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Improving View Independent Rendering:
Towards Robust, Practical Multiview Effects

This paper describes improvements to view independent rendering (VIR)
designed to make its immediate application to soft shadows more practical,
and its future application to other multiview effects such as reflections
and depth of field more promising. Realtime rasterizers typically realize
multiview effects by rendering a scene from multiple viewpoints, requiring
multiple passes over scene geometry. VIR avoids this necessity by crafting
a watertight point cloud and rendering it from multiple viewpoints in a
single pass. We make VIR immediately more practical with an unbuffered
implementation that avoids possible overflows, and improve its potential
with more efficient sampling achieved with orthographic projection and
stochastic culling. With these improvements, VIR continues to generate
higher quality real time soft shadows than percentage-closer soft shadows
(PCSS), in comparable time.

ACM Reference Format:
. 2020. Improving View Independent Rendering: Towards Robust, Practical
Multiview Effects. 1, 1 (April 2020), 5 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
As computer graphics hardware has improved, so has its interactive
imagery, moving from line drawings to filled polygons, to textured
surfaces with specular reflections. However, further improvements
in visual realism — effects such as soft shadows, depth of field, and
object reflections — have been hindered by current hardware, which
requires multiple model traversals to render the many views needed
to sample area lights, different focal depths, and reflections.
View-independent rasterization (VIR) avoids the complexity of

multiple rendering passes [9] by using points as a display primitive.
For every frame, it carefully transforms input triangles into a point
cloud specialized to the current set of views. VIR then renders these
views in parallel using the point cloud, with an order of magnitude
fewer passes over the geometry.
This short paper presents our contributions to VIR, designed to

increase its immediate practicality and future potential:
• Practicality: We improve VIR to eliminate the use of a point
buffer, freeing developers from the necessity of buffer man-
agement to avoid overflow.

• Potential: We improve VIR’s orthogonal projection, making
samplingmore parsimonious and “watertight” (without holes).
We also introduce stochastic culling of sub-pixel triangles to
reduce sampling rates further.
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We verify that our improvements do not affect quality and perfor-
mance by using them to render soft shadows. When rendering shad-
ows comparable to those produced with a traditional, high-quality
multipass technique, VIR continues to produce them in nearly an
order of magnitude less time. When making shadows at practical
few-millisecond speeds, VIR shadows are still of higher quality than
percentage-closer soft shadows (PCSS) [2]. While our improvements
in sampling do not realize performance improvements for soft shad-
ows, we anticipate that they will for other multiview effects with
heavier shader loads.

2 RELATED WORK
Rendering realistic imagery requires accurate simulation of light
flow. However, accurate sampling of the light flow integral [4] can
be difficult, particularly for effects such as soft shadows, depth
of field (defocus blur), motion blur, and indirect reflections [5]).
With rasterization hardware, often the fastest way to produce such
samples is multiview rendering: storing many off-screen views in
buffers, and combining them to produce a final view. However, the
high cost of multiview rendering often requires sparse sampling
and filtering to reduce resulting noise [11].

To sidestep rasterization’s limitations for multiview rendering, we
rely on points [6]. In today’s applications, triangles often outnumber
pixels, leading many to argue that points are a better rendering
primitive [3]. Yet points are not widely used since their discontinuity
can create “holes” when views change. Existing point renderers,
therefore, use dense point clouds that render slowly; or sparse clouds
with complex reconstruction that again render slowly, or produce
low-quality imagery.
To improve point rendering and support multiview rendering,

VIR [9] exploits rasterization hardware, which efficiently transforms
triangles into points. For each frame, VIR generates a cloud of points
customized to the current set of views in real time. It then renders
the cloud in parallel into multiple views, reducing the number of
geometry passes by a factor of ten. To accomplish this, for any
triangle visible in at least one view, the geometry shader computes
specialized viewing and projection matrices that center the triangle,
orient it parallel to the view plane, and achieve awatertight sampling
rate. It then applies the matrices to the triangle and rasterizes it to
generate points. Next, the fragment shader writes each point to a
buffer. When all points have been generated, the compute shader
passes over this buffer, transforming and projecting each point into
multiple views.

3 IMPROVING VIEW INDEPENDENT RASTERIZATION
We improve on Marrs et al.’s VIR implementation [9] in three ways
to increase its practicality and potential. First, our implementation is
bufferless, ending the possibility of overflow and simplifying VIR’s
use in practice. Second, we improve Marrs et al.’s orthogonal projec-
tion matrix, reducing the size of the resulting point cloud. Finally,
we stochastically cull sub-pixel triangles, shrinking the point cloud
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further to improve speed. The resulting improved algorithm is al-
ready practical, with better soft shadows than PCSS at comparable
speeds. Improved VIR also has the potential to bring both this practi-
cality and a significant performance improvement to more complex
multiview effects.

3.1 Bufferless VIR
Marrs et al.’s VIR implementation stored points in a buffer, which
the compute shader then rendered to multiple views. The buffer
size must be set before run time, making overflows possible. Instead,
we use a bufferless, entirely in-pipeline scheme that eliminates the
possibility of run time buffer overflows. Rather than sending each
point to a buffer, the fragment shader writes the point to multiple
off-screen buffers for deferred shading. While we did not directly
compare the speed of our unbuffered implementation to Marrs et
al.’s buffered implementation, we expect the performance to be
similar, as described in a related comparison by Marrs et al. [8].

3.2 Watertight and Efficient Orthographic VIR
Marrs et al.’s computation of the watertight multiview sampling
rate 𝑠𝑚𝑣 assumed that the fields of view for the point generation,
offscreen and eye views were identical. But this cannot be true when
the point generation view uses orthogonal projection, and other
views do not. Unfortunately, point generation in perspective leads
to sampling inefficiencies, with points spread unevenly across each
triangle due to perspective distortion.

Fig. 1. Improved Orthogonal Sampling Rate.

Algorithm 1 shows the VIR algorithm, improved to use orthogo-
nal projection. For each polygon, we find 𝜌𝑚𝑣 , the maximum point
density on the projected polygon’s surface, across all views as illus-
trated in the figure 1. For each polygon 𝑝 , we first find the closest
point on the polygon from a given view 𝑣 [1]. This point has the
highest sample density on the polygon for that view. We compute
the area of a reverse-projected pixel centered on that point 𝑎𝑟𝑒𝑎𝑃,𝑣,𝑝
by reverse-projecting its corners onto the polygon in model space.
Across all views, the maximum sampling density 𝜌𝑚𝑣 is given by
the equation (1), and the orthogonal scaling factor 𝑠𝑚𝑣 is given by
(2)

𝜌𝑚𝑣 = ∀𝑣∈𝑉 𝑚𝑎𝑥 (𝜌𝑚𝑣,
𝑎𝑟𝑒𝑎𝑝

𝑎𝑟𝑒𝑎𝑃,𝑣,𝑝
) (1)

𝑠𝑚𝑣 =𝑚𝑎𝑥 (𝑠𝑚𝑣,𝑤 ×
√
𝜌𝑜𝑟𝑡ℎ𝑜

𝜌𝑚𝑣
) (2)

Algorithm 1 View Independent Rasterization
In Geometry Shader Stage:

1: for each polygon (P) do
2: for each viewpoint (v) do
3: 𝑐𝑝 = Closest point on the polygon from the viewpoint
4: 𝑎𝑟𝑒𝑎𝑝 = Area of pixel
5: 𝑎𝑟𝑒𝑎𝑃,𝑣,𝑝 = Area of reverse-projected pixel centered at 𝑐𝑝
6: 𝜌𝑚𝑣 =𝑚𝑎𝑥 (𝜌𝑚𝑣,

𝑎𝑟𝑒𝑎𝑝
𝑎𝑟𝑒𝑎𝑃,𝑣,𝑝

)
7: end for

Compute orthogonal scaling factor
8: 𝑠𝑚𝑣 =𝑚𝑎𝑥 (𝑠𝑚𝑣,𝑤 ×

√
𝜌𝑜𝑟𝑡ℎ𝑜
𝜌𝑚𝑣

)
9: Apply VIR matrix (𝑇𝑉 𝐼𝑅 ) and projection matrix (𝑇𝑜𝑟𝑡ℎ𝑜 ) to

the polygon (P)
𝑃 ′ = 𝑇𝑜𝑟𝑡ℎ𝑜 ×𝑇𝑉 𝐼𝑅 × 𝑃

10: Send the transformed polygon (P’) to the rasterizer
11: end for

In Fragment Shader Stage:
1: for each viewpoint (v) do
2: Write the generated point into the corresponding buffer using

atomic write operations.
3: end for

where 𝑉 is the set of all view centers of destination views,𝑤 is the
perspective distortion, 𝑎𝑟𝑒𝑎𝑝 is the area of the polygon in model
space, and 𝜌𝑜𝑟𝑡ℎ𝑜 is the sampling density for VIR’s orthographic
projection, which depends on the chosen viewing volume.

The orthographic projection matrix is given in the equation (3).

𝑇𝑜𝑟𝑡ℎ𝑜 =


𝑠𝑚𝑣 0 0 0
0 𝑠𝑚𝑣 0 0
0 0 2

𝑧𝑛𝑒𝑎𝑟−𝑧𝑓 𝑎𝑟
𝑧𝑓 𝑎𝑟−𝑧𝑛𝑒𝑎𝑟
𝑧𝑛𝑒𝑎𝑟+𝑧𝑓 𝑎𝑟

0 0 0 1

 (3)

Our new orthogonal projection technique had minimal impact on
VIR’s performance and image quality, with orthogonal and perspec-
tive projection (as described by Marrs et al. in [9]) producing nearly
identical soft shadows at similar speed. While orthogonal projection
generated fewer points than Marrs et al.’s perspective projection, it
required more time to do so, particularly in models with more trian-
gles. For example, when generating 128 views for a model with 2
million triangles, orthogonal point generation rendered 122𝐾 points
in 18.74ms, whereas perspective sampling generated 238𝐾 points
in 17.55 ms. However, we expect that for most other multiview ef-
fects (e.g. environment mapping), increased shading loads will make
orthogonal point generation’s smaller point clouds advantageous.

3.3 VIR with Stochastic Culling
To improve speed further, we stochastically cull (and avoid gener-
ating points for) triangles that span less than 1/8𝑡ℎ of a pixel in
VIR’s point generation view. The smaller the proportion of the pixel
covered by the triangle 𝑇𝑝𝑝 , the more likely 𝑇𝑝𝑝 will be culled, with
probability 1 - (8 × 𝑇𝑝𝑝 ). Stochastic culling breaks our watertight
guarantee, but we have not yet observed any holes in soft shadows
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generated with models ranging from 30𝐾 to 2𝑀 triangles. For ex-
ample, Figure 5 shows a perceptual comparison of improved VIR
with and without culling using HDR-VDP2 [7]; cool heatmap colors
indicate little or no difference. Across this same range of models,
we found that stochastic culling is most beneficial when subpixel
triangles are common. This replicates Marrs et al’s [9] finding that
for large triangles (spanning dozens of pixels or more), VIR is less
efficient than standard rasterization.

4 RESULTS
We demonstrate the practicality and potential of improved VIR with
soft shadows. Below, we offer comparisons to both high quality and
high-speed shadow algorithms, as well as a brief comparison to
Marr’s et al.’s implementation [9].

4.1 HighQuality Comparision
As an evaluation platform, we used OpenGL 4.5 on a PC with an In-
tel i7-8700K @ 3.70 GHz CPU and an NVIDIA 1080Ti GPU, running
Windows 10 OS. We rendered several scenes, with detail concen-
trated in the central 30% of the field of view. All scenes were dynamic,
rotating around themselves twice (720 degs), while lights remained
stationary, casting moving shadows. We used 32-bit unsigned depth
buffers, with a resolution of 10242. For each light source sample, we
set field of view to 45𝑜 .
For VIR, we used all three of our improvements: a bufferless im-

plementation, orthographic point generation, and stochastic culling.
Like Marrs et al., we produced 128 views in four passes (32 per pass,
the warp size of our GPU). As a high quality comparison, we used
multiview rendering (MVR), which used 128 passes to create 128
standard shadow maps [12]. To compare the performance of these
methods, we averaged GPU run-time and the number of points
generated over 1256 frames of execution.

Table 1 shows results for several models [10]. The leftmost column
shows the number of triangles per model. The adjacent three show
improved VIR’s point cloud size, the time required to generate that
point cloud, and the total time to generate VIR’s point cloud and
construct depth maps (with results including stochastic culling in
brackets). For comparison, the next column reports the total time
taken by MVR to make depth maps, and the rightmost column
reports performance improvement as the ratio of MVR time over
VIR time, highlighted in blue. The illumination technique is the
same for VIR and MVR, we do not include it. VIR renders these
dynamic, complex soft shadows up to 3.4 times faster than MVR
without stochastic culling, and up to 7 times faster with it.

Figure 2 shows soft shadows generated by VIR and MVR. Though
VIR is faster than MVR, its visual quality is quite similar to high
quality MVR and stable under animation. VIR includes the hallmarks
of high quality shadows, such as soft penumbras and contact hard-
ening (sharper shadows closer to the light). Because VIR and MVR
both use shadow mapping and differ only in how they generate
depth buffers, both suffer the same artifacts (e.g. “peter panning”
and acne). Note that the breaks in the dragon’s shadow with VIR are
smaller than in MVR; VIR’s view independent samples silhouettes
more densely than view dependent MVR.

GPU Performance of VIR [with stochastic culling]

Soft Shadows for 128 Views

Models

(# tris)

VIR

# points

VIR

pt gen

(ms)

pt gen

+ depth

(ms)

MVR

(ms)

×

Faster

Tree

(151.7𝐾)

275.0𝐾

[228.9𝐾]
0.82

3.80

[2.54]
7.33

1.92

[2.88]

Dragon

(883.3𝐾)

684.6𝐾

[489.6𝐾]
12.91

16.58

[13.78]
57.01

3.44

[4.13]

Buddha

(1.1𝑀)

586.1𝐾

[225.6𝐾]
8.49

21.52

[12.22]
69.33

3.22

[5.67]

Lucy

(2.0𝑀)

1.1𝑀

[250.8𝐾]
12.91

38.00

[17.18]
122.31

3.22

[7.12]
Table 1. Speed comparisons of View Independent Rendering (VIR) and
Multiview Rasterization (MVR), with Models in the left column, VIR in
the middle three, and MVR to the right. We highlight VIR’s performance
improvements in blue. Results using stochastic culling in are in brackets
([]).

4.2 High Speed Comparison
To evaluate the use of improved VIR in a more practical, real time
setting, we compare improvedVIR to percentage-closer soft shadows
(PCSS) [2]. We generated soft shadows using 16 views in 2.6 ms and
compared it to an image generated by PCSSwith 96 samples per pixel
(32 blockers and 64 filter samples), in 2.5 msec. The resulting images
are shown in Figure 3. Figure 4 shows the perceptual comparison
of these images against a reference 128-view MVR solution using
HDR-VDP2 [7]. The image generated by VIR has less error than
PCSS, especially at the region where the rods cast shadows on the
dragon.
To further gauge the effect of the size of the triangles on our

improved VIR technique, we sorted triangles into three classes:
subpixel triangles, with the length of the longest side less than a
pixel; supra-pixel 1 triangles, with the longest side length greater
than a pixel and less than 10 pixels; and supra-pixel 2 triangles, with
longest side of the triangle is greater than 10 pixels. We then studied
our technique on the scene which had mostly subpixel triangles,
mostly supra-pixel 1 triangle and mostly supra-pixel 2 triangles.
We observed that with the majority of triangles being sub-pixel,
we were able to achieve a huge speedup. With a large number of
supra-pixel 1 polygons, VIR was still faster than MVR. But with
supra-pixel 2 polygons, VIR didn’t do well and MVR proved to be a
better candidate. One way to handle a scene with a mix of all sizes of
polygons is to have a hybrid of VIR and MVR method. By rendering
small polygons with VIR pass and the large polygons with MVR
pass.
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Fig. 2. Soft shadows generated using MVR (left) and using our VIR implementation (right). Both generate 128 depth maps. MVR takes 57 ms to generate them,
whereas our implementation generates points and depth maps in 16.6𝑚𝑠 .

Fig. 3. (Left) Shadow rendered using PCSS (32 blocker and 64 PCF samples). Shadow artifacts can be seen on the dragon, where 2 rods cast shadows on it.
(Right) Soft shadows rendered with our VIR implementation using 16 views and all improvements. PCSS takes 2.5 ms, whereas our implementation 2.6 ms.
delivering better quality.

Fig. 4. A perceptual comparison of Figure 3’s images. HDR-VDP2 compares
each to a 128-view MVR render of the same scene. Red indicates a more
perceivable difference.

4.3 Improvements Comparison
Our VIR improvements did not improve soft shadow quality or speed
over Marrs et al.’s implementation. We expect our improvements to
show their merit for other, more demanding multiview effects, such
as environment mapping and defocus blur.

We did not directly compare improved VIR to the original on the
same hardware, but Marrs et al.’s results are similar to our own,
on comparable hardware. Although improved VIR did generate
sparser — but still watertight — point clouds, the effort required to
do so canceled out performance gains for soft shadowing. However,
soft shadowing shader loads are minimal: only a depth comparison
is required. Other multiview effects require much more complex

Fig. 5. A perceptual comparison of improved VIR with and without stochas-
tic culling. HDR-VDP2 shows little or no difference.

shaders and should realize the performance benefits of our VIR
improvements, making those effects practical as well.

5 LIMITATIONS, CONCLUSIONS AND FUTURE WORK
Marrs et al.’s original VIR implementation was able to cull points
in the compute shader by comparing several local points and ren-
dering only the closest (unoccluded) sample for each view pixel.
Our bufferless implementation does not use compute shaders, and
cannot perform this local point culling. More significantly, our sto-
chastic triangle culling breaks the guarantee of watertight sampling,
though it has not created holes in our testing.
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Despite these limitations, the VIR improvements we describe here
make VIR immediately more practical and promise wider utility in
the future. With a bufferless implementation, developers need no
longer risk runtime overflows. We also show results demonstrating
higher quality soft shadows than PCSS at practical rendering speeds.
In the future, we plan to explore the potential of improved VIR
with multiview effects having more demanding shading loads, such
as environment mapping, diffuse global illumination and defocus
or motion blur. We will also study global probabilistic limits for
holes resulting from stochastic triangle culling. Finally, we plan to
examine applications of improved VIR to light field displays, which
demand tens or hundreds of views in every frame.
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