental results demonstrate that our sim-
ple framework brings significant performance gain under various tabular few-shot
learning benchmarks, compared to prior semi- and self-supervised baselines. Code
is available at https://github.com/jaehyun513/STUNT.

1 INTRODUCTION

Learning with few labeled samples is often an essential ingredient of machine learning applications
for practical deployment. However, while various few-shot learning schemes have been actively
developed over several domains, including images (Chen et al., 2019) and languages (Min et al.,
2022), such research has been under-explored in the tabular domain despite its practical importance
in industries (Guo et al., 2017; Zhang et al., 2020; Ulmer et al., 2020). In particular, few-shot tabular
learning is a crucial application as varieties of tabular datasets (i) suffer from high labeling costs,
e.g., the credit risk in financial datasets (Clements et al., 2020), and (ii) even show difficulties in
collecting new samples for novel tasks, e.g., a patient with a rare or new disease (Peplow, 2016)
such as an early infected patient of COVID-19 (Zhou et al., 2020).

To tackle such limited label issues, a common consensus across various domains is to utilize unla-
beled datasets for learning a generalizable and transferable representation, e.g., images (Chen et al.,
2020a) and languages (Radford et al., 2019). Especially, prior works have shown that representations
learned with self-supervised learning are notably effective when fine-tuned or jointly learned with
few labeled samples (Tian et al., 2020; Perez et al., 2021; Lee et al., 2021b; Lee & Shin, 2022). How-
ever, contrary to the conventional belief, we find this may not hold for tabular domains. For instance,
recent state-of-the-art self-supervised tabular learning methods (Yoon et al., 2020; Ucar et al., 2021)
do not bring meaningful performance gains over even a simple k-nearest neighbor (kNN) classifier
for few-shot tabular learning in our experiments (see Table 1 for more details). We hypothesize that
this is because the gap between trained self-supervised tasks and the applied few-shot task is large
due to the heterogeneous characteristics of tabular data.

Instead, we ask whether one can utilize the power of meta-learning to reduce the gap via fast adap-
tion to unseen few-shot tasks; meta-learning is indeed one of the most effective few-shot learning
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Figure 1: An overview of the proposed Self-generated Tasks from UNlabeled Tables (STUNT): we
generate the task label by running a k-means clustering over the randomly selected column features
of the table, then perturb the selected columns to prevent from generating a trivial task.

strategies across domains (Finn et al., 2017; Gu et al., 2018; Xie et al., 2018). We draw inspira-
tion from the recent success in unsupervised meta-learning literature, which meta-learns over the
self-generated tasks from unlabeled data to train an effective few-shot learner (Khodadadeh et al.,
2019; Lee et al., 2021a). It turns out that such an approach is quite a promising direction for few-
shot tabular learning: a recent unsupervised meta-learning scheme (Hsu et al., 2018) outperforms
the self-supervised tabular learning methods in few-shot tabular classification in our experiments
(see Table 1). In this paper, we suggest to further exploit the benefits of unsupervised meta-learning
into few-shot tabular learning by generating more diverse and effective tasks compared to the prior
works using the distinct characteristic of the tabular dataset’s column feature.

Contribution. We propose a simple yet effective framework for few-shot semi-supervised tabular
learning, coined Self-generated Tasks from UNlabeled Tables (STUNT); see the overview in Figure
1. Our key idea is to generate a diverse set of tasks from the unlabeled tabular data by treating the
table’s column feature as a useful target, e.g., the ‘blood sugar’ value can be used as a substituted
label for ‘diabetes’. Specifically, we generate pseudo-labels of the given unlabeled input by running
a k-means clustering on randomly chosen subsets of columns. Moreover, to prevent generating a
trivial task (as the task label can be directly inferred by the input columns), we randomly replace
the chosen column features with a random value sampled from the columns’ respective empirical
marginal distributions. We then apply a meta-learning scheme, i.e., Prototypical Network (Snell
et al., 2017), to learn generalizable knowledge with the self-generated tasks.

We also find that the major difficulty of the proposed meta-learning with unlabeled tabular datasets
is the absence of a labeled validation set; the training is quite sensitive to hyperparameter selection
or even suffers from overfitting. To this end, we propose an unsupervised validation scheme by
utilizing STUNT to the unlabeled set. We find that the proposed technique is highly effective for
hyperparameter searching (and early stopping), where the accuracy of the pseudo-validation set and
the test set show a high correlation.

We verify the effectiveness of STUNT through extensive evaluations on various datasets in the
OpenML-CC18 benchmark (Vanschoren et al., 2014; Bischl et al., 2021). Overall, our experi-
mental results demonstrate that STUNT consistently and significantly outperforms the prior meth-
ods, including unsupervised meta-learning (Hsu et al., 2018), semi- and self-supervised learning
schemes (Tarvainen & Valpola, 2017; Yoon et al., 2020; Ucar et al., 2021) under few-shot semi-
supervised learning scenarios. In particular, our method improves the average test accuracy from
59.89%→63.88% for 1-shot and from 72.19%→74.77% for 5-shot, compared to the best baseline.
Furthermore, we show that STUNT is effective for multi-task learning scenarios where it can adapt
to new tasks without retraining the network.

2 RELATED WORK

Learning with few labeled samples. To learn an effective representation with few labeled samples,
prior works suggest leveraging the unlabeled samples. Such works can be roughly categorized as (i)
semi-supervised (Kim et al., 2020; Assran et al., 2021) and (ii) self-supervised (Chen et al., 2020a;b)
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approaches. For semi-supervised learning approaches, a common way is to produce a pseudo-label
for each unlabeled data by using the model’s prediction and then train the model with the corre-
sponding pseudo-label (Lee, 2013). More advanced schemes utilize the momentum network (Laine
& Aila, 2017; Tarvainen & Valpola, 2017) and consistency regularization with data augmentations
(Berthelot et al., 2019; Sohn et al., 2020) to generate a better pseudo-label. On the other hand, self-
supervised learning schemes aim to pre-train the representation by using domain-specific inductive
biases (e.g., the spatial relationship of image augmentations), then fine-tune or adapt with a few la-
beled samples (Tian et al., 2020; Perez et al., 2021). In particular, previous studies have shown the ef-
fectiveness of self-supervised learning in the transductive setting compared to the few-shot methods
(Chen et al., 2021). While recent works on both approaches heavily rely on augmentation schemes,
it is unclear how to extend such methods to the tabular domain due to the heterogeneous character-
istics of tabular datasets, i.e., there is no clear consensus on which augmentation is globally useful
for the tabular dataset. Instead, we train the unlabeled dataset with an unsupervised meta-learning
framework that does not rely on the effect of augmentation.

Learning with unlabeled tabular data. Various attempts have been made to train a generalizable
representation for tabular datasets using unlabeled samples. Yoon et al. (2020) is the first to target
self-supervised learning on the tabular dataset by corrupting random features and then predicting
the corrupted location (i.e., row and columns). As a follow-up, Bahri et al. (2022) directly adopts
contrastive learning frameworks (Chen et al., 2020a) by corrupting randomly selected features to
create positive views, and Ucar et al. (2021) shows that using effective three pretext task losses (i.e.,
reconstruction loss, contrastive loss, and distance loss) can achieve the state-of-the-art performance
on the linear evaluation task (training a linear classifier with a labeled dataset upon the learned repre-
sentation). However, while prior works have shown their effectiveness mainly on linear evaluation,
we find that these methods may not be effective for few-shot learning scenarios (see Table 1). In this
regard, we suggest utilizing the power of meta-learning for training an effective few-shot learner by
proposing an unsupervised meta-learning framework for tabular data. Moreover, while some works
have proposed a self-supervised learning framework (Somepalli et al., 2021; Majmundar et al., 2022)
based on Transformer architectures (Vaswani et al., 2017), we believe a new approach is needed for
few-shot learning (given the observations of prior self-supervised learning works in Table 1) and
introduce an architecture-agnostic method that can be used for a wide range of applications.

Unsupervised meta-learning. Meta-learning, i.e., learning to learn by extracting common knowl-
edge over a task distribution, has emerged as a popular paradigm for enabling systems to adapt
to new tasks in a sample-efficient way (Vinyals et al., 2016; Finn et al., 2017; Snell et al., 2017).
Recently, several works have suggested unsupervised meta-learning schemes that self-generate a
labeled task from the unlabeled dataset, as various few-shot learning applications suffer from high
annotation costs. To self-generate the tasks, CACTUs (Hsu et al., 2018) run a clustering algorithm
on a representation trained with self-supervised learning, Ye et al. (2022) and UMTRA (Khodadadeh
et al., 2019) assumes the augmented sample as the same pseudo-class (Ye et al. (2022) also intro-
duces effective strategies for unsupervised meta-learning: sufficient episodic sampling, hard mixed
supports, and task specific projection head), and Meta-GMVAE (Lee et al., 2021a) utilize a vari-
ational autoencoder (VAE; Kingma & Welling (2014)) for clustering. However, despite the effec-
tiveness of prior works on image datasets, we find that applying each method to the tabular domain
is highly non-trivial; they assume high-quality self-supervised representation, data augmentations,
or sophisticated generative models like VAE which are quite cumbersome to have in the tabular
domain, e.g., see the work by Xu et al. (2019). Nevertheless, we have tried the prior methods for
tabular learning using various techniques, e.g., several augmentations such as noise and permuta-
tion, but only CACTUs has shown its effectiveness; we find that Meta-GMVAE underperforms the
baseline with the lowest performance that we consider. In this paper, we propose a new unsupervised
meta-learning that is specialized for tabular datasets.

3 STUNT: SELF-GENERATED TASKS FROM UNLABELED TABLES

In this section, we develop an effective few-shot tabular learning framework that utilizes the power
of meta-learning in an unsupervised manner. In a nutshell, our framework meta-learns over the
self-generated tasks from the unlabeled tabular dataset, then adapt the network to classify the few-
shot labeled dataset. We first briefly describe our problem setup (Section 3.1), and then the core
component, coined Self-generated tasks from UNlabeled Tables (STUNT), which generates effective
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and diverse tasks from the unlabeled tabular data (Section 3.2). Moreover, we introduce a pseudo-
validation scheme with STUNT, where one can tune hyperparameters (and apply early stopping)
even without a labeled validation set on few-shot scenarios (Section 3.3).

3.1 PROBLEM SETUP: FEW-SHOT SEMI-SUPERVISED LEARNING

We first describe the problem setup of our interest, the few-shot semi-supervised learning for clas-
sification. Formally, our goal is to train a neural network classifier fθ : X → Y parameterized by
θ where X ⊆ Rd and Y = {0, 1}C are input and label spaces with C classes, respectively, and
assume that we have a labeled dataset Dl = {xl,i,yl,i}Nl

i=1 ⊆ X × Y and an unlabeled dataset
Du = {xu,i}Nu

i=1 ⊆ X for training the classifier fθ. Note that all the data points are sampled from a
certain data-generating distribution p(x,y) in an i.i.d. manner. We also assume that the cardinality
of the given labeled set is very small, e.g., one sample per class, while we have a sufficient amount
of the unlabeled dataset, i.e., Nu ≫ Nl.

3.2 UNSUPERVISED META-LEARNING WITH STUNT

We now describe the core algorithm we propose, STUNT. To obtain a good classifier fθ under the
proposed setup, we suggest using an unsupervised meta-learning method, which (i) self-generates
diverse tasks {T1, T2, . . .} from the unlabeled dataset Du where each Ti contains few samples with
pseudo-labels; (ii) meta-learns fθ to generalize across the tasks; and, (iii) adapts the classifier fθ
using the labeled dataset Dl. Algorithm 1 in Appendix D provides the detailed training process.
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Figure 2: Example data from the diabetes
dataset (Bischl et al., 2021). The red column
indicates the original target, and the green col-
umn indicates the possible alternative label.

Task generation from unlabeled tables. Our key
idea is to generate a diverse set of tasks from the
unlabeled data by treating a column feature of tabu-
lar data as a useful pseudo-label. Intuitively speak-
ing, as any label type can be considered as a tabu-
lar column due to the heterogeneous characteristic
of the tabular data (i.e., each column has a distinct
feature), one can also rethink any column feature
as a task label. In particular, since there exist some
columns that have a high correlation with the origi-
nal label, the new task constructed with such a col-
umn feature is highly similar to the original classi-
fication task, e.g., the original task of predicting ‘Diabetes’ through ‘BMI’ and ‘Age’ is similar to a
new task that predicts ‘Blood Sugar’ by ‘BMI’ and ‘Age’ (see Figure 2). With this intuition, we gen-
erate pseudo-labels by running a k-means clustering over the randomly selected columns to improve
the diversity and the possibility of sampling highly correlated columns (with the original label).

Formally, to generate a single task TSTUNT, we sample the masking ratio p from the uniform distribu-
tion U(r1, r2), where r1 and r2 are hyperparameters with 0 < r1 < r2 < 1, and generate a random
binary mask m := [m1, . . . ,md]

⊤ ∈ {0, 1}d where
∑

i mi = ⌊dp⌋ and ⌊·⌋ is the floor function, i.e.,
the greatest integer not exceeding the input. Then, for a given unlabeled data Du, we select columns
with the mask index with the value of one, i.e., sq(x ⊙m) ∈ R⌊dp⌋ where ⊙ is the element-wise
product and sq(x ⊙m) is a squeezing operation that removes the elements with the mask value of
zero. Based on the selected columns, we run a k-means clustering to generate the task label ỹu,i:

min
C∈R⌊dp⌋×k

1

N

N∑
i=1

min
ỹu,i∈{0,1}k

∥sq(xu,i ⊙m)−Cỹu,i∥22 such that ỹ⊤
u,i1k = 1, (1)

where k is the number of centroids, 1k ∈ Rk is a vector of ones, and C is the centroid matrix.

Since the task label ỹu is generated from the data itself, the classifier can easily infer the label from
the given clean data xu. To prevent such an issue, we suggest perturbing the selected column features
by x̃u := m⊙ x̂u + (1−m)⊙ xu where each column feature element of x̂u is sampled from the
empirical marginal distribution of each column feature. Finally, the generated task from STUNT is
defined as follows: TSTUNT := {x̃u,i, ỹu,i}Nu

i=1.
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Meta-learning with STUNT. Based on the generated task, we suggest to meta-learn the network by
utilizing Prototypical Network (ProtoNet; Snell et al. (2017)): performs a non-parametric classifier
on top of the network’s embedding space. Specifically, ProtoNet learns this embedding space in
which classification can be performed by computing distances to prototype vectors of each class,
i.e., the average embedding vector of the class samples. The reason why we consider ProtoNet as a
meta-learning framework is three-fold. First, the number of classes can be different for training and
inference on ProtoNet, allows us to search the effective centroid number k rather than fixing it to the
class size C. Second, the method is model- and data-agnostic, where it can be used for the tabular
domain without any modification. Finally, despite the simplicity, ProtoNet is known to outperform
advanced meta-learning schemes under various datasets (Ye et al., 2020; Tack et al., 2022).

For a given task TSTUNT, we sample two disjoint sets from TSTUNT, i.e., S and Q, which are used
for constructing the classifier, and training the constructed classifier, respectively. Concretely, we
construct the ProtoNet classifier fθ over the parameterized embedding zθ : X → RD by using the
prototype vectors of each pseudo-class pc̃ := 1

|Sc̃|
∑

(x̃u,ỹu)∈Sc̃
zθ(x̃u) where Sc̃ contains samples

with pseudo-class c̃ in S:

fθ(y = c̃|x;S) = exp(−∥zθ(x)− pc̃∥2)∑
c̃′ exp(−∥zθ(x)− pc̃′∥2)

. (2)

We then compute the cross-entropy loss LCE on the conducted classifier fθ with set Q, i.e.,
Lmeta(θ,Q) :=

∑
(x̃u,ỹu)∈Q LCE

(
fθ(x̃u;S), ỹu

)
, where we train the network to minimize the meta-

learning loss Lmeta over the diverse set of tasks {TSTUNT,1, TSTUNT,2, . . . }.
Adapting with labeled samples. After meta-learning the parameter θ with self-generated tasks, we
use the labeled set Dl to construct the classifier for the few-shot classification by using ProtoNet,
i.e., fθ(·;Dl) where the each prototype vector pc is computed with samples of the label c in Dl.

3.3 PSEUDO-VALIDATION WITH STUNT

We find that the difficulty of the proposed unsupervised learning is the absence of a validation set
for selecting the hyperparameters and early stopping the training. To tackle this issue, we introduce
an unsupervised validation scheme where we generate a pseudo-validation set by running STUNT
on the unlabeled set. Here, rather than sampling the columns for generating the cluster, we use
all column features to remove the randomness throughout the validation and further use the clean
tabular input contrary to the perturbed sample as in the original STUNT.

Formally, we sample a certain portion of the unlabeled set Dval
u ⊂ Du, then generate the task label

yval
u by running a k-means clustering over clean samples xval

u ∈ Du where k = C, i.e., Eq. (1)
with m = 1d. Then, for a given validation task T val

STUNT = {xval
u,i ,y

val
u,i }i, we sample two disjoint sets,

Sval and Qval, to evaluate the pseudo-validation performance of the ProtoNet classifier fθ(·;Sval)
by using Eq. (2), i.e., predicting pseudo-class of Qval using prototype vectors made from Sval.

4 EXPERIMENTS

In this section, we validate the effectiveness of our method on few-shot tabular learning scenarios
under various tabular datasets from the OpenML-CC18 benchmark (Bischl et al., 2021). Our results
exhibit that STUNT consistently and significantly outperforms other methods, including unsuper-
vised, semi- and self-supervised methods (Section 4.1). We further demonstrate that our method is
even effective for few-shot multi-task learning (Section 4.2). Finally, we perform an ablation study
to verify the effect of the proposed pseudo-validation scheme of our approach (Section 4.3).

Common setup. For all the datasets, 80% of the data is used for training (unlabeled except for
few-shot labeled samples) and 20% for testing, except for the income dataset, since split training
and test data are provided. For STUNT, we use 20% of training data for pseudo-validation. We
one-hot encode categorical features following the preprocessing of SubTab (Ucar et al., 2021) then
apply normalization by subtracting the mean and dividing by the standard deviation for the income
dataset and min-max scaling for other datasets, respectively. All baselines and STUNT are trained
for 10K steps, while we follow the original training setting for CACTUs (Hsu et al., 2018). For all
methods, we train a 2-layer multi-layer perceptron (MLP) with a hidden dimension of 1024. We
provide additional information in the Appendix A.
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Table 1: Few-shot test accuracy (%) on 8 datasets from the OpenML-CC18 benchmark (Bischl et al.,
2021). We report the mean test accuracy over 100 different seeds. Checkmark ✓ indicates the use of
100 additional labeled samples for validation (Val.), including hyperparameter searching and early
stopping. The bold denotes the highest mean score.

Type Method Val. income cmc karhunen optdigit diabetes semeion pixel dna Avg.

# shot = 1

CatBoost ✓ 57.00 34.60 55.67 61.32 60.02 43.21 59.16 41.35 52.06
MLP ✓ 60.52 35.06 48.67 61.02 57.25 40.88 55.62 44.39 50.43
LR ✓ 59.64 35.08 55.05 65.19 57.61 42.90 59.71 44.28 52.43Sup.

kNN - 61.22 34.99 54.42 65.58 58.56 44.35 61.48 42.67 52.82

Mean Teacher ✓ 60.63 35.58 54.57 66.10 58.05 43.56 61.02 46.58 53.26
ICT ✓ 61.83 36.53 58.37 69.12 58.08 43.48 60.88 46.55 54.36
Pseudo-Label ✓ 60.52 34.97 49.44 61.50 57.03 41.42 56.12 44.26 50.66
MPL ✓ 60.85 35.13 47.66 61.52 57.39 41.82 56.01 44.22 50.58

Semi-sup.

VIME-Semi ✓ 56.40 32.97 57.40 66.85 58.16 40.43 52.86 39.18 50.53

SubTab + Fine-tune ✓ 59.74 35.65 41.11 49.88 59.35 30.49 42.23 40.86 44.91
SubTab + LR ✓ 61.88 35.68 50.32 67.05 58.06 40.27 60.40 45.68 52.42
SubTab + kNN - 61.58 35.87 48.74 66.05 59.22 39.99 61.30 44.16 52.36
VIME + Fine-tune ✓ 60.50 34.98 47.50 61.31 57.23 41.09 53.79 44.30 50.09
VIME + LR ✓ 61.99 35.30 59.62 70.52 56.95 47.20 64.17 51.36 55.89

Self-sup.

VIME + kNN - 62.16 35.55 58.56 69.31 58.35 46.99 64.62 50.29 55.78

UMTRA - 57.23 35.46 49.05 49.87 57.64 26.33 34.26 25.13 41.87
SES - 56.39 34.59 49.19 56.30 59.97 33.73 49.19 39.56 47.37
CACTUs - 64.02 36.10 65.59 71.98 58.92 48.96 67.61 65.93 59.89Unsup.-Meta.

STUNT (Ours) - 63.52 37.10 71.20 76.94 61.08 55.91 79.05 66.20 63.88
# shot = 5

CatBoost ✓ 64.51 39.75 82.38 84.05 65.75 68.69 84.49 63.46 69.14
MLP ✓ 66.25 37.40 77.56 83.30 64.32 66.25 81.97 59.73 67.10
LR ✓ 66.53 37.15 81.02 86.22 64.19 67.87 85.02 58.88 68.36Sup.

kNN - 70.49 38.56 79.98 84.89 67.32 68.33 84.02 61.45 69.38

Mean Teacher ✓ 67.05 37.73 81.08 86.66 65.45 69.67 85.24 61.47 69.29
ICT ✓ 70.13 38.09 84.58 87.01 65.47 70.26 86.12 63.37 70.63
Pseudo-Label ✓ 66.26 37.49 78.60 83.71 64.46 67.49 82.94 60.06 67.63
MPL ✓ 67.61 37.47 77.85 83.70 64.51 67.08 82.39 59.65 67.53

Semi-sup.

VIME-Semi ✓ 65.13 37.32 80.53 87.13 65.39 64.80 82.83 52.08 66.90

SubTab + Fine-tune ✓ 66.01 37.60 67.80 75.40 66.69 56.46 75.34 55.62 62.62
SubTab + LR ✓ 70.12 37.67 73.25 86.07 64.92 61.34 82.14 58.90 66.80
SubTab + kNN - 71.91 39.51 69.56 83.60 68.79 59.87 80.13 61.57 66.87
VIME + Fine-tune ✓ 65.97 37.25 77.82 83.13 64.40 63.63 81.01 59.58 66.60
VIME + LR ✓ 67.80 37.51 82.87 87.42 64.29 71.53 86.79 69.62 70.98

Self-sup.

VIME + kNN - 72.16 39.28 79.15 83.86 66.94 68.45 84.07 71.09 70.63

UMTRA - 65.78 38.05 67.28 73.29 64.41 35.90 51.32 25.08 52.64
SES - 68.27 39.04 74.80 78.46 66.61 52.74 74.80 52.25 63.37
CACTUs - 72.03 38.81 82.20 85.92 66.79 65.00 85.25 81.52 72.19Unsup.-Meta.

STUNT (Ours) - 72.69 40.40 85.45 88.42 69.88 73.02 89.08 79.18 74.77

4.1 FEW-SHOT CLASSIFICATION

Dataset. We select 8 datasets from the OpenML-CC18 benchmark (Bischl et al., 2021; Asuncion
& Newman, 2007). The income (Kohavi et al., 1996) and cmc dataset consists of both categorical
and numerical features. The mfeat-karhunen (karhunen), optdigits, diabetes, semeion, mfeat-pixel
(pixel) contain only numerical features. The dna dataset consists of only categorical features. We
demonstrate the performance of STUNT on all types, as described in Appendix G. For dataset se-
lection, we consider the following attributes: (i) whether the dataset consists of both categorical and
numerical features, (ii) consists only of numerical or categorical features, (iii) type of task (i.e., bi-
nary classification or multi-way classification task). We validate that STUNT is generally applicable
to arbitrary tabular data by performing experiments across datasets with the above properties.

Baselines. To validate our method, we compare the performance with four types of baselines: (i)
supervised, (ii) semi-supervised, (iii) self-supervised, and (iv) unsupervised meta-learning methods.
First, we compare with supervised learning methods such as CatBoost (Prokhorenkova et al., 2018),
2-layer MLP, k-nearest neighbors (kNN), and logistic regression (LR). kNN denotes the nearest
neighbor classifier according to the prototype of the input data. Second, we compare our method
to semi-supervised learning methods such as Mean Teacher (MT; Tarvainen & Valpola (2017)), In-
terpolation Consistency Training (ICT; Verma et al. (2019)), Pseudo-Label (PL; Lee (2013)), Meta
Pseudo-Label (MPL; Pham et al. (2021)). We also have considered PAWS (Assran et al., 2021),
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Table 2: 10-shot test accuracy (%) on 8 datasets from the OpenML-CC18 benchmark (Bischl et al.,
2021). We report the mean test accuracy over 20 different seeds for each dataset. The bold indicates
results within 1% from the highest mean score.

Method \ Dataset income cmc karhunen optdigit diabetes semeion pixel dna Avg.

kNN 74.27 41.07 85.63 87.44 71.32 74.64 87.52 71.15 74.13
ICT 71.56 38.00 88.25 90.84 67.63 74.67 89.13 69.55 73.70
VIME + LR 69.17 37.92 86.63 89.63 66.56 77.66 88.71 74.73 73.88
CACTUs 73.63 42.14 85.48 87.92 70.75 68.22 87.21 84.40 74.97

STUNT (Ours) 74.08 42.01 86.95 89.91 72.82 74.74 89.90 80.96 76.42

the state-of-the-art semi-supervised learning method in the image domain, but observe that it is not
effective for tabular datasets: we conjecture that the performance highly deviates from the choice of
augmentation where tabular augmentation is not very effective compared to image augmentations.
Third, we consider the recent state-of-the-art self-supervised method for tabular data, SubTab (Ucar
et al., 2021) and VIME (Yoon et al., 2020) are pre-trained, then performance is evaluated with a
few-shot labeled samples using fine-tuning, logistic regression, and kNN. Finally, we include CAC-
TUs (Hsu et al., 2018), UMTRA (Khodadadeh et al., 2019), and SES (Ye et al., 2022) (along with
semi-normalized similarity) as an unsupervised meta-learning baseline. Even though it is not clear
how to design the augmentation strategy when applying UMTRA and SES to tabular data, we use
marginal distribution masking, which are simple augmentation strategies used in SubTab. We pro-
vide additional results in Appendix I. We exclude Meta-GMVAE (Lee et al., 2021a) since in our
experiments, it lags behind the baseline with the lowest performance that we consider. This is be-
cause training a variational auto-encoder (VAE; Kingma & Welling (2014)) for tabular datasets is
highly non-trivial (Xu et al., 2019).

Few-shot classification. For the few-shot classification, we evaluate the performance when one and
five labeled samples are available per class, respectively. We find that some baselines, such as Cat-
Boost and ICT, require a validation set as they are highly sensitive to hyperparameters.Therefore,
we perform a hyperparameter search and early stopping with 100 additional labeled samples for all
baseline except for kNNs and unsupervised meta-learning methods. We note that using more labeled
samples for validation than training is indeed unrealistic. On the other hand, we use the proposed
pseudo-validation scheme for hyperparameter searching and early stopping of STUNT. One surpris-
ing observation is that CatBoost even lags behind kNN despite careful hyperparameter search. This
implies that gradient boosting decision tree algorithms may fail in few-shot learning, while they are
one of the most competitive models in fully-supervised settings (Shwartz-Ziv & Armon, 2022). In
addition, semi-supervised learning methods achieve relatively low scores, which means that in tabu-
lar domain, pseudo-label quality goes down when the number of labeled samples is extremely small.
Also, unlike the results of the image domain, UMTRA and SES perform worse than CACTUs. We
believe that the failures of them are mainly due to the absence of effective augmentation strategies
for tabular data.

As shown in Table 1, STUNT significantly improves the few-shot tabular classification perfor-
mance even without using a labeled validation set. For instance, STUNT outperforms CACTUs from
67.61%→79.05% in the 1-shot classification of the pixel dataset. In particular, STUNT achieves the
highest score in 7 of 8 datasets in both 1-shot and 5-shot classification problems, performing about
4% and 2% better than CACTUs in 1-shot and 5-shot cases, respectively. This is because STUNT
is a tabular-specific unsupervised learning method that generates myriad meta-training tasks than
CACTUs because we randomly select a subset of the column features for every training iteration.

Low-shot classification. We also validate our method when more labels are available, i.e., 10-shot.
For baselines, we choose kNN, ICT, VIME + LR, and CACTUs because they show the best perfor-
mance among supervised, semi-supervised, self-supervised, and unsupervised meta-learning meth-
ods in 1-shot and 5-shot classifications, respectively. Since a sufficient number of labeled training
samples are available, we use the 2-shot sample from the 10-shot training sample for validation if
the baseline requires hyperparameter search and early stop. In contrast, STUNT still does not use the
labeled validation set, i.e., we utilize the proposed pseudo-validation scheme. As shown in Table 2,
STUNT achieves the best score on average accuracy even under the low-shot classification setup.

While STUNT outperforms the baselines in the few- and low-shot learning setups, we find ensembles
of decision trees or other semi-supervised learning methods, e.g., CatBoost or ICT, achieve a better

7



Published as a conference paper at ICLR 2023

Table 3: Few-shot multi-task test accuracy (%) on the emotions dataset (Vanschoren et al., 2014),
consists of 6 binary classification tasks. We report the mean test accuracy over 100 different seeds
for each task. The bold indicates the highest mean score.

Method \ Task amazed-surprised happy-please relaxing-calm quiet-still sad-lonely angry-aggressive Avg.

# shot = 1

kNN 59.04 47.14 55.77 66.86 55.96 59.47 57.37
SubTab + kNN 63.32 48.88 56.46 62.56 54.34 57.99 57.26
VIME + kNN 60.07 49.51 55.62 64.74 53.95 60.29 57.36
CACTUs 61.58 50.67 55.63 63.18 55.10 59.39 57.59

STUNT (Ours) 62.71 51.63 59.28 69.34 56.38 63.43 60.46

# shot = 5

kNN 70.71 53.48 66.34 81.03 68.51 68.07 68.02
SubTab + kNN 74.41 52.23 64.90 72.70 62.32 63.30 64.98
VIME + kNN 70.71 53.10 66.24 79.54 66.34 67.76 67.28
CACTUs 71.41 53.64 65.18 77.57 64.15 66.57 66.42

STUNT (Ours) 72.38 55.09 67.39 83.10 68.61 70.10 69.45

performance when more labeled samples are provided, e.g., 50-shot. Although the few-shot learning
scenario is of our primary interest and our current method is specialized for the purpose, we think
further improving our method under many-shot regimes would be an interesting future direction.

4.2 MULTI-TASK LEARNING

In this section, we introduce another application of STUNT, the few-shot multi-task learning. As
STUNT learns to generalize across various self-generated tasks, it can instantly be adapted to mul-
tiple tasks at test-time without further training the network. Formally, we consider xl and xu are
sampled from a same marginal distribution p(x), where the label space Y differs.

Dataset. We use the emotions dataset from OpenML (Vanschoren et al., 2014), consisting of a
variety of audio data with multiple binary labels and 72 numerical features. In particular, the emo-
tion dataset aims to classify the multiple properties: amazed-surprised, happy-please, relaxing-calm,
quiet-still, sad-lonely, or angry-aggressive. Because it is multi-labeled, data can have multiple at-
tributes simultaneously, such as amazed-surprised and relaxing-calm audio.

Baselines. We compare STUNT with four baselines: kNN, SubTab + kNN, VIME + kNN, and CAC-
TUs. All four baselines are chosen because they can adapt to multiple tasks with only one training
procedure. On the other hand, methods such as ICT are excluded because they need a training pro-
cedure for each task. For example, in the case of the emotions dataset, six models are required.

Multi-task learning. As shown from Table 3, STUNT outperforms 5 out of 6 tasks in both 1-
shot and 5-shot multi-task adaptation. In particular, STUNT outperforms the best baseline from
57.59%→60.46% in 1-shot multi-task, and 68.02%→69.45% in 5-shot. This is because STUNT
generates a wide variety of meta-training tasks based on the fact that there are myriad ways to
randomly select subsets of column features. In addition, it makes sense to treat column features as
alternate labels, especially in tabular data, because each column feature has a different meaning.
Considering the presence of critical real-world few-shot multi-task scenarios, such as patients with
more than one disease, we conclude that STUNT is a promising way to mitigate these problems.

4.3 EFFECTIVENESS OF PSEUDO-VALIDATION

In this section, we perform further analysis of the proposed pseudo-validation with STUNT. For the
analysis, we use four datasets from the OpenML-CC18 benchmark: two datasets containing both
categorical and numerical features (i.e., income, cmc) and two datasets with only numerical features
(i.e., semeion, pixel). We validate the model by constructing a number of 1-shot meta-validation
tasks, i.e., |Sval| = C, with an unlabeled validation set for all experiments in this section.

Hyperparameter search. To validate that the proposed pseudo-validation scheme is useful for hy-
perparameter search, we show the correlation between the pseudo-validation accuracy and the test
accuracy (achieved from the early stop point by the highest pseudo-validation accuracy). As shown
in Figure 3, pseudo-validation accuracy and test accuracy have a positive correlation, which means
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Figure 3: Correlation between the pseudo-validation accuracy (%) and the 1-shot test accuracy (%).
The 1-shot test accuracy is achieved from the early stopped point by the highest pseudo-validation
accuracy. Blue dots represent models trained with different hyperparameters. Red lines are the result
of linear regression result of pseudo-validation accuracy and 1-shot test accuracy.

Table 4: Early stopping performance with the pseudo-validation set. We report 1-shot and 5-shot
test accuracy (%) of fully trained (Last) and early stopped models (Early). We report the mean test
accuracy of 100 different seeds. The bold indicates the highest mean score.

income cmc semeion pixel

Problem Last Early Last Early Last Early Last Early

1-shot 61.58 63.52 36.94 37.10 51.94 55.91 74.92 79.05
5-shot 70.84 72.69 40.43 40.40 71.55 73.02 87.60 89.08

that the higher the best pseudo-validation accuracy, the higher the test accuracy. Therefore, we use
the pseudo-validation technique to search the hyperparameters of STUNT. Specifically, for the in-
come, semeion, and pixel datasets, we find hyperparameters in eight combinations of hyperparam-
eters. For the cmc dataset, we find hyperparameters in four combinations (indicated by blue dots in
Figure 3). Although the best validation score may not guarantee the optimal hyperparameters, our
method still gives reasonable hyperparameters. Additional information are reported in Appendix E.

Early stopping. As shown in Table 4, our pseudo-validation method is also useful for relaxing the
overfitting issue. For example, on the pixel dataset, evaluating with the early stop model achieves
4.13% better accuracy than evaluating with the model after 10K training steps. Sometimes it is better
to evaluate the model after a full training step, such as the cmc dataset, but our method still provides
a reasonable early stopping rule when we see that the performance of the early stopped model by the
highest pseudo-validation result only performs about 0.03% lower on the cmc dataset. In addition,
the optimal required training steps are not known and often vary widely across datasets, especially
in the tabular domain. For example, Levin et al. (2022) uses different fine-tuning epochs for different
training setups (e.g., if 4 downstream training samples are available, use 30 fine-tuning epochs, and
if 20 samples are available, use 60 fine-tuning epochs). However, since we use the pseudo-validation
approach for early stopping, all we have to do is train the model for enough training steps (e.g., 10K
training steps in our case) and use the model that achieves the best pseudo-validation score.

5 CONCLUSION

In this paper, we tackle the few-shot tabular learning problem, which is an under-explored but im-
portant research question. To this end, we propose STUNT, a simple yet effective framework that
meta-learns over the self-generated tasks from unlabeled tables. Our key idea is to treat randomly
selected columns as target labels to generate diverse few-shot tasks. The effectiveness of STUNT is
validated by various few-shot classification tasks on different types of tabular datasets, and we also
show that the representations extracted by STUNT apply well in multi-task scenarios. We hope that
our work will guide new interesting directions in tabular learning field in the future.
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ETHICS STATEMENT

Since tabular data sometimes consists of privacy-sensitive features, e.g., social security number,
one should always use the data carefully. However, STUNT is able to be well trained even with
the encrypted data since the key idea is to use the tabular’s unique property that each column has
distinct meanings. Therefore, even though privacy issues may occur for tabular learning, STUNT has
the potential to be generally used along with privacy-preserving techniques, such as homomorphic
encryption (Cheon et al., 2017). Unsupervised meta-learning with STUNT on encrypted features is
an interesting future direction.

REPRODUCIBILITY STATEMENT

We provide code for reproduction in the supplementary material and describe the implementation
details in Appendix B.
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Kyungmin Lee and Jinwoo Shin. Rényicl: Contrastive representation learning with skew rényi di-
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A BASELINE DETAILS

In this section, we provide brief explanations of the considered baselines and the hyperparameter
search space of the baselines. In common, we use Adam optimizer (Kingma & Ba, 2014) with
learning rate 1e − 3, and weight decay 1e − 4. All baselines are trained with batch size 100 for all
experiments.

CatBoost. CatBoost (Prokhorenkova et al., 2018) is one of gradient boosted decision tree algo-
rithms. CatBoost consecutively builds decision trees in a way that reduces loss compared to previous
trees. We search hyperparameters as shown in Table 5.

Table 5: Hyperparameter search space of Catboost (Prokhorenkova et al., 2018).

Hyperparameter Search space

iterations {10, 100, 200, 500, 1000}
max depth {4, 6, 8, 10}
learning rate {0.001, 0.01, 0.1, 0.03}
bagging temperature {0.6, 0.8, 1.0}
l2 leaf reg {1, 3, 5, 7}
leaf estimation iterations {1, 2, 4, 8}

Mean Teacher (MT). MT (Tarvainen & Valpola, 2017) is semi-supervised learning method which
uses the consistency loss between the teacher output and student output. The teacher model
weights are updated as an exponential moving average of the student weights. We use the de-
cay rate as 0.999 for exponential moving average. We search for weight of consistency loss in
{0.1, 1, 10, 20, 50, 100}.
Interpolation Consistency Training (ICT). ICT (Verma et al., 2019) is a semi-supervised learning
method uses MT framework while the student parameters are updated to encourage the consistency
between the output of mixed samples and the mixed output of the samples. We use the decay rate
as 0.999, and search for the weight of consistency loss in {0.1, 1, 10, 20, 50, 100}. We find the β for
Beta distribution in {0.1, 0.2, 0.5, 1}.
Meta Pseudo-Label (MPL). MPL (Pham et al., 2021) is a semi-supervised learning method which
utilizes the performance of the student on the labeled dataset to inform the teacher to generate
better pseudo-labels. In particular, the student model learns from pseudo-labeled data given from
the teacher model. We use the decay rate as 0.999, and search for the weight of the unsupervised
loss in {0.1, 1, 10, 20, 50, 100}.
VIME. VIME (Yoon et al., 2020) is a self-supervised learning method which extracts useful rep-
resentation by corrupting random features and then predicting the corrupted location. For VIME
pre-training, we follow the best hyperparameters suggested from original paper. Using VIME rep-
resentations, we perform k-nearest neighbor classify, logistic regression, and fine-tuning. Early stop
is done for logistic regression and fine-tuning.

SubTab. SubTab (Ucar et al., 2021) is a self-supervised learning method using effective three pretext
task losses (i.e., reconstruction loss, contrastive loss, and distance loss). For SubTab pre-trianing,
we follow the best hyperparameters suggested from original paper. Using SubTab representations,
we perform k-nearest neighbor classify, logistic regression, and fine-tuning. Early stop is done for
logistic regression and fine-tuning.

CACTUs. CACTUs (Hsu et al., 2018) is an unsupervised meta-learning method which runs a clus-
tering algorithm on a representation trained with self-supervised learning in order to self-generate
the tasks. We follow the hyperparameters suggested in the original paper.

For rest of the baselines, i.e., 2-layer multi-layer perceptron, logistic regression, pseudo-label (Lee,
2013), we use labeled validation set (i.e., additional 100 samples for 1-shot, 5-shot learning, and
2-shot samples for 10-shot learning) only for early stopping.

14



Published as a conference paper at ICLR 2023

B EXPERIMENTAL DETAILS

In this section, we provide hyperparameters of STUNT in Table 6 for each dataset found through the
proposed pseudo-validation scheme. Shot indicates the number of sample per pseudo-class in S, and
query indicates the number of sample per pseudo-class inQ. Way indicates the number of centroids
in Eq. (1).

Table 6: Hyperparameters of STUNT

income cmc karhunen optdigit diabetes semeion pixel dna emotions

# shot 1 1 1 1 1 1 1 1 1
# query 15 5 15 15 15 15 15 15 5
# way 10 3 20 20 5 20 10 10 16

Except for shot, query, and way, we use full batch when self-generating STUNT tasks, and then use
meta-training task batch size 4, r1 = 0.2, r2 = 0.5 and Adam optimizer with learning rate 1e− 3.

C DATASET DETAILS

In this section, we provide brief explanations of the considered datasets from the OpenML-CC18
benchmark (Vanschoren et al., 2014; Bischl et al., 2021).

Income. The task of the income (Kohavi et al., 1996; Bischl et al., 2021) dataset is to classify
whether a person makes less than 50K a year or more than 50K a year.

Cmc. Cmc (Asuncion & Newman, 2007; Bischl et al., 2021) is an abbreviation for Contraceptive
Method Choice. Literally, the target task is to predict the contraceptive method choice (i.e., no use,
long-term or short-term).

Mfeat-karhunen (karhunen), mfeat-pixel (pixel). The karhunen and pixel (Asuncion & New-
man, 2007; Bischl et al., 2021) datasets describe features of handwritten numbers. In particular, the
karhunen dataset aims to find the correlation between 64 features obtained through the Karhunen-
Loeve Transform and the 10 handwritten numbers drawn from the Dutch utility maps. On the other
hand, the pixel dataset consists of 240 features by averaging 2×3 windows.

Optdigit. The optdigit (Asuncion & Newman, 2007; Bischl et al., 2021) is the dataset that describes
the optical recognition of handwritten digits.

Diabetes. Literally, the diabetes (Asuncion & Newman, 2007; Bischl et al., 2021) dataset aims to
predict whether the patient is tested positive for diabetes or not. In particular, the dataset features are
composed of 8 numerical features, including diastolic blood pressure and body mass index.

Semeion. Semeion (Asuncion & Newman, 2007; Bischl et al., 2021) dataset is drawn by scanning
and documenting handwritten digits from around 80 people.

Dna. The task of the dna (Bischl et al., 2021) dataset is to classify the boundaries between exons
and introns with 180 indicator binary variables.
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D ALGORITHM

Algorithm 1 STUNT: Self-generated Tasks from UNlabeled Tables

Require: Unlabeled dataset Du = {xu,i}Nu
i=1, Labeled dataset Dl = {xl,i,yl,i}Nl

i=1,
task batch size Mt, learning rate β, mask ratio hyperparameters r1, r2.

1: Initialize θ using the standard initialization scheme.
2: // Step 1: Unsupervised meta-learning with STUNT
3: while not done do
4: for j = 1 to Mt do
5: Sample mask ratio p ∼ U(r1, r2).
6: m = [m1, . . . ,md]

⊤ ∈ {0, 1}d s.t.
∑

i mi = ⌊dp⌋.
7: Run a k-means clustering: Eq. (1) with xu ∈ Du and m to generate the task label ỹu.
8: TSTUNT,j = {x̃u,i, ỹu,i}Nu

i=1 where x̃u,i := m⊙ x̂u,i + (1−m)⊙ xu,i.
9: Sample two disjoint sets Sj and Qj from a given task TSTUNT,j .

10: Lmeta(θ,Qj) =
∑

(x̃u,ỹu)∈Qj
LCE

(
fθ(x̃u;Sj), ỹu

)
.

11: end for
12: θ ← θ − β

Mt
· ∇θ

∑Mt

j=1 Lmeta(θ,Qj).
13: end while
14: // Step 2: Adapt classifier with the labeled dataset
15: Conduct a ProtoNet classifier fθ(·;Dl) using Dl.

E HYPERPARAMETER DETAILS OF ABLATION STUDY

As shown in Table 3, this section provides the search space of hyperparameters of ablation study
in Section 4.3. Shot indicates the number of sample per pseudo-class in S, and query indicates the
number of sample per pseudo-class in Q. Way indicates the number of centroids in Eq. (1).

Table 7: Hyperparameter search space of datasets used in Section 4.3

Dataset Hyperparameter Search space

income (shot, query) {(1, 5), (1, 15), (5, 10), (5, 20)}
way {5, 10}

cmc (shot, query) {(1, 5), (1, 15), (5, 10), (5, 20)}
way {3}

semeion (shot, query) {(1, 5), (1, 15), (5, 10), (5, 20)}
way {10, 20}

pixel (shot, query) {(1, 5), (1, 15), (5, 10), (5, 20)}
way {10, 20}
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F FEW-SHOT TABULAR REGRESSION RESULTS

Table 8: Few-shot regression tasks on 5 datasets from the OpenML (Vanschoren et al., 2014). We
report the mean squared error over 100 different seeds for each dataset. The bold indicates the lowest
mean error.

Input news abalone cholesterol sarcos boston

# shot = 5

Raw 2.74E-04 1.75E-02 1.37E-02 1.05E-02 3.65E-02
VIME 2.69E-04 1.70E-02 1.37E-02 1.06E-02 3.53E-02
CACTUs 2.75E-04 1.72E-02 1.46E-02 1.06E-02 3.76E-02

STUNT (Ours) 2.68E-04 1.66E-02 1.35E-02 1.06E-02 3.70E-02

# shot = 10

Raw 2.53E-04 1.49E-02 1.13E-02 9.21E-03 2.88E-02
VIME 2.53E-04 1.49E-02 1.13E-02 9.24E-03 2.78E-02
CACTUs 2.54E-04 1.51E-02 1.21E-02 9.16E-03 2.94E-02

STUNT (Ours) 2.53E-04 1.46E-02 1.12E-02 9.16E-03 2.90E-02

We evaluate the capability of STUNT in few-shot regression tasks by replacing the ProtoNet clas-
sifier with a kNN regressor at the adaptation stage (i.e., after unsupervised meta-learning with
STUNT).

We consider 5 tabular regression datasets in OpenML (Vanschoren et al., 2014), where we preprocess
the input and target features with min-max scaling. For comparison, we evaluate the performance
of the kNN regressor on VIME (Yoon et al., 2020) and CACTUs (Hsu et al., 2018) representations.
Also, we report the performance of naive kNN regressor on the raw input. We use k = 5 and k = 10
for 5-shot and 10-shot experiments, respectively, where k is the number of nearest neighbors.

In the Table 8, we report the average of mean-squared-errors (MSEs) over 100 different seeds of
each method and dataset. The results indicate that STUNT is a competitive approach in a few-shot
tabular regression task. However, the performance gap is often vacuous or marginal compared to
the few-shot classification tasks. We believe that this is because STUNT meta-train networks with
classification tasks, thus, can be more easily adapted to classification test-tasks. Therefore, extending
STUNT by self-generating target-regression tasks with distinct column features could be effective
in few-shot regression tasks, which we leave for future works.

G DATASET DESCRIPTION

Table 9: Dataset description. We select 8 tabular datasets from the OpenML-CC18 benchmark (Bis-
chl et al., 2021) for extensive evaluation. The selected dataset consists of (i) both numerical and
categorical features, (ii) only numerical features, and (iii) only categorical features.

Property \ Dataset income cmc karhunen optdigits diabetes semeion pixel dna

# Columns 14 9 64 64 8 256 240 180
# Numerical 6 2 64 64 8 256 240 0
# Categorical 8 7 0 0 0 0 0 180
# Classes 2 3 10 10 2 10 10 3
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H EFFECTIVENESS OF THE MARGINAL DISTRIBUTION MASKING

Table 10: Few-shot test accuracy (%) on 4 datasets from the OpenML-CC18 benchmark (Bischl
et al., 2021) according to the masking type. We report the mean test accuracy over 100 different
seeds. The bold denotes the highest mean score.

Masking type income cmc semeion pixel Avg.

# shot = 1

No-masking 59.18 36.23 54.04 75.99 56.36
Zero-masking 61.88 35.47 54.44 77.49 57.32
Gaussian noise 60.34 36.49 55.45 78.39 57.67

Marginal distribution 63.52 37.10 55.91 79.05 58.90

# shot = 5

No-masking 70.94 38.76 72.12 86.38 67.05
Zero-masking 71.25 40.36 71.46 87.62 67.67
Gaussian noise 69.91 40.04 73.64 87.93 67.88

Marginal distribution 72.69 40.40 73.02 89.08 68.80

We compare marginal distribution masking with widely used masking strategies in the tabular do-
main; the zero-masking (i.e., replace the masked column feature with a zero value) and Gaussian
noise (i.e., add gaussian noise to the masked column feature used in SubTab (Ucar et al., 2021)).
For comparisons, we also use 4 datasets from the OpenML-CC18 benchmark (Bischl et al., 2021)
that are used for experiments in Section 4.3. As shown in the Table 10, all masking strategies show
meaningful improvement over the no-masking case, where our marginal distribution masking shows
the best result.

Note that marginal distribution masking is a popular masking (and augmentation) scheme in many
tabular models, such as SubTab (Ucar et al., 2021), VIME (Yoon et al., 2020), and SCARF (Bahri
et al., 2022). On the other hand, zero-masking and Gaussian noise may have higher chances of
generating unrealistic data points. For example, zero-masking makes the data too sparse, and adding
Gaussian noise to one-hot encoded categorical features is unrealistic.
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I COMPARISON WITH AUGMENTATION-BASED UNSUPERVISED
META-LEARNING SCHEMES

Table 11: Few-shot test accuracy (%) on 8 datasets from the OpenML-CC18 benchmark (Bischl
et al., 2021). We report the mean test accuracy over 100 different seeds. The bold denotes the highest
mean score.

Method income cmc karhunen optdigit diabetes semeion pixel dna Avg.

# shot = 1

UMTRA + Gaussian noise 60.15 34.37 47.80 38.85 58.38 25.00 32.77 23.25 40.07
UMTRA + Marginal distribution masking 57.23 35.46 49.05 49.87 57.64 26.33 34.26 25.13 41.87
SES + Gaussian noise 58.85 34.98 38.95 57.63 59.45 36.38 40.99 35.80 45.38
SES + Marginal distribution masking 56.39 34.59 49.19 56.30 59.97 33.73 49.19 39.56 47.37
CACTUs 64.02 36.10 65.59 71.98 58.92 48.96 67.61 65.93 59.89

STUNT (Ours) 63.52 37.10 71.20 76.94 61.08 55.91 79.05 66.20 63.88
# shot = 5

UMTRA + Gaussian noise 64.90 36.59 68.06 58.91 64.27 32.48 50.14 23.20 49.82
UMTRA + Marginal distribution masking 65.78 38.05 67.28 73.29 64.41 35.90 51.32 25.08 52.64
SES + Gaussian noise 64.28 38.70 60.50 77.55 67.32 56.70 57.96 40.39 57.93
SES + Marginal distribution masking 68.27 39.04 74.80 78.46 66.61 52.74 74.80 52.25 63.37
CACTUs 72.03 38.81 82.20 85.92 66.79 65.00 85.25 81.52 72.19

STUNT (Ours) 72.69 40.40 85.45 88.42 69.88 73.02 89.08 79.18 74.77

We evaluate UMTRA (Khodadadeh et al., 2019) and SES (Ye et al., 2022) (also utilizing SNS pro-
posed by Ye et al. (2022)) on few-shot tabular learning tasks, where we use augmentation strategies
used in SubTab (Ucar et al., 2021) (i.e., Gaussian noise and marginal distribution masking). Here,
we tried our best to improve the performance of SES and UMTRA (e.g., tune variance of Gaus-
sian noise). However, unlike the image domain, they performed worse than CACTUs (Hsu et al.,
2018), as shown in Table 11. We believe that the failures of SES and UMTRA are mainly due to
the absence of effective augmentation strategies for tabular data, and developing them will be an
interesting future direction.
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