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ABSTRACT

Including covariant information, such as position, force, velocity or spin is impor-
tant in many tasks in computational physics and chemistry. We introduce Steerable
E(3) Equivariant Graph Neural Networks (SEGNNs) that generalise equivariant
graph networks, such that node and edge attributes are not restricted to invariant
scalars, but can contain covariant information, such as vectors or tensors. This
model, composed of steerable MLPs, is able to incorporate geometric and physical
information in both the message and update functions. Through the definition of
steerable node attributes, the MLPs provide a new class of activation functions
for general use with steerable feature fields. We discuss ours and related work
through the lens of equivariant non-linear convolutions, which further allows us to
pin-point the successful components of SEGNNs: non-linear message aggregation
improves upon classic linear (steerable) point convolutions; steerable messages
improve upon recent equivariant graph networks that send invariant messages. We
demonstrate the effectiveness of our method on several tasks in computational
physics and chemistry and provide extensive ablation studies.

1 INTRODUCTION

The success of Convolutional Neural Networks (CNNs) (LeCun et al., [1998; 2015}, |Schmidhuber,
2015; |[Krizhevsky et al.l 2012)) is a key factor for the rise of deep learning, attributed to their capability
of exploiting translation symmetries, hereby introducing a strong inductive bias. Recent work has
shown that designing CNNss to exploit additional symmetries via group convolutions has even further
increased their performance (Cohen & Welling, 2016} [2017; Worrall et al., |2017; |Cohen et al.,
2018; | Kondor & Trivedi, 2018 |Weiler et al., [2018; [Bekkers et al., 2018} Bekkers), [2019; Weiler &
Cesa, 2019). Graph neural networks (GNNs) and CNNs are closely related to each other via their
aggregation of local information. More precisely, CNNs can be formulated as message passing
layers (Gilmer et al.l 2017) based on a sum aggregation of messages that are obtained by relative
position-dependent linear transformations of neighbouring node features. The power of message
passing layers is, however, that node features are transformed and propagated in a highly non-linear
manner. Equivariant GNNs have been proposed before as either PointConv-type (Wu et al.| 2019
Kristof et al.l 2017) implementations of steerable (Thomas et al., 2018}, |Anderson et al.,[2019; Fuchs
et al.,[2020) or regular group convolutions (Finzi et al., 2020). The most important component in
these methods are the convolution layers. Although powerful, such layers only (pseudd') linearly
transform the graphs and non-linearity is only obtained via point-wise activations.

"Methods such as SE(3)-transformers (Fuchs et al.| 2020) and Cormorant (Anderson et al., 2019) include an
input-dependent attention component that augments the convolutions.
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In this paper, we propose non-linear E€Bjuivariant message passitayers using the same principles

that underlie steerable group convolutions, and view thenoadinear group convolutiongentral

to our method is the use of steerable vectors and their equivariant transformations to represent and
process node features; we present the underlying mathematics of both in Sec. 2 and illustrate it
in Fig. 1 on a molecular graph. As a consequence, information at nodes and edges can now be
rotationally invariant (scalar) or covariant (vector, tensor). In steerable message passing frameworks,
the Clebsch-Gordan (CG) tensor product is used to steer the update and message functions by
geometric information such as relative orientation (pose). Through a notion of steerable node
attributes we provide a new class of equivariant activation functions for general use with steerable
feature elds (Weiler et al., 2018; Thomas et al., 2018). Node attributes can include information such
as node velocity, force, or atomic spin. Currently, especially in molecular modelling, most datasets
are build up merely of atomic number and position information. In this paper, we demonstrate the
potential of enriching node attributes with more geometric and physical quantities. We demonstrate
the effectiveness of SEGNNSs by setting a new state of the art on n-body toy datasets, in which our
method leverages the abundance of geometric and physical quantities available. We further test our
model on the molecular datasets QM9 and OC20. Although here only (relative) positional information
is available as geometric quantity, SEGNNs achieve state of the art on the IS2RE dataset of OC20,
and competitive performance on QM9. For all experiments we provide extensive ablation studies.

The main contributions of this paper are: (i) A generalisation of equivariant GNNs such that node and
edge attributes are not restricted to scalars. (ii) A new class of equivariant activation functions for
steerable vector elds, based on the introduction of steerable node attributes and steerable multi-layer
perceptrons, which permit the injection of geometric and physical quantities into node updates. (iii)
A unifying view on various equivariant GNNs through the de nition of non-linear convolutions.
(iv) Extensive experimental ablation studies that shows the bene t of steerable over non-steerable
(invariant) message passing, and the bene t of non-linear over linear convolutions.

Figure 1: Commutation diagram for an equivariant operatapplied to a 3D molecular graph with
steerable node features (visualised as spherical functions); As the molecule rotates, so do the node
features. The use of steerable vectors allows neural networks to exploit, embed, or learn geometric
cues such as force and velocity vectors.

2 GENERALISED E(3) EQUIVARIANT STEERABLE MESSAGE PASSING

Message passing networks. Consider a grapts = ( V; E), with nodesy; 2 V and edgesg; 2 E,

with feature vector§ 2 R® attached to each node, and edge attribaje® R° attached to each

edge. Graph neural networks (GNNs) (Scarselli et al., 2009; Kipf & Welling, 2017; Defferrard et al.,
2016; Battaglia et al., 2018) are designed to learn from graph-structured data and are by construction
permutation equivariant with respect to the input. A speci c type of GNNs are message passing
networks (Gilmer et al., 2017), where a layer updates node features via the following steps:

compute message;; from nodev; tov;: mi = g (fi;fj @) ;l Q)
X
aggregate messages and update node features in: ¢ @ mij A 2)
i2N (i)

whereN (i) represents the set of neighbours of nedeand , and  are commonly parameterised
by multilayer perceptrons (MLPS).
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Equivariant message passing networks Our objective is to build graph neural networks that are
robust to rotations, re ections, translations and permutations. This is a desirable property since some
prediction tasks, such as molecular energy prediction, require E(3) invariance, whereas others, like
force prediction, require equivariance. From a technical point of view, equivariance of a function
to certain transformations means that for any transformation parametet all inputsx we have
Tg[ (xX)= (TyIx] ; whereTg andTg denote transformations on the input and output domain of

, respectively. Equivariant operators applied to atomic graphs allow us to preserve the geometric
structure of the system as well as enriching it with increasingly abstract directional information. We
build E(3) equivariant GNNs by constraining the functions and ; of Egs. (1-2) to be equivariant,
which in return guarantees equivariance of the entire network. In the following, we introduce the core
components behind our method; full mathematical details and background can be found in App. A.

Steerable features. In this work, we achieve equivariant graph neural networks by working with
steerable feature vectgrahich we denote with a tilde, e.g. a vectoiis steerable. Steerability

of a vector means that for a certain transformation group with transformation parametiees
vector transforms via matrix-vector multiplicati@(g)h. For example, a Euclidean vectorR{

is steerable for rotationg = R 2 SQ(3) by multiplying the vector with a rotation matrix, thus
D(g) = R. We are however not restricted to only work with 3D vectors; via the construction of
steerable vector spaces, we can generalise the notion of 3D rotations to arbitrarily large vectors.
Central to our approach is the useWfgner-D matricedD () (g) 2. These arg2l +1 2| + 1) -
dimensional matrix representations that ac{2i+1) -dimensional vector spaces. These vector spaces
that are transformed Hyth degree Wigner-D matrices will be referred totgse! steerable vector
spacesand denoted witlv,. We note that we can combine two independent steerable vector spaces
Vi, andV,, of typel; andl, by the direct sum, denoted by = V|, V,. Such a combined vector
space then transforms by the direct sum of Wigner D-matrices, i.eD (ga= D) (g) DU2)(g),

which is a block-diagonal matrix with the Wigner-D matrices along the diagonal. We denote the direct
sum of typel vector spaces uptodegree L byV, = Vo, Vi V_, andn copies of the

the same vector space witlv := |\/ \% {z: i \ﬁ Regular MLPs are based on transformations

n times
betweerd-dimensional type-0 vector spaces iR?,= dVy, and are a special case of our steerable
MLPs that act on steerable vector spaces of arbitrary type.

Steerable MLPs. Like regular MLPs, steerable MLPs are constructed by interleaving linear map-
pings (matrix-vector multiplications) with non-linearities. Now however, the linear maps transform
between steerable vector spaces at laye to layeri viah' = WA 1 : Steerable MLPs thus

have the same functional form as regular MLPs, although, in our case, the linear transformation
matricesW },, de ned below, are conditioned on geometric information (e.g. relative atom positions)
which is encoded in the steerable veaoBoth vectors andh are steerable vectors. In this work

we will however use the vectarto have geometric and structural information encoded and the steer
the information ow of i through the network. In order to guarantee Ma} maps between steerable
vector spaces, the matrices are de ned via the Clebsch-Gordan tensor product. By construction the
resultant MLPs are equivariant for every transformation parangetisx

MLP(D (9)fo) = DYGMLP(Ho) ; (3)
provided that the steerable vectarthat condition the MLPs are also obtained equivariantly.

Spherical harmonic embedding of vectors.We can convert any vectar 2 R? into a typel vector

through the evaluation afpherical harmonic¥y’ : S21 R at Z¢. Foranyx 2 R®

T
) = n  x
all= vy 4
m kxk m= I, I+1;:5l ( )
is a typet steerable vector. The spherical harmonic functigd$ are functions on the sphe&
and we visualise them as such in Figure 2. We will use spherical harmonic embeddings to include
geometric and physical information into steerable MLPs.

Mapping between steerable vector spaces. The Clebsch-Gordan (CG) tensor producy :
Vi, WV, ! Visabilinear operator that combines two3pgteerable input vectors of typksand

2In order to be O(3)—not just SO(3)—equivariant, we include re ections. See App. A for more detail.
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Figure 2: Left: representation of an &(steerable vectdi 2 V| = V, Vi V,, a spherical
harmonic embedding of vectar, e.g. relative orientation, velocity or force. Right: for each subspace

the embedding with the basis functiov§’ is shown (a). The transformation bfvia D () (g) acts
on each subspace Wf separately (b).

I, and returns another steerable vector of typeet (") 2 V, = R?*1 denote a steerable vector of

typel and I(ml) its con ponentS witlm = I, | + 1, i I. The CG tensor prOdUCt is giVEl by
Xl XZ (km)
| | ) — ; | | .
(h‘( 1) w h‘( 2))() w (:(ll, (s z)h( 11)h( 22) : (5)

mi;= Igmz= Iz

in whichw is a learnable parameter that scales the productﬂ%ﬁwl)“z;mz) are the Clebsch-
Gordan coef cients that ensure that the resulting vector is tygteerable. The CG tensor product is
a sparse tensor product, as generally many coef cients are zero. Most nmé{mﬁ)( lyma) = 0
whenevel < jl; Iyjorl>11+ |,. While Eq. (5) only describes the product between steerable
vectors of a single type, e.dgi('s) 2 Vvj, andh('2) 2 V,,, it is directly extendable to mixed type
steerable vectors that may have multiple channels/multiplicities within a type. In this case, every
input to output sub-vector pair gets its own index in a similar way as the weights in a standard linear
layer are indexed with input-output indices. We then denote the CG product \}}éﬂwith boldfaced
W to indicate that it is parametrised by a collection of weights. In order to stay close to standard
notation used with MLPs, we treat the CG product with a xed veetam one of its inputs as a
steerable linear layer conditioned @ denoted with

Wah=h % a; o Wedhn=n §@a; (6)
where the latter indicates that the CG weights depend on some quéjrity. relative distances.

Steerable activation functions. The common recipe for deep neural networks is to alternate
linear layers with element-wise non-linear activation functions. In the steerable setting, careful
consideration is required to ensure that the activation functions are equivariant; currently available
classes of activations include Fourier-based (Cohen et al., 2018), norm-altering (Thomas et al., 2018),
or gated non-linearities (Weiler et al., 2018). We use gated non-linearities in all our architectures
and shortly discuss their working principle in Sec. C in the appendix. The resulting steerable MLPs
themselves in turn provide a new class of steerable activation functions, that is the rstin its kind in
directly leveraging local geometric cues. Namely, through steerable node attabeidser derived

from the physical setup (forces, velocities) or from predictions (similar to gating). The MLPs can be
applied node-wise and be generally used in steerable feature elds as non-linear activations.

2.1 SrTEERABLE E(3) EQUIVARIANT GRAPH NEURAL NETWORKS

We extend the message passing equat{@pe?) and de ne a message passing layer that updates
steerable node featurgs2 V| at nodey; via the following steps:

mj = m kg xikey @)
0 1

X
0= ¢ @r; mi & A 8)

j2N (i)
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Here,kx;  X; k? is the squared relative distance between two nedesdv;, m and ; are O@)
steerable MLPsg; 2 V. andg&; 2 V_ are steerable edge and node attributes. If additional attributes
exist, such as pair-wise distanke;  x;k, they can either be concatenated to the attributes that
condition our steerable MLPs, or as is more commonly done (Sec. 3) add as inpytata ;.

We do the latter, and stack all inputs to a single steerable vector by which the steerable MLP layer

is given:Ait = (Wg, NO) ;with Y = i;f:kx;  xik? 2Vi Vo, whereV; is the user

speci ed steerable vector space of node representations. The message ngfviedteered via edge
attributess; , and the node update network is similarly steered via node attributes

Injecting geometric and physical quantities. In order to make SEGNNs more expressive, we
include geometric and physical information in the edge and node updates. For that purpose, the edge
attributes are obtained via the spherical harmonic embedding (Eg. (4)) of relative positions, in most
cases, but possibly also relative force or relative momentum. The node attrlbu;es could e.g. be the
average edge embedding of relative positions over neighbours of a nods, ;eJN M7 Q2N () &

and could additionally include node force, spin or velocities, as we do in the N-body experiment. The
use of steerable node attributes in the steerable MLPs that de dlows us to not just integrate
geometric cues into the message functions, but also leverage it in the node updates. We observe that
the more geometric and physical quantities are injected the better SEGNNSs perform.

3 MESSAGEPASSING ASCONVOLUTION, RELATED WORK

Recent literature shows a trend towards building architectures that improve performance by means of
maximally preserving equivariance through groups convolutions (either in regular or tensor-product
form, see App. B). Convolutions, however, are "just” linear operators and non-linearities are only
introduced through point-wise activation functions. This is in contrast to architectures that are built
without explicit use of group convolutions, but instead rely on the highly non-linear framework of
message passing. In the following we show that many related works are connected through a notion
of non-linear convolutiona term that we coin based on the following. Any linear operator which

is equivariant is a group convolution (Kondor & Trivedi, 2018; Bekkers, 2019) and their discrete
implementations can be written in message passing form. We then call any non-linear operator that is
equivariant, and which can be written in simple message passing foram-bnear convolutionThis

framing allows us to place related work in a unifying context and to identify two important aspects of
successful architectures: (i) equivariant layers improve upon invariant ones and (ii) non-linear layers
improve upon linear ones. Both come together in SEGNNS via steerable non-linear convolutions.

Point convolutions as equivariant linear message passingConsider a feature mdp: R% ! R .
A convolution layer (de ned via cross-correlation) with a point-wise non-linearity given by

Z
fo(x) = N W (x% x)f(x9dx° ; 9)

withW : R4 1 R%+ @ g convolution kernel that provides for every relative position a matrix
that linearly transforms features froRf' to R®+ . Point convolutionsgenerally referred to as
PointConvs (Wu et al., 2019), and SchNet (Kristof et al., 2017) implement Eqg. (9) on point clouds.
Fora sparse,mput feature map consisting of location- feature (pairk), the point convolution is

given byf%= ion iy W (xj  x)fi ; which describes bnear message pasgng layefEqgs. (1)-(2)

in which the messages am®; = W (x;  x;)f; and the message upddfe= ; Mj . In the above
convolutions, the transformation matridds are conditioned on relative positione Xi, which is
typically done in one of the following three approaches. (i) Classically, feature maps are processed on
dense regular grids with shared neighbourhoods and thus the transfornvaitiortsn be stored for a

nite set of relative positionx;  X; in a single tensor. This method however does not generalise to
non-uniform grids such as point clouds. Continuous kernel methods parametrise the transformations
either by (ii) expandingV into a continuous basis or (iii) directly parametrising them with MLPs via

W (X; Xi)= MLP(Xj X;). Steerable kernel methotare of type (ii) and rely on ateerable

3See (Lang & Weiler, 2020) for a general theory @steerable kernel constraints for compact groups.
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basis such as 3D spherical harmoniés”, via

X X
W (xj Xi)= WO ks i)Y xi); (10)

I m= |

with basis coef cientsV ,(7'1) typically depending on pair-wise distances. We next show how such
kernels connect to steerable group convolutions and provide a detailed background in App. B.

Steerable (group) convolutions. In context of the steerable framework of Sec. 2, linear feature
transformationdV are equivalent to steerable linear transformations (Eq. (6)) conditioned on the

scalar “1”. I.e, withh; 2 RY in the usual andir 2 dV; the steerable setting, messages are obtained by
mij =W(x xidhi ,  my = Waix; X)) (11)
When the transformations are parametrised in a steerable basis (10) we can make the idefti cation
mi = W xjh; mj = W, (kx; XK ; (12)

in whicha; = Ynﬁ')(xj X;) are spherical harmonic embeddings (E4) of x;  x;, and the
weights that parametrise the CG tensor product depend on pair-wise distances. We can thus perform
convolutions either in the regular or in the steerable setting, where the latter has the bene t of allowing
us to directly derive what the convolution result would be if the kernel were to be rotated via

mj =WER (x; xi)hi ,  mj = DR)W,, (kxj  xik) : (13)

Steerable vectors obtained via convolutions with steerable kernels thus generate signals on O(3) via
the Wigner-D matrices. This relation is in fact established by the inverse Fourier transform on O(3)
(cf. App. A), by which we can treat steerable feature vedtoas each locatiow; as a function on the

group O(3). Steerable convolutions thus produce feature maps on the full group E(3) that for every
possible translation/positiox and rotationR provide a feature respon$éx; R). It is precisely

this mechanism of transforming convolution kernels via the group actioniig ® x;) =

W (R (x; x))thatunderlies group convolutions (Cohen & Welling, 2016). Message passing via
explicit kernel rotations (l.h.s. of (13)) correspondsegular group convolutionsand via steerable
transformations (r.h.s. of (13)) &ieerable group convolutions

The equivariant steerable methods (Thomas et al., 2018; Anderson et al., 2019; Miller et al., 2020;
Fuchs et al., 2020) that we compare against in our experiments can all be written in convolution form

X X
0= W, (kx;  XiK)F ; or f0= W, (f;fkx;  xiKf;  (14)
J2N (i) j2N (i)

where, in the latter case, the linear transformations additionally depend on an input dependent at-
tention mechanism as in (Anderson et al., 2019; Fuchs et al., 2020), and can be seen as a steerable
PointConv version of attentive group convolutions (Romero et al., 2020). In these attention-based
cases, convolutions are augmented with input dependent weights\W o, (fi;;kx;  Xxik) =

(fi; )W 4, (kxj  x;K). This makes the convolution non-linear, however, the transformation of
input features still happens linearly and thus describes what one may call a pseudo-linear transforma-
tion. Finally, the recently proposed LieConv (Finzi et al., 2020) and NequlP (Batzner et al., 2021)
also fall in the convolutional message passing class. LieConv is a PointConv-type variaggolaf
group convolution®n Lie groups (Bekkers, 2019). NeuqlP follows the approach of Tensor Field
Networks (Thomas et al., 2018), and weighs interactions using an MLP with radial basis functions
as input. These functions are obtained as solution of thed8etger equation. Finally, steerable
methods fall into a more general class of coordinate independent convolutions (Weiler et al., 2021)
which allow to ensure equivariance locally, even when global symmetries can not be de ned.

Equivariant message passing as non-linear convolution. EGNNs (Satorras et al., 2021) are
equivariant to transformations in i and outperform most aforementioned steerable methods. This
is somewhat surprising as it seridgariant messages, which are obtained via MLPs of the form

mj = MLP(fi;fj kx;  xik?) = (W®C( (wWw®h)))) ; (15)

“Exact correspondence is obtained by a sum reduction over the steerable vector components (App. B).
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whereh; = (fi;fj;kx; xik?). These messages resemble the convolutional messages of point
convolutions due to their dependency on relative positions. There are, however, two important
differences: (i) the messages are non-linear transformations of the neighbouring featuré; values
via an MLP and (ii) the messages are only conditioned on the distance between point pairs, and are
therefore E) invariant. As such, we regard EGNN layersnas-linear convolutionsvith isotropic
messagéunctions (the non-linear counterpart of rotationally invariant kernels). In our work, we lift
the isotropy constraint and generalise to non-linear steerable convolutions via messages of the form
mj = MLP, (fif kg xik) = (WG (WP m))) (16)
with i = (i;f;kx;  xik¥)) 2y V¢ Vo. The MLP is then conditioned on attribusg , which
could e.g. be a spherical harmonic embedding;of x;. This allows for the creation of messages
more general than those found in convolution, while carrying covariant geometrical information.

Related equivariant message passing methods. A different but also fully message passing
based approach can be found in Geometric Vector Perceptrons (GVP) (Jing et al., 2020), Vector
Neurons (Deng et al., 2021), and PaiNN (Bttket al., 2021). Compared to SEGNNs which treat
equivariant information as fully steerable features, these architectures update scalar-valued attributes
using the norm of vector-valued attributes, and therefore wis) @gariant information. These
methods restrict the ow of information between attributes of different types, whereas the Clebsch-
Gordan tensor product in SEGNNSs allows for interaction between spherical harmonics of all orders
throughout the network. Methods such as Dimenet++ (Klicpera et al., 2020), SphereNet (Liu et al.,
2021), and GemNet (Klicpera et al., 2021) incorporate relative orientatioséc@nd-ordemessage
passing scheme that considers angles between the central point and neighbours-of-neighbours. In
contrast, our method directly leverages angular information istaorder message passing scheme

using steerable vectors. We attribute the success of such methods to the fact that they equivariantly
process point clouds of local orientatiofys;rij ) 2 R®  S2?, de ned by relative positions between
atoms, by sending messages between edges (local orientations) rather than nodes. As such, they can
be thought of as non-lineaegular group convolutionsn the homogeneous space of positions and
orientationsR®  S?) with isotropic (zonal) message functions, where the symmetry constraint is
induced by the quotie®® S?  SK3)=SQ(2) (Bekkers, 2019, Thm. 1).

4 EXPERIMENTS

Implementation details. The implementation of SEGNN's O(3) steerable MLPs is based on the
e3nn library (Geiger et al., 2021a). We either de ne the steerable vector spatésasV, -,

(N-body, QM9 experiments), i.en, copies of steerable vector spaces up to okgdgr, or by dividing
ann-dimensional vector spadé into L approximately equally large typgesub-vector spaces (OC20
experiments) as is done in Finzi et al. (2021). Furthermore, for a fair comparison between experiments
with differentlnax , Wwe choose such that the total number of weights in the CG products corresponds
to that of a regular (type-0) linear layer. Further implementation details are in App. C.

SEGNN architectures and ablations. We consider several variations of SEGNNs. On all tasks we
have at least one fully steerable & 0;1, > 0) SEGNN tuned for the speci c task at hand. We
perform ablation experiments to investigate two main principles that sets SEGNNSs apart from the
literature.Al The case of non-steerable vs steerable EGNNs is obtained by applying the same SEGNN
network with different speci cations of maximal spherical harmonic order in the feature vectors

(It ) and the attributed{). EGNN (Satorras et al., 2021) arises as a special casdwith, = 0.

These models will be labelled SEGNA2 In this ablation, we use steerable equivariant point conv
methods (Thomas et al., 2018) with messages as in Eq. (14) and regular gated non-linearities as
activation/update function, labelled B, and compare it to the same network but with messages
obtained in a non-linear manner via 2-layer steerable MLPs as in Eq. (16), labelledasskE

N-body system. The charged N-body particle system experiment (Kipf et al., 2018) consists

of 5 particles that carry a positive or negative charge, having initial position and velocity in a 3-
dimensional space. The task is to estimate all particle positions after 1.000 timesteps. We build upon
the experimental setting introduced in (Satorras et al., 2021). Steerable architectures are designed
such that the parameter budget;at 1 andl, = 1 matches that of the EGNN implementation. We

input the relative position to the center of the system and the velocity as vectors dftyipeavith

odd parity. We further input the norm of the velocity as scalar, which altogether results in an input
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Table 1: Mean Squared Error (MSE) in the N-body system experiment, and forward time in seconds
for a batch size of 100 samples running on a GeForce RTX 2080 Ti GPU. Results except for EGNN
and SEGNN are taken from (Satorras et al., 2021) and veri ed. Runtimes are re-measured.

Method MSE Time [s]
SE(3)-Tr. (Fuchs et al., 2020) .0244 .0742
TFN (Thomas et al., 2018) .0155 .0182
NMP (Gilmer et al., 2017) .0107 .0017
Radial Field (Kohler et al., 2019) .0104 .0019
EGNN (Satorras et al., 2021) .007000022 .0029
SEinear (If =2;1a =2) .0116 .00021 .0640
SEondinear(lt =1;1a =1) .0060 .00019 .0310
SEGNNs (It =1;1a=1) .0056 .00025 .0250
SEGNNs+p (If =112 =1) .0043 .00015 .0260

vectori 2 Vy Vi3 Vj. The output is embedded as difference vector to the initial position (odd
parity), i.e.e 2 V;. In doing so, we keep BJ equivariance for vector valued inputs and outputs.
The edge attributes are obtained via the spherical harmonic embedding of; as described in

Eg. 4. Messages additionally have the product of charges and absolute distance included. SEGNN
architectures are compared to steerable equivariant{sEand steerable non-linear point conv
methods (Skon-inea)- Results and ablation studies are shown in Tab. 1. A full ablation is outlined

in App. C. Steerable architectures obtain the best resulig ferl andl, = 1, and don't bene t

from higher orders off andl,. We consider a rst SEGNN architecture where the node attributes
are the averaged edge embeddings, i.e. mean over relative orientation, labelled SEGON

only geometric information is used. The second SEGNN architecture has the spherical harmonics
embedding of the velocity added to the node attributes. It can thus leverage geometric (orientation)
and physical (velocity) information, and is consequently labelled SEGNNncluding physical
information in addition to geometric information in the node updates considerably boosts SEGNN
performance. We further test SEGNNs on a gravitational 100-body system (Sec. C.2 in the appendix).

QM9. The QM9 dataset (Ramakrishnan et al., 2014; Ruddigkeit et al., 2012) consists of small
molecules up to 29 atoms, where each atom is described with 3D position coordinates and one-hot
mode embedding of its atomic type (H, C, N, O, F). The aim is to regress various chemical properties
for each of the molecules, optimising on the mean absolute error (MAE) between predictions and
ground truth. We use the dataset partitions from Anderson et al. (2019). Table 2 shows SEGNN results
on the QM9 dataset. In Table 3, we show that by steering with the relative orientation between atoms
we observe that for higher (maximum) orders of steerable feature vectors, the performance increases,
especially when a small cutoff radius is chosen. While previous methods use relatively large cutoff
radii of 4.5-11A, we use a cutoff radius of&2 Doing so results in a sharp reduction of the number

of messages per layer, as shown in App. C. Tables 2 and 3 together show that SEGNNSs outperform
an architecturally comparable baseline EGNN, whilst stripping away attention modules from it and
reducing graph connectivity from fully connected to onl distant atoms. It is however apt to

note that runtime is still limited by the relatively expensive calculation of the Clebsch-Gordan tensor
products. We further note that SEGNNSs produce results on par with the best performing methods
on the non-energy variables, however lag behind state of the art on the energy vatalbled),

Up). We conjecture that such targets could bene t from more involved (e.g. including attention or
neighbour-neighbour interactions) or problem-tailored architectures, such as those compared against.

0C20. The Open Catalyst Project OC20 dataset (Zitnick et al., 2020; Chanussot et al., 2021),
consists of molecular adsorptions onto surfaces. We focus on the Initial Structure to Relaxed Energy
(IS2RE) task, which takes as input an initial structure and targets the prediction of the energy in the
nal, relaxed state. The IS2RE training set consists of over 450,000 catalyst adsorbate combinations
with 70 atoms on average. Optimisation is done for MAE between the predicted and ground truth
energy. Additionally, performance is measured in the percentage of structures in which the predicted
energy is within &:02 eV threshold (EwT). The four test splits contain in-distribution (ID) catalysts
and adsorbates, out-of-domain adsorbates (OOD Ads), out-of-distribution catalysts (OOD Cat), and
out-of-distribution adsorbates and catalysts (OOD Both). Table 4 shows SEGNN results on the OC20
dataset and comparisons with existing methods. We compare to models which have obtained results
by training on the IS2RE training set such as SphereNet (Liu et al., 2021) and DimeNet++ (Klicpera
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et al., 2019; 2020). The best SEGNN performance is sedn forl andl, =1 (see App. C). A full
ablation study, comparing performance and runtime for different oftdeandl, is found in App. C).

Table 2: Performance comparison on the QM9 dataset. Numbers are reported for Mean Absolute
Error (MAE) between model predictions and ground truth.

Task " " Homo "Lumo C G H R? U Uo ZPVE
Units bohf meV  meV meV D cal/molK meV meV bohr meV meV meV
NMP .092 69 43 38 .030 .040 19 17 .180 20 20 1.50
SchNet * .235 63 41 34 .033 .033 14 14 .073 19 14 1.70
Cormorant .085 61 34 38 .038 .026 20 21 961 21 22 2.02
L1Net .088 68 46 35 .043 .031 14 14 .354 14 13 1.56
LieConv .084 49 30 25 .032 .038 22 24 .800 19 19 2.28
TFEN 223 58 40 38 .064 101 - - - - - -
SE(3)-Tr. 142 53 35 33 .051 .054 - - - - - -
DimeNet++ * .043 32 24 19 .029 .023 7 6 331 6 6 1.21
SphereNet * .046 32 23 18 .026 .021 8 6 .292 7 6 1.12
PaiNN * .045 45 27 20 .012 .024 7 6 .066 5 5 1.28
EGNN .071 48 29 25 .029 .031 12 12 .106 12 12 1.55
SEGNN (Ours) .060 42 24 21 .023 .031 15 16 .660 13 15 1.62

* these methods use different train/val/test partitions.

Table 3: QM9 ablation study to compare SEGNN performances for different (maximum) orders of
steerable feature vectons Y and attributeslf{). Models with only trivial features are akin to the
invariant EGNN. The method with a fully connected graph uses soft edge estimation (Satorras et al.,
2021). Forward time is measured for a batch of 128 samples running on a GeForce RTX 3090 GPU.

Task " "hHomo  "Lumo C

Units Cutoffradius  bohr meV meV meV D cal/molK  Time [s]
(S)EGNN(; =051, =0) - .091 53 34 28 .042 .043 0.016
(S)EGNN¢; =01, =0) 5A .105 57 36 31 .047 .047 0.014
SEGNN(; =114 =1) 5A .080 49 29 25 .032 .034 0.058
(S)EGNN¢; =01, =0) 2A .240 98 60 60 .340 .077 0.014
SEGNN(; =1;1, =2) 2A .074 48 27 25 .031 .035 0.046
SEGNN(; =214 =3) 2A .060 42 24 21 .023 .031 0.096

Table 4: Comparison on the OC20 IS2RE task in terms of Mean Absolute Error (MAE) between
model predictions and ground truth energy and % of predictions withif :02 eV of the ground
truth (EwT). Numbers are taken from the OC20 leaderboard. SEGNNs outperform all competitors.

Energy MAE [eV]# | EwT"
Model ID OODAds OODCat OOD Both| ID OODAds OODCat OOD Both
Median baseline  1.7499 1.8793 1.7090 1.6636 0.71% 0.72%0 0.8%% 0.7%%
CGCNN 0.6149 0.9155 0.6219 0.8511| 3.40% 1.9 3.10% 2.00%
SchNet 0.6387 0.7342 0.6616 0.7037| 2.968% 2.3% 2.9%% 2.21%
EdgeUpdateNet 0.5839 0.7252 0.6016 0.6862 3.48% 2.3% 3.3% 2.5
EnergyNet 0.6366 0.717 0.6387 0.6626| 3.30% 2.20% 3.0 2.3%%
DimeNet++ 0.5620 0.7252 0.5756 0.6613| 4.2%% 2.0 4.10% 2.41%
SphereNet 0.5630 0.7030 0.5710 0.6380 4.4% 2.2% 4.0% 2.41%
SEGNN (Ours)  0.5327 0.6921 0.5369 0.6790 | 5.3™ 2.46% 4.91% 2.6

5 CONCLUSION

We have introduced SEGNNSs which generalise equivariant graph networks, such that node and edge
information is not restricted to be invariant (scalar), but can also be vector- or tensor-valued. SEGNNs
are the rst networks which allow the steering of node updates by leveraging geometric and physical
cues, introducing a new class of equivariant activation functions. We demonstrate the potential of
SEGNNSs by applying it to a wide range of different tasks. Extensive ablation studies have further
shown the bene t of steerable over non-steerable (invariant) message passing, and the bene t of
non-linear over linear convolutions. On the OC20 ISRE taks, SEGNNSs outperform all competitors.
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6 REPRODUCIBILITY STATEMENT

We have included error bars, reproducibility checks and ablation studies wherever we found it
necessary and appropriate. For example, for the N-body experiment we have reproduced the results
of Satorras et al. (2021), we have ablated different (maximum) orders of steerable feature vectors,
and we have stated mean and standard deviation of the results which we have obtained by running the
same experiments eight times with different initial seeds. For the OC20 experiments, we have stated
of cial numbers from the Open Catalyst Project challenge in the paper. Thus, our comparisons to
other methods are obtained from their respective best entries to the challenge. We have further ablated
runtimes, different cutoff radii and different (maximum) orders of steearable feature vectors, see
Sec. C in the appendix. We have done this by running the experiments eight times with different initial
random seeds to be able to report mean and standard deviation of the results. For the reproducibility
of the QM9 experiments, we have uploaded our code and included a command which reproduces
results of the variable.

We have described our architecture in Sec. 2.1 and provided further implementation details in
Appendix Section C. We have not introduced new mathematical results. However, we have used
concepts from different mathematical elds and therefore included a self-contained mathematical
exposition in our appendix. We have further included proof of equivariance and properties of Wigner
D matrices and spherical harmonics in the appendix. In Sec. 3, we have introduced a unifying view
on various equivariant graph neural networks through the de nition of non-linear convolutions, which
allows us to draw comparisons with many other methods; we verify our ndings in the N-body
experiments of Sec. 4.

7 ETHICAL STATEMENT

The societal impact of SEGNNs is dif cult to predict. However, SEGNNSs are well suited for physical
and chemical modeling and therefore potential shortcuts for computationally expensive simulations.
And if used as such, SEGNNs might potentially be directly or indirectly related to reducing the
carbon footprint. On the downside, relying on simulations always requires rigorous cross-checks and
monitoring, especially when simulations or simulated quantities are learned.

ACKNOWLEDGMENTS

Johannes Brandstetter thanks the Institute of Advanced Research in Atrti cial Intelligence (IARAI)
and the Federal State Upper Austria for the support. This work is part the research programme VENI
(grant number 17290), nanced by the Dutch Research Council (NWO). The authors thank Markus
Holzleitner for helpful comments on this work.

REFERENCES

Sanchez-Gonzalez Alvaro, Godwin Jonathan, Pfaff Tobias, Ying Rex, Leskovec Jure, and Battaglia
Peter. Learning to simulate complex physics with graph network&rdoeedings of the 37th
International Conference on Machine Learnjnglume 119, pp. 8459-8468, 2020.

Brandon Anderson, Truong Son Hy, and Risi Kondor. Cormorant: Covariant molecular neural
networks. In H. Wallach, H. Larochelle, A. Beygelzimer, RAldhé-Buc, E. Fox, and R. Garnett
(eds.),Advances in Neural Information Processing Systarmkime 32. Curran Associates, Inc.,
20109.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar
Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey
Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet
Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive biases,
deep learning, and graph networlesXiv preprint arXiv:1806.012612018.

10



Published as a conference paper at ICLR 2022

Simon Batzner, Tess E Smidt, Lixin Sun, Jonathan P Mailoa, Mordechai Kornbluth, Nicola Molinari,
and Boris Kozinsky. Se (3)-equivariant graph neural networks for data-ef cient and accurate
interatomic potentialsarXiv preprint arXiv:2101.031642021.

Erik J Bekkers. B-spline cnns on lie groupsIiternational Conference on Learning Representations
2019.

Erik J Bekkers, Maxime W Lafarge, Mitko Veta, Koen AJ Eppenhof, Josien PW Pluim, and Remco
Duits. Roto-translation covariant convolutional networks for medical image analydistelma-
tional conference on medical image computing and computer-assisted intervemuici?0-448.
Springer, 2018.

Lukas Biewald. Experiment tracking with weights and biases, 2020. biis://www.wandb.
com/ . Software available from wandb.com.

Lowik Chanussot, Abhishek Das, Siddharth Goyal, Thibaut Lavril, Muhammed Shuaibi, Morgane
Riviere, Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, Aini Palizhati, Anuroop Sriram,
Brandon Wood, Junwoong Yoon, Devi Parikh, C. Lawrence Zitnick, and Zachary Ulissi. Open
catalyst 2020 (oc20) dataset and community challer§€s Catalysis0(0):6059—-6072, 2020. doi:
10.1021/acscatal.0c04525. URLtps://doi.org/10.1021/acscatal.0c04525 .

Lowik Chanussot, Abhishek Das, Siddharth Goyal, Thibaut Lavril, Muhammed Shuaibi, Morgane
Riviere, Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, Aini Palizhati, Anuroop
Sriram, Brandon Wood, Junwoong Yoon, Devi Parikh, C. Lawrence Zitnick, and Zachary Ulissi.
The open catalyst 2020 (oc20) dataset and community challenges, 2021.

Taco Cohen and Max Welling. Group equivariant convolutional networkisitémnational conference
on machine learningpp. 2990-2999. PMLR, 2016.

Taco S. Cohen and Max Welling. Steerable cnndntarnational Conference on Learning Represen-
tations (ICLR) 2017.

Taco S. Cohen, Mario Geiger, Jonas Koehler, and Max Welling. Spherical cnhgeinational
Conference on Learning Representations (IGLR)18.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral ltering. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett (edsAdvances in Neural Information Processing Systerakime 29. Curran
Associates, Inc., 2016.

Walter Dehnen and Justin | Read. N-body simulations of gravitational dynafies European
Physical Journal Plus126(5):1-28, 2011.

Congyue Deng, Or Litany, Yueqgi Duan, Adrien Poulenard, Andrea Tagliasacchi, and Leonidas
Guibas. Vector neurons: A general framework for so(3)-equivariant netwark8yv preprint
arXiv:2104.122292021.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manjfa@i.

Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wilson. Generalizing convolutional
neural networks for equivariance to lie groups on arbitrary continuous datltelmational
Conference on Machine Learningp. 3165-3176. PMLR, 2020.

Marc Finzi, Max Welling, and Andrew Gordon Wilson. A practical method for constructing equivari-
ant multilayer perceptrons for arbitrary matrix groupsXiv preprint arXiv:2104.094592021.

William T Freeman, Edward H Adelson, et al. The design and use of steerable tEEE
Transactions on Pattern analysis and machine intelligedi&€9):891-906, 1991.

Fabian B Fuchs, Daniel E Worrall, Volker Fischer, and Max Welling. Se (3)-transformers: 3d
roto-translation equivariant attention networksXiv preprint arXiv:2006.105032020.

11



Published as a conference paper at ICLR 2022

Mario Geiger, Tess Smidt, Alby M., Benjamin Kurt Miller, Wouter Boomsma, Bradley Dice, Kos-
tiantyn Lapchevskyi, Maurice Weiler, Micha Tyszkiewicz, Simon Batzner, Jes Frellsen, Nuri Jung,
Sophia Sanborn, Josh Rackers, and Michael Bailey. e3nn/e3nn: 2021-04-21, April 2021a. URL
https://doi.org/10.5281/zen0d0.4708275 .

Mario Geiger, Tess Smidt, Alby M., Benjamin Kurt Miller, Wouter Boomsma, Bradley Dice, Kos-
tiantyn Lapchevskyi, Maurice Weiler, Micha Tyszkiewicz, Simon Batzner, Jes Frellsen, Nuri Jung,
Sophia Sanborn, Josh Rackers, and Michael Ba|Iey e3nn/e3nn: 2021-05-10, May 2021b. URL
https://doi.org/10.5281/zenodo.4745784

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistryinternational Conference on Machine Learnjmp.
1263-1272. PMLR, 2017.

Yacov. Hel-Or and Patrick Teo. Canonical decomposition of steerable functio®sodeedings
CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recqgpyition
809-816, 1996.

Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael JL Townshend, and Ron Dror. Learning
from protein structure with geometric vector perceptrarXiv preprint arXiv:2009.0141,12020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimizatoXiv preprint
arXiv:1412.69802014.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. limernational Conference on Machine Learnjmp. 2688—
2697. PMLR, 2018.

Thomas N. Kipf and Max Welling. Semi-supervised classi cation with graph convolutional networks.
In International Conference on Learning Representations (ICRB}7.

Johannes Klicpera, Janek Grof3, and Steph@am®mann. Directional message passing for molecular
graphs. Innternational Conference on Learning Representatj@@i9.

Johannes Klicpera, Shankari Giri, Johannes T Margraf, and Stepbane@Gann. Fast and
uncertainty-aware directional message passing for non-equilibrium molear€s. preprint
arXiv:2011.141152020.

Johannes Klicpera, Florian Becker, and Stephéanri@mann. Gemnet: Universal directional graph
neural networks for moleculearXiv preprint arXiv:2106.089032021.

Jonas Kohler, Leon Klein, and Frank No Equivariant ows: sampling con gurations for multi-body
systems with symmetric energiearXiv preprint arXiv:1910.007532019.

Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution in neural
networks to the action of compact groups.Iiternational Conference on Machine Learnjrap.
2747-2755. PMLR, 2018.

Risi Kondor, Zhen Lin, and Shubhendu Trivedi. Clebsch—gordan nets: a fully fourier space spherical
convolutional neural networkAdvances in Neural Information Processing Syste8ts10117—
10126, 2018.

Schitt Kristof, Kindermans Pieter-Jan, Sauceda Huziel, Chmiela Stefan, Tkatchenko Alexandre,
and Klaus-Robert Nller. Schnet: a continuous- Iter convolutional neural network for modeling
guantum interactions. IRroceedings of the 31st International Conference on Neural Information
Processing Systemgp. 992-1002, 2017.

Alex Krizhevsky, llya Sutskever, and Geoffrey E Hinton. Imagenet classi cation with deep con-
volutional neural networksAdvances in neural information processing syste2bs1097-1105,
2012.

Leon Lang and Maurice Weiler. A wigner-eckart theorem for group equivariant convolution kernels.
In International Conference on Learning Representatj@@0.

12



Published as a conference paper at ICLR 2022

Yann LeCun, leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognitionProceedings of the IEEB6(11):2278—-2324, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learniajure 521(7553):436—444,
2015.

Yi Liu, Limei Wang, Meng Liu, Xuan Zhang, Bora Oztekin, and Shuiwang Ji. Spherical message
passing for 3d graph networkarXiv preprint arXiv:2102.0501,32021.

llya Loshchilov and Frank Hutter. Decoupled weight decay regularizati@nXiv preprint
arXiv:1711.051012017.

Andreas Mayr, Sebastian Lehner, Arno Mayrhofer, Christoph Kloss, Sepp Hochreiter, and Johannes
Brandstetter. Boundary graph neural networks for 3d simulate8y preprint arXiv:2106.11299
2021.

Benjamin Kurt Miller, Mario Geiger, Tess E Smidt, and FrankéNoRelevance of rotationally
equivariant convolutions for predicting molecular properteeiv preprint arXiv:2008.0846,1
2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning libragrXiv preprint arXiv:1912.017032019.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation funaios preprint
arXiv:1710.059412017.

Raghunathan Ramakrishnan, Pavlo Dral, Matthias Rupp, and Anatole von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecuBxsenti c Data 1, 08 2014.

David Romero, Erik Bekkers, Jakub Tomczak, and Mark Hoogendoorn. Attentive group equivariant
convolutional networks. IProceedings of the 37th International Conference on Machine Leayning
Proceedings of Machine Learning Research, pp. 8188-8199, 2020.

Lars Ruddigkeit, Ruud Van Deursen, Lorenz C Blum, and Jean-Louis Reymond. Enumeration of 166
billion organic small molecules in the chemical universe database gdeiirnal of chemical
information and modelings2(11):2864—-2875, 2012.

Jun J. Sakurai and Jim Napolitandodern Quantum Mechanic€ambridge University Press, 2
edition, 2017.

Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks.
arXiv preprint arXiv:2102.098442021.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network moddlEEE Transactions on Neural Network&(1):61-80, 2009.

Jirgen Schmidhuber. Deep learning in neural networks: An overvilaural networks61:85-117,
2015.

Kristof T Schitt, Oliver T Unke, and Michael Gastegger. Equivariant message passing for the
prediction of tensorial properties and molecular spe@rXiv preprint arXiv:2102.031502021.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley.
Tensor eld networks: Rotation-and translation-equivariant neural networks for 3d point clouds.
arXiv preprint arXiv:1802.082192018.

Pfaff Tobias, Fortunato Meire, Sanchez-Gonzalez Alvaro, and Battaglia Peter W. Learning mesh-
based simulation with graph networks, 2020.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing
ingredient for fast stylizationarXiv preprint arXiv:1607.080222016.

Maurice Weiler and Gabriele Cesa. General e (2)-equivariant steerableAuntwvemnces in Neural
Information Processing Systen®2:14334-14345, 2019.

13



Published as a conference paper at ICLR 2022

Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco S Cohen. 3d steerable cnns:
Learning rotationally equivariant features in volumetric dataAdivances in Neural Information
Processing Systemglume 31. Curran Associates, Inc., 2018.

Maurice Weiler, Patrick Foé, Erik Verlinde, and Max Welling. Coordinate independent convolutional
networks—isometry and gauge equivariant convolutions on riemannian manidoXis.preprint
arXiv:2106.060202021.

Marysia Winkels and Taco S Cohen. 3d g-cnns for pulmonary nodule detectitmtetnational
Conference on Medi- cal Imaging with Deep Learning (MIPD2918.

Daniel Worrall and Gabriel Brostow. Cubenet: Equivariance to 3d rotation and translation. In
Proceedings of the European Conference on Computer Vision (EQPV)67-584, 2018.

Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J Brostow. Harmonic
networks: Deep translation and rotation equivariancé?rbteedings of the IEEE Conference on
Computer Vision and Pattern Recognitjgp. 5028-5037, 2017.

Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep convolutional networks on 3d point
clouds. InProceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
pp. 9621-9630, 2019.

Tian Xie and Jeffrey C Grossman. Crystal graph convolutional neural networks for an accurate and
interpretable prediction of material properti€hysical review lettersl20(14):145301, 2018.

C. Lawrence Zitnick, Lowik Chanussot, Abhishek Das, Siddharth Goyal, Javier Heras-Domingo,
Caleb Ho, Weihua Hu, Thibaut Lavril, Aini Palizhati, Morgane Riviere, Muhammed Shuaibi,
Anuroop Sriram, Kevin Tran, Brandon Wood, Junwoong Yoon, Devi Parikh, and Zachary Ulissi.
An introduction to electrocatalyst design using machine learning for renewable energy storage,
2020.

14



Published as a conference paper at ICLR 2022

A  MATHEMATICAL BACKGROUND

This appendix provides the mathematical background and intuition for steerable MLPs. We remark
that the reader may appreciate several related works, such as, (Thomas et al., 2018; Anderson
et al., 2019; Fuchs et al., 2020), as excellent alternative resSucaget acquainted with the
group/representation theory used in this paper. In this appendix we introduce the theory from our
own perspective which is tuned towards the idea of steerable MLPs and our viewpoint on group
convolutions. It provides complementary intuition to the aforementioned resources. The main
concepts explained in this appendix are:

1. Group de nitionandexamples of groupSection A.1). The entire framework builds upon
notions from group theory and as such a formal de nition is in order. In this paper, we
model transformations such as translation, rotation and re ection as groups.

2. Invariance equivarianceandrepresentationgSection A.2). A function is said to be invariant
to a transformation if its output is unaffected by a transformation of the input. A function
is said to be equivariant if its output transforms predictably under a transformation of the
input. In order to make the de nition precise, we need a de nition of representations; a
representation formalises the notion of transformations applied to vectors in the context of
group theory.

3. Steerable vectorsWigner-D matricesand irreducible representationgSection A.3).
Whereas regular MLPs work with feature vectors whose elements are scalars, our steerable
MLPs work with feature vectors consisting of steerable feature vectors. Steerable feature
vectors are vectors that transform via so-called Wigner-D matrices, which are representations
of the orthogonal group @J. Wigner-D matrices are the smallest possible group representa-
tions and can be used to de ne any representation (or conversely, any representation can
be reduced to a tensor product of Wigner-D matrices via a change of basis). As such, the
Wigner-D matrices are irreducible representations.

4. Spherical harmonic¢Section A.4). Spherical harmonics are a class of functions on the
sphereS? and can be thought of as a Fourier basis on the sphere. We show that spherical
harmonics are steered by the Wigner-D matrices and interpret steerable vectors as functions
on S?, which justi es the glyph visualisations used in this paper. Moreover, spherical
harmonics allow the embedding of three-dimensional displacement vectors into arbitrarily
large steerable vectors.

5. Clebsch-Gordan tensor produahdsteerable MLP¢Section A.5). In a regular MLP one
maps between input and output vector spaces linearly via matrix vector multiplication and
applies non-linearities afterwards. In steerable MLPs one maps between steerable input
and steerable output vector spaces via the Clebsch-Gordan tensor product. Akin to the
learnable weight matrix in regular MLPs, the learnable Glebsch-Gordan tensor product is
the workhorse of our steerable MLPs.

After these concepts are introduced we will in Section B revisit the convolution operator in the light
of the steerable, group theoretical viewpoint that we take in this paper. In particular, we show that
steerable group convolutions are equivalent to linear group convolutions with convolution kernels
expressed in a spherical harmonic basis. With this in mind, we argue that our approach via message
passing can be thought of as building neural networks via non-linear group convolutions.

A.1 GROUP DEFINITION AND THE GROUPSE(3) AND O(3)

Group de nition. A group is an algebraic structure that consists of &&ahd a binary operator
the group product, that satis es the following axion®osure for all h;g 2 G we haveh g2 G;
Identity: there exists an identity elemeat?2 G; Inverse for eachg 2 G there exists an inverse
elemengg 12 Gsuchthag ' g= g g ! = e andAssociativity for eachg; h;i 2 G we have

(9 h)y i=g (hi).

The Euclidean group E@). In this work, we are interested in the group of three-dimensional
translations, rotations, and re ections which is denoted with E(3), the 3D Euclidean group. Such

SEach of these works presents unique view points that greatly in uenced the writing of this appendix.
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transformations are parametrised by pairs of translation vectar® and orthogonal transformation
matricesR 2 O(3). The E(3) group product and inverse are de ned by

g ¢°:=(Rx%°+ x;RR 9 ;
gl=(R ;R Y;

with g = (x;R);¢° = (x%R) 2 E(3). One can readily see that with these de nitions all four
group axioms are satis ed, and that it therefore de nes a group. The group product can be seen as a
description for how two B) transformations parametrised gyndg® applied one after another are
described by single transformation parametrised by®. The transformations themselves act on the
vector space of 3D positions via the group action, which we also denote,with

g vy:=Ry+x;
whereg = (x;R) 2 E(3) andy 2 R®.

The orthogonal group O(3) and special orthogonal group SO8). The group E3) = R0 O(3)

is a semi-direct product (denoted with) of the group of translation®2 with the group of orthogonal
transformations CB). This means that we can conveniently decompo&-Eénsformations in an
O(3)-transformation (rotation and/or re ection) followed by a translation. In this work we will mainly
focus on dealing with CB) transformations as translations are trivially dealt with. When representing
the group elements of @) with matricesR, as we have done before, the group product and inverse
are simply given by the matrix-product and matrix-inverse. l.e., githR;g°= R°2 G = O(3)

the group product and inverse are de ned by

g ¢":= RR;
glt=R1:

The group acts oR® by matrix-vector multiplication, i.eg y := Ry . The group elements of O(3)
are square matrices with determinart or 1. Their action orR® de nes a re ection and/or rotation.

The special orthogonal group SO(3) has the same group product and inverse, but excludes re ections.
The group thus consists of matrices with determiriant

The sphereS? is a homogeneous space of SO(3)The sphere is not a group as we cannot de ne a
group product ors? that satis es the group axioms. It can be convenient to treat it as a homogeneous
space of the groups O(3) or SO(3). A spacés called a homogeneous space of a gr@uip for any

two pointsx;y 2 X there exists a group elemem® G suchthay = g x.

The spherés? is a homogeneous space of the rotation group SO(3) since any point on the sphere can
be reached via the rotation of some reference vector. Consider for example an XYX parametrisation
of SO(3) rotations in which three rotations are applied one after another via

R.. =R.n,R.nR.n.; (A.1)

y

with ny, andny denoting unit vectors along theandy axis, andR . ,,, denotes a rotation of
degrees around axis,. We can model points on the sphere in a similar way via Euler angles via

n. =R.. onyx: (A.2)

So, with two rotation angles, any point on the sphere can be reached. In the above welsit

the parametrisation of the rotation matrix (an element from3pQigat rotates the reference vector
Ny, but it should be clear that with anythe same point . is reached. This means that there are
many group elements in S8)(that all mapny to the same point on the sphere.

A.2 INVARIANCE, EQUIVARIANCE AND REPRESENTATIONS

Group representations. We previously de ned the group product, which tells us how elements of
a group interact. We also showed that the groufs} &d OQ) can transform the three dimensional
vector spac®? via the group action. We usually think of the group8)nd O@) as groups that
describe transformations dr¢, but these groups are not restricted to transformatiorR%cand can
generally act on arbitrary vector spaces via representationsprasentatioris an invertible linear
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transformation (g) : V! V parametrised by group elemeigt® G that acts on some vector space
V, and which follows the group structure (it is a group homomorphism) via

(9) (hyv= (g h)v;
withv 2 V.

A representation can act @mnite-dimensional vector spacesich as functions. E.g., the so-called
left-regular representationk 4 of E(3) on functionsf : R®! R onR? is given by

Lglf1(x) = f(g 'x);

i.e., it transforms the function by lettingy * act on the domain from the left. Here we used the
notationL 4[f ] to indicate thal 4 transforms the functiof rst, which creates a new function
L (9)[f ](x), which is then sampled at

When representations transfornite dimensional vectors 2 V = RY, they ared  d dimensional
matrices. In this work, we denote suetatrix representationwith boldfaceD . A familiar example of
a matrix representation of @(on R® are the matriceg = R 2 O(3) themselves, i.eD (g)x = Rx.

Finally, any two representations, sByg) andD Yg), areequivalentf they relate via a similarity

transform via
D%Y9)= Q 'D(9)Q;

i.e., such representations describe one and the same thing but in a different basis, and the change of
basis is carried out b@. Now that representations have been introduced we can formally de ne
equivariance.

Invariance and equivariance. Equivariance is a property of an operator X ! Y that maps
between input and output vector spadesndY . Given a groups and its representations and ¥
which transform vectors iX andY respectively, amperator : X 'Y is said to be equivariant if
it satis es the following constraint

(@I 0)1= (X(9Ix]); forallg2 G;x 2 X : (A.3)

Thus, with an equivariant map, the output transforms predictably with transformations on the input.
One might say that no information gets lost when the input is transformed, merely re-structured.
One way to interpret EqA.3) is therefore that the operator§ (g) : X ' X and Y(g):Y!Y

describe the same transformation, but in different spaces.

Invariance is a special case of equivariance in whith= 1Y for all g 2 G. l.e., an operator
: X 'Y s said to be invariant if it satis es the following constraint

(x)= ( *(9)x]); forallg2 G;x 2 X : (A.4)

Thus, with an invariant operator, the output ois unaffected by transformations applied to the input.

A.3 STEERABLE VECTORS WIGNER-D MATRICES AND IRREDUCIBLE REPRESENTATIONS

One strategy to build equivariant MLPs is to de ne input and output spaces of the MLPs and de ne
how these spaces transform under the action of a group. This then sets an equivariance constraint on
the operator that maps between these spaces. By only working with such equivariant operators we
can guarantee that the entire learning framework is equivariant.

In our work, the proposed graph neural networks are translation equivariant by construction as any
form of spatial information only enters the pipeline in the form of relative positions between nodes
(x;  xi). Then, any remaining operations are designed to I3 €fuivariant such that, together

with the given translation equivariance, the complete framework is fulBy &quivariant. Since
translations are trivially dealt with, we focus on Spénd O@) and show how to build equivariant
MLPs through the use of the Clebsch-Gordan tensor product.

Wigner-D matrices are irreducible representations. For SO@) there exists a collection of repre-

sentations, indexed with their order 0, which act on vector spaces of dimens@r+ 1. These
representations are called Wigner-D matrices and we denote therDWiity). The use of Wigner-D
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matrices is motivated by the fact that any matrix representddify) of SO@) that acts on some
vector spac® can be “reduced” to an equivalent block diagonal matrix representation with Wigner-D
matrices along the diagonal:

% bun(g) !
D(@)= Q (DM(g DII(g :::)Q=Q & DU  Kq: (A5

with Q the change of basis that makes them equivalent. The individual Wigner-D matrices themselves
cannot be reduced and are heiroeducible representationsf SO(3). Thus, since the block diagonal
representations are equivalenfiowe may as well work with them instead. This is convenient since
each block, i.e., each Wigner-D matiX'), only acts on a sub-spa&g of V. As such we can
factoriseV = V;, V,, :::, which motivates the use of steerable vector spaces and their direct
sums as presented in Sec. 2.

The Wigner-D matrices are the irreducible representations o8)560\{t we can easily adapt these
representations to be suitable for3pby including the group of re ections as a direct product. We

will still refer to these representations as Wigner-D matrices in the entirety of this work, opting to
avoid the distinction in favour of clarity of exposition. We further remark that explicit forms of
the Wigner-D matrices can e.g. be found books such as in Sakurai & Napolitano (2017) and their
numerical implementations in code libraries such ae®mn library (Geiger et al., 2021a).

Steerable vector spaces. The (2l + 1) -dimensional vector space on which a Wigner-D matrix of
orderl acts will be callech typel steerable vector spa@nd is denoted with,. E.g., a type-3 vector

h 2 Vj is transformed by 2 O(3) viah 7! D 3(g)h. We remark that this de nition is equivalent to

the de nition of steerable functionsommonly used in computer vision (Freeman et al., 1991; Hel-Or

& Teo, 1996) via the viewpoint that steerable vectors can be regarded as the basis coef cients of a
function expanded in a spherical harmonic basis. We elicit this viewpoint in Sec. A.4 and B.

At this point we are already familiar with type-0 and type-1 steerable vector spaces. Namely, type-0
vectorsh 2 Vp = R are scalars, which are invariant to transformatigrzsO(3), i.e.,Do(g)h = h.
Type-1 features are vectons2 R3 which transform directly via the matrix representation of the
group, i.e.Di1(g)h = Rh.

A.4 SPHERICAL HARMONICS

Spherical harmonics. Related to the Wigner-D matrices and their steerable vector spaces are
the spherical harmoni€s Spherical harmonics are a class of functions on the sgerakin to

the familiar circular harmonics that are best known as the 1D Fourier basis. As with a Fourier
basis, spherical harmonics form an orthonormal basis for functioi®$ om this work we use the

real-valued spherical harmonics and denote them Wﬁh: S?1 R.

Spherical Harmonics are Wigner-D functions. One can also think of spherical harmonics as

functionsy : SO(3) ! Ron SQ3) that are invariant to a sub-group of rotations via

YPm, )= YR n)= YOR, )
in which we used the parametrisation &% and O@) given in (A.2) and (A.1) respectively. Then,
by de nition, Ynﬂ') is invariant with respect to rotation anglei.e..,8 ;.2 ) : Y‘nﬁ')(R )=

n(1')(R .- p). This viewpoint of regarding the spherical harmonics asvariant functions on Cg)

helps us to draw the connection to the Wigner-D functidifs that make upthel +1 21 +1
elements of the Wigner-D matrices. Namely, the 0 column of Wigner-D functions are also
-invariant and, in fact, correspond (up to a normalisation factor) to the spherical harmonics via

1 |
YW (n, )= PﬁDsn)o R.. ): (A.6)

Solutions to Laplace’s equation are called harmonics. Solutions of Laplace's equation on the sphere are
therefore called spherical harmonics.
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The mapping from vectors into spherical harmonic coef cients is equivariant. It then directly
follows that vectors of spherical harmonics are steerable by the Wigner-D matrices of the same degree.

harmonics. Then this vector embedding is equivariant as it satis es

8R0230(3) 8n282 . a(')(ROn) = D(l)(RO)a(I)(n) . (A?)
Using theS? and O@) parametrization of (A.2) and (A.1) this is derived as follows
OY(')(ROn )1 00 (RR )1 00 (R )1
| ) 10 iy 10 i
OrRh =B . k=B :  kK=p0®yB
GRS DYRR ;) DR )
YH(n; )
=pORY% : K=DYR%"(. ):
Yl(l)(n: )

Steerable vectors represent steerable functions o®8?. Just like the 1D Fourier basis forms a

complete orthonormal basis for 1D functions, the spherical harmaffiégorm an orthonormal
basis forl»(S?), the space of square integrable functions on the sphere. Any function on the sphere
can thus be represented by a steerable vecol, Vi ::: whenitis expressed in a spherical

harmonic basis via
|

X
f(n)= ay Y (n) : (A8)
I Om= |
Since spherical harmonics form an orthonormal basis, the coef cient vactan directly be obtained
by takingL »(S?)-inner products of the functioh v%th the spherical harmonics, i.e. ,

= (6Y i)y = 1Y) (n)dn (A.9)

Equation (A.9) is sometimes referred to as the Fourier transfor8fpand Eq.(A.8) as the inverse
spherical Fourier transform. Thus, one can identify steerable veztoith functions on the sphere
S? via the spherical Fourier transform.

In this paper, we visualise such functions®hvia glyph-visualisations which are obtained as surface
plots by takingn 2 S? and scaling it byf (n)j = sign(f (n)) f (n):

njf (n)j n2s? 0

where each point on this surface is color-coded with the function ¥glag. The visualisations are
thus color-coded spheres that are stretched in each directiankf (n)k.

Steerable vectors also represent steerable functions on 8( In order to draw a connection
between group equivariant message passing and group convolutions, as we did in Sec. 3 of the main
paper, it is important to understand that steerable vectors also represent functions on the g&up SO(

via an SOB)-Fourier transform. The collection @2l + 1) 2 Wigner-D functionsDr(T'#1 form an
orthonormal basis fdr ,(SO(3)) . This orthonormal basis allows for a Fourier transform that maps
between the function spate(SQ(3)) and steerable vector spade the forward and inverse Fourier
transform on SCR) are respectively gi'ven by

) = f (9D (9)dg ; (A.10)
0(3)
X X X | |
f(g) = alm DY) (9) ; (A.11)
Il Om= In= |
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with dg the Haar measure of the group. Noteworthy, the forward Fourier transform generates a matrix
of Fourier coef cients, rather than a vector in spherical case. The coef cent matrix is steerable by
left-multiplication with the Wigner-D matrices of the same typé).

A.5 CLEBSCH-GORDAN PRODUCT AND STEERABLEMLPS

In a regular MLP one maps between input and output vector spaces linearly via matrix-vector
multiplication and applies non-linearities afterwards. In steerable MLPs, one maps between steerable
input and output vector spaces via the Clebsch-Gordan tensor product and applies non-linearities
afterwards. Akin to the learnable weight matrix in regular MLPs, the learnable Glebsch-Gordan
tensor product is the main workhorse of our steerable MLPs.

Clebsch-Gordan tensor product. The Clebsch-Gordan (CG) tensor product allows us to map
between steerable input and output spaces. While there is much to be said about tensors and tensor
products in general, we here intend to focus on intuition. In general, a tensor product involves the
multiplication between all components of two input vectors. E.g., with two vettps R% and

h, 2 R%, the tensor product is given by

0 1
hlh]_ h1h2 A
hl hZ - hlh'zl' — %hzhl hghz :::g :

which we can atten into @, d,-dimensional vector via an operation which we denote witb(h
h,). In our steerable setting we would like to work exclusively with steerable vectors and as such we

would like for any two steerable vectadng 2 Vi, andh, 2 V,,, that the tensor product's output is
again steerable with a QYrepresentatiol (g) such that the following equivariance constraint is

satis ed:
D(g)(f M) =(D"(gm) (DI (gh2): (A.12)
Via the identityvec(AXB )= (BT A)vec(X), we can show that the output is indeed steerable:

vec (D (g ) (DI (g),)T =vec DU (g)m AT DT (g)
= DU(g DU(g) vec MM}

The resulting vectovec(iii; 1) is thus steered by a representatid(g) = D(2)(g) D(1)(g).
Since any matrix representation of3p¢an be reduced to a direct sum of Wigner-D matrices (see
(A.5)), the resulting vector can be organised via a change of basis into parts that individually transform

via Wigner-D matrices of different type. l.& =vec(h; hy)2V =V, Vi :::,withV, the
steerable sub-vector spaces of type

With the CG tensor product we directly obtain the vector components for the steerable sub-vectors of
typel as follows. Lett() 2 Vj = R2*! denote a steerable vector of typandh; its components

withm = [, 1+1;:::;1. Thenthem-th component of the typlesub-vector of the output of the
tensor product between two steerable vectors of tyed|, is given by
Xt X2 (m)
m .
(ﬁ(ll) cg ﬁ(|2))§r|1) =W C('l;m1)('2;m2)h'(1!111)h|('7|]22) ’ (A.13)
mi= lyme= Iy

in which w is a learnable parameter that scales the product(}éhr&n)l)(lz.mz) are the Clebsch-
Gordan coef cients. The CG tensor product is a sparse tensor product, as generally many of the

(km) m) _ : .
(l:m1)(1,:m,) COMponents are zero. Most notaﬁl;éh;ml)(lz;mz) = 0 whenevel < jl; I3j or
I>11+ 5. E.g., atype-0 and a type-1 feature vector cannot create a type-2 feature vector. Well
known examples of the CG product are the scalar product 0;1, = 1;1 = 1), which takes as

input a scalar and a type-1 vector to generate a type-1 vector, the dot priadudt;l, =1;1 =0)

and cross product{(=1;l, =1;1 =1).
Examples of instances of the CG product are:
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» The product of two scalars is a CG product which takes as input two type-0 “vectors” to
generate another scaldy € 0;1, =0;1 = 0).

» The scalar product, which takes as input a scalar and a type-1 vector to generate a type-1

vector (1 =0;l, =1;1=1).

The dot product, which takes two type-1 vectors as input to produce a Sgatat (1, =

1;1 =0).

» The cross product, which takes two type-1 vectors as input to produce another type-1 vector
(|1 =1;|2 =1;l= 1)

In a standard linear layer, an input vector is transformed via multiplication with the weight matrix,
where weights and elements of the input vector are simply multiplied! $06 elements of the

Clebsch-Gordan tensor product of Eq. (A.13) more than one mathematical operation is needed for the

connection with one weight, as can easily be veri euﬁfl) andhﬁ'fz) are thought of as e.g. type-1

vectors. This makes calculation of the Clebsch-Gordan tensor product slow for higher order irreps, as
can be observed in all experiments.

Steerable MLPs. The CG tensor product thus allows us to map two steerable input vectors to a
new output vector and can furthermore be extended to de ne a tensor product between steerable
vectors of mixed types. The CG tensor product can be parametrised by weights where the product
is scaled with some weight for each triplet of typesli; ;) for which the CG coef cients are
non-zerd. We indicate such CG tensor products Wittﬁé . While in principle the CG tensor product

takes two steerable vectors as input, in this work we mainly use it with one of its input vectors “ xed”.
The CG tensor product can then be regarded as a linear layer that maps between two steerable vector
spaces and we denote thig,f := i Y &, with a the steerable vector that is considered to be

xed. With this viewpoint we can design ?\/ILPS in the same way as we are used to with regular linear
layers, and establish clear analogies with convolution layers (Sec. 3 of the main paper).

While in general the CG tensor product between two steerable vectors df tgpdl, can contain
steerable vectors up to degree |1 + |, one typically “band-limits” the output vector by only
considering the steerable vectors up to some ddgige In our experiments we band-limit the
hidden feature representationd @y = Is.

Finally, the amount of interaction between the steerable sub-vectors in the hidden representations
ofdegredf 2 Vi -, = Vo Vi :::V,, isdetermined by the maximum ordgrof the steerable
vectora on which the steerable linear layer is conditioned. Namely, the CG tensor product only
produces typé steerable sub-vectors ff 1) | j I + l4j. For example, it is not sensible

to embed positions as steerable vectors up to dgder5 when the hidden representations are of
degred; = 2; the lowest steerable vector type that can be produced with the CG produictds a
sub-vector ok with any sub-vector of the hidden representation vector will b8 and since the

hidden representations are band-limited to a maximum typhe o2 higher order vectors will be
ignored.

B STEERABLE GROUP CONVOLUTIONS

Steerable functions. Through the equivalence of steerable vectors and spherical functions via the
spherical Fourier transform, it is clear that our de nitionstéerable vectorsoincides with the more
common de nition ofsteerable functionsas commonly used in computer vision (Freeman et al.,
1991). A functionf is called steerable (Hel-Or & Teo, 1996) under a transformation g@ii@ny
transformatiorg 2 G onf can be written as a linear combination of a xed, nite setrobasis
functionsf g:

Lof = i@ i= (9 (B.1)

i=1

in which L is the left regular representation of the graBghat performs the transformation on
f (see section A.2). In case of functions in a spherical harmonic basis, which we denote with

’In terms of thee3nn library (Geiger et al., 2021a) one then says a path exists between these 3 types.
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P P
fai | o 'm: ,a%)Y,{,(n),itdirectlyfollowsfrom Eqg. (A.7) that they are steerable via

Lgfa(n) = fp(ga(n): (B.2)
In terms of the steerable function de nition in Eq. (B.1), this means th@) = D(g)a and
= (Y, YW v® ;1) ie. the set of basis functions attened into a vector.

A translation-rotation template machting motivation for (steerable) group convolutions. The

notion of steerability becomes particularly clear when viewed in the computer vision context (Freeman
et al., 1991), where one may be interested in detecting visual features under arbitrary rotations. Let
us co3nsider the case of 3D cross-correlations of a kdeneéR® ! R with an input feature map
f:R°! R: 7

fox)=(k?f)x)= k(x® x)f (x%dx°: (B.3)
R3

We think of such a kernéd as describing a particular visual pattern. In many applications, we want

to detect such patterns under arbitrary rotations. For example, in 3D medical image data there is no
preferred orientation and features (such as blood vessels, lesions, ...) can appear under any angle,
and the same holds for particular atomic patterns in molecules. So ideally, one wants to apply the
convolution kernel under all such trar?formations and obtain feature maps via

fqx;R) = N k(R 1(x° x))f (x9dx°: (B.4)

By repeating the convolutions with rotated kernels we are able to detect the presence of a certain
feature at all possible angles. In a group convolution context (Cohen & Welling, 2016), the above is
what one usually calls a lifting group convolution (Bekkers, 2019) (feature maps are liftedRftom

to the group SB)).

Group convolutions. In regular group convolutional neural networkse continues to work with

such higher dimensional feature maps in which the kernels are also functions on the group. The
lifting and subsequent group convolutions then all have the same form and are de ned via the group
action onR® and group product respeftively via

fAg) = k(g * x9f (x9dx°; (B.5)
z7
fYg) = k(g * 99f (g9dg’; (B.6)
SE (3)
whereg 2 SH?3), dg the Haar measure on the group and where(B.5) and(B.6) respectively
denote the group action d®° and group product d8E(3) (cf. Section A.1). Note that E4B.5) is
exactly the same as Eq. (B.4) but in different notation.

The lifting group convolution thus generates a function on the joint space of podRioasd rotations

SQ(3). In numerical implementations, this space needs to be discretised, i.e., for a particular nite
grid of rotations we want to store the results of the convolutions for each roftidrhis approach

then requires that the convolution kernel is continuous and can be sampled under all transformations.
Hence, such kernels can be expanded in a continuous basis such as spherical harmonics (Weiler
et al., 2018), B-splines (Bekkers, 2019) or they can be parametrised via MLPs (Finzi et al., 2020).
Alternatively, the kernels are only transformed via a sub-group of transformation8)ithia{ leaves

the grid on which the kernel is de ned intact, as in (Worrall & Brostow, 2018; Winkels & Cohen,
2018). An advantage of regular group convolution methods is that normal point-wise activation
functions can directly be applied to the feature maps; a down-side is that these methods are only
equivariant to the sub-group on which they are discretised. When expressing the convolution kernel
in terms of spherical harmonics, however, there is no need for such a discretisation at all and one can
obtain the response of the convolution at any rotaRoafter convolving with the basis functions.

This works as follows.

Steerable template matching. Suppose a 3D convolution kernel that is expanded in a spherical
harmonic basis up to degréeas follows
X X | |
K(X) = Ke(kxk (X) := R kxkYS 2 (B.7)
I m= |
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with e = (céo) ; c(l)l; cél) :::)T the vector of basis coef cients that can dependkak. The coef-

cients can e.g. be parametrised with an MLP that takes as ikpkitand returns the coef cient
vector. We note that such coef cients are therBQqvariant, i.e.8r20(3) : €(KRx K) = e(kxk).
Furthermore, we labelled the vector with @™ to indicate it is a steerable vector as it represents the
coef cients relative to a spherical harmonic basis. It then follows (from(BcR)) that the kernel is
steerable via

K(R %) = Kp (R)e(kxky (X) ;

i.e., via a transformation of the coef cient vecteby it O(3) representatiod (R).

This steerability property, together with linearity of the convolutions and basis expansion, implies that
with such steerable convolution kernels we can obtain their convolutional response at any rotation
directly from convolutions with the basis functions. Instead of rst expanding the kernel in the basis
by taking a weighted sum of basis functions with their corresponding coef cients, and only then doing
the convolutions, we can change this order and rst do the convolution with the basis functions and
sum afterwards. In doing so we create a vector of respdi{ggs= ( f(()o) (x);f (11 (x); f((,l) (x);::)7T

of which the elements are given by

FR () = (%Cleng\I)) ?f")(x) (B.8)

= dDkxk) YD (x x)f (x9dx°:
R3
Then the result with the convolution kernel (Eq. (B.7)) is obtained simply by a sum over the vector
components which we denote wiﬂumlReduceas follows
'm

X X
fox) = Sumll?educe(fo(x)) = f A (x) :
m I m= |

If one were to be interested in the rotated Iter response abe can rst rotate the steerable vector
#9(x) via the matrix representatidd (R) and only then do the reduction. I.e., once the convolutions
of (B.8) are done the lifting group convolution result is directly obtained via

fqx;R) = Sumlli_zrsduce(D(R)fo(x)) : (B.9)

A convolution with a kernel expressed in a spherical harmonics basis thus generates a signal on O(3)
at each poink.

When only considering them = 0 component for each ordéiin the kernel parametrisation, the
kernels have an axial symmetry in them due to which the convolution results in a point-wise spherical
signal. This is in fact the situation that we consider in our weighted CG products (Eg. 5) where
we do not index the weights witlm. This choice leads to computational ef ciency. It is however

not necessary to constrain the kernels as such and continue with steerable group convolutions on
the full spaceR® o SQ(3), this would require working with CG products with weights indexed by
bothm andm? (Weiler et al., 2018). Since in this work we choose to with steerable vector spaces

V = mgVy miVy i with arbitrary multiplicitiesm, for each type, we implement what is
called generalised steerable convolutions, of which the SO(3) convolutions are a special case with
m; = (21 +1) (Kondor et al., 2018).

Steerable group convolutions. When working with steerable convolution kernels one does not
have to work with a grid on O(3). There are reasons to avoid working with a grid 8nad(one

cannot numerically obtain exact equivariance if the chosen grid is not a sub-grou)o¥/@{en

limiting to a discrete subgroups one can guarantee exact equivariance to the sub-group, but ideally
one obtains equivariance to the entire grouB)O$teerable methods provide a way to build neural
networks entirely independent of any sampling oB)Qg¢ince, as we have seen, steerable convolutions
directly result in functions on the entire group3pyia steerable vectors. That &, each locatiorx

we have a steerable vectbfx) which represents a function on 8)(via the inverse Fourier transform

given in Eq.(A.11). In fact, the sum reduction in E¢B.9) corresponds to a discrete inverse Fourier
transform.

Finally, let us revisit steerable group convolutions one more time but now in the steerable vector
notation used throughout this paper. The steerable convolution, as descr{Be@)jiis an operator
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that maps between steerable vector elds of different types. In the above example the input feature
map was one that only provided a single scalar value per locatioa. a type-0 steerable vector,

and the output was a steerable vector eld containing steerable vectors up to.t¥e transition

from type-0 vector eld to a typd- vector eld happened via tensor products with steerable vectors

of spherical harmonics, and this tensor product was parametrised by the coefei€htppose a
convolution of a single typér steerable input eld with a convolution kernel that is expanded in a

spherical harmonic basis of only typevia k(x) = l2 I w(kxk)Yn(]') ok - The kernel can

m=
then be represented as a steerable vector eld in itsetf(ay = w(kxk)a(x), with a the typel,
spherical harmonic embedding given in Eq. 5 of the main paper. Such a steerable convolution maps
from input feature maps : R® !V, using a convolution kerndt : R® | V4, to an output
O R3! V via Z

x) = ) ) a(x® x)dx°:

Here we assumed steerable feature vector elds of a single type, but in general such convolutions
can map between vector elds of mixed type analogous to the standard convolutional case in CNNs
where mappings occur between multi-channel type-0 vector elds.

Steerable and regular group convolutions. In conclusion, both steerable and regular group con-
volutions produce feature maps on the entire grol§) & d they are equivalent when the regular
convolution kernel is expanded in a steerable basis. In regular group convolutions, the response
is stored on a particular grid which is e.g. the Cartesian product of a regular 3D grid with a par-
ticular discretisation of C§). In regular group convolutions, we directly index the responses with
(x;R) 2 E(3) 7! f(x;R). In steerable convolutions the lIter responses$ f(x) are stored at

each spatial grid point in steerable vecto{x) from which functions on the full group O(3) can

be obtained via an inverse Fourier transférs such one recovers the regular representation via
(x;R) 7' F 1[f(x)](R). Regular group convolutions can however not be perfectly equivariant to
all transformations in CB) due to discretisaton artifacts, or they are only equivariant to a discrete
sub-group of Of). Steerable group convolutions on the other hand are exactly equivariant to all
transformations in () via steerable representations of3p(

8This Fourier transform in fact enables working with classic point-wise activation functions that could be
applied point-wise to each location in a spherical or O(3) signal as in (Cohen et al., 2018). It is important to
note that one cannot readily apply activation functions such as ReLU directly to the steerable coef cients, but
one could sample the GYsignal on a grid via the inverse Fourier transform, apply the activation function, and
transform back into the steerable basis. This is the approach taken in (Cohen et al., 2018). In this paper we work
entirely in the steerable domain (& Fourier space) and work with gated non-linearities (Weiler et al., 2018).
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C EXPERIMENTS

C.1 PSEUDOCODE OFSEGNNAND ABLATED ARCHITECTURES

In this subsection, we provide pseudocode for our implementation SEGNN and steerable ablations.
Pseudocode for steerable equivariant point conv layers such as (Thomas et al., 2018) with messages as
in Eqg. (14) and regular gated non-linearities as activation/update function, label|led,3E outlined

in Alg. 1. Pseudocode for the same network but with messages obtained in a non-linear manner
via 2-layer steerable MLPs as in Eq. (16) is outlined in Alg. 2. This layer is labelled @s.3&:-

Finally, pseudocode for SEGNN implementation is provided in Alg. 3. SEGNN layers allow for the
inclusion of geometric and physical quantities via node attribaite¥hese new node update layers

can be regarded as new steerable activation function and allow a functionality which is not possible
in layers such as Skar Of SEon-inear A more detailed explanation of the Clebsch-Gordan tensor
product (CGTensorProduct), the spherical harmonic embedding (SphericalHarmonicEmbedding) and
the application of gated non-linearities can be found inetBen (Geiger et al., 2021a) library.

Injecting geometric and physical quantities. In the following algorithms the relative position
vectorx; between nod& and nodd; is given as an example for a geometric quantity used to steer
the message layers. To get more concrete, we look at Alg. 3 (SEGNN) and discuss edge attributes
and node attributes. Steerable attributes rst of all have to be embedded via spherical harmonics.
Steerable edge attribuég in most cases consist of relative positions. Instead of or additional to
relative positions also relative forces or relative velocities could be used. And nally, also node
speci ¢ quantities such as force can be added together to serve as edge attributes. Steerable node
attributes are in most cases real physical quantities. In Alg. 3 they are sketchedhwitllv 2, and

might comprise velocity, acceleration, spin, or force. However, also adding the spherical harmonics
embedding of relative positions at nofjeesults in a steerable node attribute. Lastly, it is to note

that if multiple steerable attributes exist they can be either added or concatenated. However, the
latter results in signi cantly more weights in the CG tensor product and does not result in better
performance in any of the conducted experiments.

Gated non-linearities. The gate activation is a direct sum of two sets of irreps. The rst set is the

set of scalar irreps passed through activation functions. The second set is the set of higher order irreps,
which is multiplied by an additional set of scalar irreps that is introduced solely for the activation
layer and passed through activation functions. For example, in Alg. 1, the scalagjreps the
additional scalar irreps, introduced to “gate” the non-scalar irreps;of

Algorithm 1 Code sketch of an Skar message passing layer. ThejRk layer updates steerable
node feature§® f;. The additional scalar irrefs are used to “gate” the non-zero order irreps as
introduced in Weiler et al. (2018). A fully documented code for this layer will be applicable in our
repo.

Require: fj, Xj; . Steerable nodef$, relative position vectox;; between nod§ and nodd;

function O3_. TENSOR PRODUCT(inputl, input2)
output CGTensorProduct(inputl, input2) . Apply CG tensor product following Eq. (6)
output output + bias . Add bias to zero order irreps
return output

end function

& SphericalHarmonicEmbedding( ) . Spherical harmonic embeddingxf (Eqg. (4))
Mt f k x; k2 . Concatenate input for messages betwiefh
mi i XO3,TEN§QRPRODUCT(h‘ij , & ) . Calculate messages;; and scalar irrepg;;
mi g mjj Oi . Aggregate messages; and scalar irrepgj

i j
t0 i + Gatetm;, Swish@:)) . Transform nodes via gated non-linearities
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Algorithm 2 Code sketch of an SEh.inear Message passing layer. The Shinearlayer updates

steerable node featur® f;. The additional scalar irrefgs are used to “gate” the non-zero order
irreps as introduced in Weiler et al. (2018). A fully documented code for this layer will be applicable
in our repo.

Require: fi, xj . Steerable nod€$, relative position vectox; between nod§ and nodd;

function O3_.TENSOR PRODUCT(inputl, input2)
output CGTensorProduct(inputl, input2) . Apply CG tensor product following Eq. (6)
output  output + bias . Add bias to zero order irreps
return output

end function

function O3_.TENSOR PRODUCT_SWISH_GATE(inputl, input2)
output gi O3.TENSORPRODUCT(inputl, input2) . Output plus scalar irrep

outpufaes  Gate(output, Swislgg)) . Transform output via gated non-linearities
return output
end function

& SphericalHarmonicEmbedding( ) . Spherical harmonic embeddingxf (Eqg. (4))
M ff ok X k? . Concatenate input for messages betwiegfh
mjj O3.TENSORPRODUCT.SWISH_GATE([j , &; ) . First non-linear message layer
mij  Oj xO3TENSORPRODUCT(Mj, & ) . Second linear message layer
m; g mjj Oij . Aggregate messages; and scalar irrepg;;

j i
0 fi + Gatetm;, Swish@;)) . Transform nodes via gated non-linearities

Algorithm 3 Code sketch of an SEGNN message passing layer. The SEGNN layer updates steerable

node feature§®  f;. The additional scalar irrefgs are used to “gate” the non-zero order irreps as
introduced in Weiler et al. (2018). A fully documented code for this layer will be applicable in our
repo.

Require: fi, xj ;vil;vi2 . Steerable nodef$, relative position vectox;; between nod§ and node
f;, geometric or physical quantities; vZ such as velocity, acceleration, spin, or force.

function O3_TENSOR PRODUCT(inputl, input2)
output CGTensorProduct(inputl, input2) . Apply CG tensor product following Eq. (6)
output output + bias . Add bias to zero order irreps
return output

end function

function O3_.TENSOR PRODUCT_SWISH_GATE(inputl, input2)
output gi O3.TENSORPRODUCT(inputl, input2) . Output plus scalar irrep
outputaes  Gate(output, Swislg)) . Transform output via gated non-linearities
return output

end function

& SphericalHarmonicEmbedding() . Spherical harmonic embeddingxf (Eq. (4))
vi SphericalHarmonicEmbeddi . Spherical harmonic embeddingwf (Eqg. (4))

W phericalHarmonicEmbeddi . Spherical harmonic embeddingwf (Eg. (4))

1 1
& & + v+ v? . Node attributes
i

i fi T K Xj k2 . Concatenate input for messages betwiggh
mij O3_.TENSORPRODUCT.SWISH_GATE(fTj; , &; ) . First non-linear message layer
mjj P&TENSORPRODUCT,SWISH,GATE(m i » &) . Second non-linear message layer
m; M . Aggregate messages;

]
0 O3.TENSORPRODUCT SWISH GATE(fi mj, &) . Firstnon-linear node update layer
0  fi+ O3.TENsSORPRODUCT(T, &) . Second linear node update layer
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C.2 EXPERIMENTAL DETAILS

Compared methods. We compared against methods discussed in Sec. 3 of the main paper, namely
NMP (Gilmer et al., 2017), SchNet (Kristof et al., 2017), Cormorant (Anderson et al., 2019),
L1Net (Miller et al., 2020), LieConv (Finzi et al., 2020), TFN (Thomas et al., 2018), SE(3)-
transformer (Fuchs et al., 2020), and EGNN (Satorras et al., 2021). We additionally compare
to CGCNN (Xie & Grossman, 2018), PaiNN (Sdhet al., 2021), Dimenet++ (Klicpera et al., 2020)
and SphereNet (Liu et al., 2021).

Implementation details for N-body dataset. SEGNN architectures, point conv methods (QE),
and steearable non-linear point conv methods,{Skea) COnsist of three parts (sequentially applied):

1. Embedding network: Inputf CGs, | SwishGatd CG;, g, whereinCG,, denotes a
steerable linear layer conditioned on node attribatesnd which are applied per node.

2. Four message passing layers as described in Sec. 2.1 for SEGNN architectures and 7
convolution layers for Skear and SEon-iinearablations.

3. A prediction network:f CGgi I Swish! Linear! MeanPool Linear! Swish!
Lineaug, in which CG‘;I denotes a steerable linear layer conditioned on node attributes
and which maps to a vector of 64 scalar (type-0) features. The remaining layers are regular
linear layers, as in Satorras et al. (2021).2Q6nd Linear are applied per node.
All steerable architectures are designed such that the parameter budgeth@andl, = 1
matches that of the tested EGNN implementation. We optimise models using the Adam
optimiser (Kingma & Ba, 2014) with learning rate 1e-4, weight decay 1e-8 and batch size
100 for 10000 epochs and minimise the mean absolute error. .

The SwishGate refers to a gated non-linearity (Weiler et al., 2018) Whef, and a swish activation
(Ramachandran et al., 2017) otherwise. A message netwpionsists of CG,, ! SwishGate

I CGy ! SwishGatg, while the update network; consists of CG,, ! SwishGate CGy,

I InstanceNorrg, with an instance normalisation (Ulyanov et al., 2016) implementation that is
compatible with steerable vectors, based on the BatchNorm implementationegrthelibrary
(Geiger et al., 2021a). In the default setting, however, the instance normalisation i|§ turned off. We use

skip-connections in the message passing layers, adapting Eq. (8) t§%4eli +  (f;; | Mij 1 &).

The convolution layers which are used instead of the message passing layergfare®l SEon-iinear
ablations consist of:

=]
* SBinear fCGy; ! ion () ! SwishGate  InstanceNorng

P
* SEoniinear fCGy; | SwishGatd CGy; ! i 2N (i)! SwishGatd InstanceNorrg
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Table C.1: A full ablation study on the performance and runtime of different (maximum) orders of
steerable feature$ () and attributeslf). The ablation study includes steerable linear convolutions,
steerable non-linear convolutions, as well as SEGNN approachgs, E++ uses the structural
information (velocity) in the two embedding and read-out layers. Performance is measure using the
Mean Squared Error (MSE).

Method MSE Time [s]
SBinear(If =0;1a =0) .0344 .003
SBinear(If =0:la =1) .0352 .003
SBinear(lf =1 ;la =1) .0130 .031
SBinear(lf =1 ;la =2) .0121 .035
SBinear(It =2 ;la =2) .0116 .065
SBinear(lf =2 ;1a =3) .0121 .075
SEvon-linear(lf =0 ;1a =0) .0382 .004
SEnon-inear(lf =0 ;la =1) .0388 .004
SEwon-linear(lt =1 ;1a =1) .0061 .030
SEnondinear(lf =1;la =2) .0060 .034
SEon-linear(lf =2 ;1a =2) .0061 .065
SEon-linear(lf =2 ;1a =3) .0060 .074
SEnondineat* (It =0 ;14 =0) .0392 .004
SEvon-lineatr+ (If =0;1a =1) .0390 .004
SEnon-ineatt+ (If =1 ;1a =1) .0057 .031
SEnon-ineatt+ (If =1 ;1a =2) .0057 .036
SEon-lineatt (If =2 ;1a =2) .0058 .067
SEhon-lineat* (If =2 ;1a =3) .0062 .078
SEGNN; (If =013 =0) .0099 .004
SEGNNs (If =0:la =1) 0008 005
SEGNNG (If =1:la =1) .0056 025
SEGNNG (If =113 =2) 0058 .03l
SEGNN; (It =2;1a =2) .0060 .061
SEGNNa (If =2 :la =3) 0062 .068
SEGNNg+p(lf =0:la =0) 0102 004
SEGNNasp(lf =0;la =1) .0096 005
SEGNNasp(lf =1:la =1) 0043 026
SEGNNgsp(lf =1:la =2) 0044 032
SEGNNasp(f =2:1a=2)  .0041  .063
SEGNNg4p(lf =2;15 =3) .0041 071

Table C.2: SEGNN and EGNN performance comparison on the N-body system experiment. Perfor-
mance is compared for different number of available training samples, and measured using the Mean
Squared Error (MSE). SEGNNSs are signi cantly more data ef cient.

Method Training samples MSE

SEGNNs:p (It =1;15=1) 1000 .0068 .00023
SEGNNs+p (It =1;15=1) 3000 .0043 .00015
SEGNNs:p (It =1;1a=1) 10000 .0037 .00014
EGNN 1000 .0094 .00035
EGNN 3000 .0070 .00022
EGNN 10000 .0048 .00018
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Gravitational N-body dataset. The gravitational 100-body particle system experiment is a self-
designed toy experiment, which is conceptually similar to the charged N-body experiment described
in the main paper. However, we extend the number of particles from 5 to 100, use gravitational
interaction, no boundary conditions. Particle positions are initialised from a unit Gaussian, particle
velocities are initialised with norm equal to one and random direction and particle mass is set to one.
Trajectories are generated with by integrating gravitational acceleration in natural units using the
leapfrog integrator with t = 0:001 for 5000 steps. Force smoothing of 0.1 is applied (Dehnen &
Read, 2011).

We predict position or force at step t = 4 given the state at t = 3. Such problems are often
encountered in physical and astrophysical simulations (Alvaro et al., 2020; Tobias et al., 2020; Mayr
et al., 2021), where usually the force (or acceleration) is used to Euler-update the positions. Thus,
reliable force prediction is of great interest. An exemplary trajectory is shown in Fig. C.1. For the
following experiments, we use 10.000 simulation trajectories in the training set, and 2.000 trajectories
for the validation and test set, respectively. The implemented architectures are 4 layer graph neural
networks with roughly equal parameter budget, and we train each network for 250 epochs. The
SEGNN layers are exactly the same as described above for the charged N-body dataset, the EGNN
and MPNN layers are the same as described in Satorras et al. (2021).

Figure C.1: Trajectory between t = 4 and t = 5 of 100 particles under gravitational interaction.
Marker shows final position at end of simulation, with opacity decreasing over time.

Table C.3 shows results for different numbers of considered interactions (neighbours) for SEGNNS,
as well as for message passing networks (MPNNs) and EGNNs. For SEGNN implementation, we
input the relative position to the center of the system and the velocity as vectors of type | = 1 with
odd parity. We further input the norm of the velocity as scalar, which altogether results in an input
vectorh 2 Vg Vi Vi. The output is embedded as difference vector to the initial position (odd
parity) or the directly predicted force after 1.000 timesteps, i.e. 0 2 V1. In doing so, we keep E(3)
equivariance for vector valued inputs and outputs. The edge attributes are obtained via the spherical
harmonic embedding of Xj  X; as described in Eq. 4. The node attributes comprise the sum of
the edge attributes plus the spherical harmonic embedding of the velocity. The MPNNs take the
position and the velocity as input. Due to the vector-valued inputs and outputs, equivariance is not
preserved. For EGNNSs, equivariance is only preserved for the prediction of future positions, for the
force prediction it is not.

MPNNs and SEGNN(l¢ = 0; I, = 0) are conceptually very similar. Interestingly, MPNNs, which
use PyTorch’s Linear operation, are approximately 5 times faster than our SEGNN implementation,
which uses Einsum operations. In general, the position and force prediction for the 100-body
problem is intrinsically very difficult due to the wide range of different dynamics, where the main
error contributions arise from a few outlier trajectories. However, aside from unavoidable errors,
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SEGNNSs generalise much better than default MPNNs or EGNNs do. The results strongly suggest the
applicability of SEGNNS to large physical (simulation) datasets.

Table C.3: Mean Squared Error (MSE) for positional (pos) and force prediction in the gravitational
N-body system experiment, and forward time in seconds for a batch size of 20 samples running on an
NVIDIA GeForce RTX 3090 GPU.

5 neighbours | 20 neighbours | 50 neighbours
Method pos force  Time[s] \ pos force  Time[s] \ pos force  Time[s]
MPNN 297 .299 .0012 | .277 273 .0014 | .262 268 .0029
EGNN 301  unstable .0024 | .256 unstable .0025 | .239  unstable .0047
SEGNN(lf =0;1a=0) .292 296 .0085 | .266 276 .0088 | .251 265 .0100
SEGNN(lf = 1;1,=1) .265 273 .0208 | .237 244 0212 | 212 223 .0416
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