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ABSTRACT

In domain adaptation, a model is trained on a dataset generated from a source
domain and its generalization is evaluated on a possibly different target domain.
Understanding the generalization capability of the learned model is a longstand-
ing question. Recent studies demonstrated that the adversarial robust learning
under ℓ∞ attack is even harder to generalize to different domains. To thoroughly
study the fundamental difficulty behind adversarially robust domain adaptation,
we propose to analyze a key complexity measure that controls the cross-domain
generalization: the adversarial Rademacher complexity overH∆H class. For lin-
ear models, we show that adversarial Rademacher complexity overH∆H class is
always greater than the non-adversarial one, which reveals the intrinsic hardness
of adversarially robust domain adaptation. We also establish upper bounds on this
complexity measure, and extend them to the ReLU neural network class as well.
Finally, based on our adversarially robust domain adaptation theory, we explain
how adversarial training helps transferring the model performance to different
domains. We believe our results initiate the study of the generalization theory
of adversarially robust domain adaptation, and could shed lights on distributed
adversarially robust learning from heterogeneous sources – a scenario typically
encountered in federated learning applications.

1 INTRODUCTION

Domain adaptation is a key learning scenario where one tries to generalize the model learnt on a
source domain to a target domain. How to predict target accuracy using source accuracy has been
a longstanding research topic in both theory Ben-David et al. (2006); Quinonero-Candela et al.
(2008); Ben-David et al. (2010); Mansour et al. (2009); Cortes et al. (2015); Zhang et al. (2019;
2020) and application community Long et al. (2015); Saito et al. (2018); You et al. (2019). From
a theoretical perspective, this problem can be attacked by establishing bounds on the generalization
of the source-domain-learnt model on target domain, using different complexity measures including
the VC-dimension Ben-David et al. (2006; 2010); Zhang et al. (2020) and Rademacher complex-
ity Mansour et al. (2009); Zhang et al. (2019). In particular, the latter works Mansour et al. (2009);
Zhang et al. (2019) rely on the Rademacher complexity over a so-called H∆H function class to
bound the gap between source and target generalization risks:
Definition 1 ( Mansour et al. (2009)). Let hypothesis space H be a set of real (vector)-valued
functions defined over input space X and label space Y: H = {hw : X 7→ Y} each parameterized
by w ∈ W ⊆ Rd, and ℓ : Y × Y 7→ R+ be the loss function. Given a dataset {x1, ...,xn} sampled
i.i.d. from distribution D defined over X , the empirical Rademacher complexity of H∆H over this
dataset is defined as follows:

R̂D(ℓ ◦ H∆H) = Eσ

[
sup

hw,hw′∈H

1

n

n∑
i=1

σiℓ(hw(xi), hw′(xi))

]
, (1)

where σ1, . . . , σn are i.i.d. Rademacher random variables with P{σi = 1} = P{σi = −1} = 1
2 .

Intuitively, above quantity measures how well the loss vector realized by two hypotheses within H
correlates with random vectors. The better correlation will imply a richer hypothesis class. How-
ever, unlike the classical Rademacher complexity whose loss vector is computed between predic-
tions made by a hypothesis and true labels, Eq. (1) is defined merely over predictions made by two
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hypotheses. Authors of Mansour et al. (2009); Zhang et al. (2019) have shown that this complexity
measure controls the domain adaptation generalization bound. Unfortunately, none of those works
give the precise analysis of R̂D(ℓ ◦ H∆H). To our best knowledge, Kuroki et al. (2019) is the
only prior work to analyze R̂D(ℓ ◦ H∆H) on linear classifier class, but their analysis is not tight.
Due to the importance of such complexity measure, we are interested in characterizing how large
this complexity measure can be in terms of model dimension and data diversity, even on some toy
model, e.g., linear model. Hence, the first question we investigate in this paper is: for linear models,
what quantities control the Rademacher complexity overH∆H function class?

Meanwhile, in modern machine learning, practitioners are not only interested in transferring stan-
dard model accuracy to another domain, but also in transferring robustness. Consider adversari-
ally robust risk over domain D: Radv−label

D (hw, yD) = Ex∼D
[
max∥δ∥∞≤ϵ ℓ(hw(x+ δ), yD(x))

]
,

where yD(·) is the labeling function. In the adversarially robust domain adaptation problem,
we are curious about the robust risk when the same model hw is tested on the new domain D′.
Unfortunately, as shown empirically Shafahi et al. (2019); Hong et al. (2021); Fan et al. (2021),
robust model learnt on source domain will lose its robustness catastrophically on a different do-
main. That is, the gap between robust risks on the old domain and new domains can be dramatically
huge, compared to the standard risk. This observation naturally leads to the question Why is the
robust risk harder to adapt to different domains?, which we aim to examine in this paper. To answer
this question, inspired by the Rademacher complexity overH∆H function class, we properly extend
this complexity measure to the adversarial learning setting, and propose the adversarial Rademacher
complexity over theH∆H class. We show that, the adversarial version complexity is always greater
than its non-adversarial counterpart, similar to the results proven in Yin et al. (2019) in the single
domain setting. Relying on this new complexity measure, for the first time, we characterize the
generalization bound of adversarially robust learning between source and target domain.

Recent studies Salman et al. (2020); Deng et al. (2021) also show that, the model trained adversar-
ially on the source domain, usually entails better standard accuracy on target domain, compared to
the normally trained model. In this paper, by further exploring our generalization bound, we show
that given large enough adversarial budget, small source adversarially robust risk will almost
guarantee small target domain standard risk, with the residual error controlled by ϵ. This con-
nection between source robust risk and target standard risk theoretically supports the advantage of
performing robust training in domain adaptation tasks.

Our contributions are summarized as follow:

• We study the Rademacher complexity over H∆H class, and propose the adversarial variant of it,
which is a new complexity measure towards better understanding the domain adaptation in adver-
sarial learning. In both linear classification and regression settings, we first show that adversarial
Rademacher complexity over H∆H class is greater than its non-adversarial counterpart. We also
show that adversarial complexity is smaller than its non-adversarial counterpart plus residual terms
polynomially depending on data dimension, model norm and adversarial budget.

• We generalize our results to ReLU neural networks, where we derive the similar upper bounds of
adversarialH∆H Rademacher complexity of a 2-layer ReLU neural network.

• We also establish the connection between robust learning and standard domain adaptation, which
helps explain the widely-observed phenomena that adversarially trained models can have good
generalization performance on different domains.

• We support our theoretical analysis by providing experiments illustrating how adversarial training
can help domain adaptation, especially with ℓ1 regularization. We also highlight numerically the
difficulty of transferring adversarial robustness across domains.

2 PROBLEM SETUP

We adapt the following notations throughout this paper. We use lower case bold letter to denote
vector, e.g., w, and use upper case bold letter to denote matrix, e.g., M. We use ∥w∥p and ∥M∥p
to denote ℓp-norm of vector w and matrix M respectively. We define the (p, q)-group norm as the
∥M∥p,q := ∥(∥m1∥p , . . . , ∥mn∥p)⊤∥q where the mis are the columns of M.
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We use D : X 7→ R to denote a data distribution (domain) defined over instance space X , and D̂
be the empirical distribution with nD samples drawn i.i.d. from D. We let H := {hw : X 7→ Y}
be the hypothesis space, and vector w ∈ W ⊆ Rd denotes the model parametrization of hw.
Given a loss function ℓ : Y × Y 7→ R, and a data distribution D, we let RD(hw, hw′) :=
Ex∼D[ℓ(hw(x), hw′(x))] be the risk of the disagreement between models hw and hw′ on domain
D. Specially, when the second argument of RD(·, ·) is the labeling function over D, it becomes the
commonly used risk function. We also define two adversarially robust risks: (1) Model-label robust
risk asRadv−label

D (hw, y) := Ex∼D
[
max∥δ∥∞≤ϵ ℓ(hw(x+ δ), y(x))

]
and (2) Model-model robust

risk asRadv
D (hw, hw′) := Ex∼D

[
max∥δ∥∞≤ϵ ℓ(hw(x+ δ), hw′(x+ δ))

]
. 1

In the domain adaptation scenario, we consider source domain S and target domain T distributions,
and let T̂ and Ŝ be the empirical source and target distributions with nS and nT samples. A key
quantity that controls the generalization in domain adaptation is the following discrepancy measure:
Definition 2 (H∆H discrepancy Mansour et al. (2009); Ben-David et al. (2010)). Given a hypothe-
sis classH, risk functionRD(·, ·),H∆H discrepancy between distributions S and T is defined by:

discH∆H(S, T ) = max
hw,hw′∈H

|RS(hw, hw′)−RT (hw, hw′)| . (2)

The H∆H discrepancy defines a semi-distance over two distributions, and it does not depend on
the labeling function of two distributions hence invariant to potential model shift across domains.
Another advantage of it, is that it can be efficiently estimated by finite samples, if the Rademacher
complexity over H∆H is finite. Hence based on Definitions 1 and 2, Mansour et al. (2009) derived
the following generalization bound among source and target domains.
Lemma 1 (Domain adaptation generalization lemma, consequence of Theorem 8 of Mansour et al.
(2009)). Assume that the loss function ℓ is symmetric and obeys the triangle inequality. We further
assume ℓ is bounded by M . Then ∀hw ∈ H , the following holds with probability at least 1− c:

RT (hw, yT ) ≤ RS(hw, hw∗
S
) + discH∆H(Ŝ, T̂ ) +RT (hw∗

T
, hw∗

S
) +RT (hw∗

T
, yT )

+ R̂S(ℓ ◦ H∆H) + R̂T (ℓ ◦ H∆H) +

(
3M

√
log(2/c)

nS
+ 3M

√
log(2/c)

nT

)
,

where yT is the labeling function on target domain, hw∗
T
, hw∗

S
are the best target and source models

inH, i.e., hw∗
S
= argminh∈HRS(h, yS) and hw∗

T
= argminh∈HRT (h, yT ).

The above bound successfully connects the target risk and source risk, with the help of Rademacher
complexity overH∆H and discH∆H distance. It turns out that, R̂S(ℓ ◦H∆H) and R̂T (ℓ ◦H∆H)
are the key complexity measures that control the generalization between different domains. Hence,
to study the generalization of domain adaptation in the adversarial setting, it naturally motivates us
to consider the following adversarial robust variant of this measure as defined below.
Definition 3 (Adversarial Rademacher complexity overH∆H class). LetH be a set of real-valued
hypothesis functions: H = {hw : X 7→ Y}, and ℓ(·, ·) : Y × Y 7→ R be the loss function. Given a
dataset {x1, ...,xn} sampled from distributionD, the empirical adversarial Rademacher complexity
ofH∆H over this dataset is defined as follows

R̂D(ℓ̃ ◦ H∆H) = Eσ

[
sup

hw,hw′∈H

1

n

n∑
i=1

σi max
∥δ∥∞≤ϵ

ℓ(hw(xi + δ), hw′(xi + δ))

]
, (3)

where σ1, . . . , σn are i.i.d. Rademacher random variables with P{σi = 1} = P{σi = −1} = 1
2 .

As we can see, (3) is defined over the class:

ℓ̃ ◦ H∆H :=
{
x 7→ max

∥δ∥∞≤ϵ
ℓ(hw(x+ δ), hw′(x+ δ)) : hw, hw′ ∈ H

}
.

We will see later how this quantity controls the generalization of adversarial domain adaptation. We
also generalizeH∆H discrepancy to the adversarial setting:

1Radv−label
D and Radv

D are also called constant-in-ball risk and exact-in-ball risk in Gourdeau et al. (2021).
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Definition 4 (AdversarialH∆H discrepancy). Given a hypothesis classH, risk functionRadv
D (·, ·),

the adversarialH∆H discrepancy distance between two distributions S and T is defined by:

discadvH∆H(S, T ) = max
hw,hw′∈H

|Radv
S (hw, hw′)−Radv

T (hw, hw′)| . (4)

The definition of adversarialH∆H discrepancy is analogous to standard one, and for linear models
can indeed be estimated as a function of the latter. We defer this result to Appendix F, Lemma 19.

Lemma 2 (Adversarially robust domain adaptation generalization lemma). Assume that the loss
function ℓ̃ is symmetric and obeys the triangle inequality. We further assume ℓ̃ is bounded by M .
Then, for any hypothesis w ∈ H , the following holds:

Radv−label
T (hw, yT ) ≤ Radv−label

S (hw, yS) +Radv−label
S (hw∗

S
, yS)

+ discadvH∆H(T̂ , Ŝ) +Radv
T (hw∗

T
, hw∗

S
) +Radv−label

T (hw∗
T
, yT )

+ R̂S(ℓ̃ ◦ H∆H) + R̂T (ℓ̃ ◦ H∆H) +

(
3M

√
log(2/c)

nS
+ 3M

√
log(2/c)

nT

)
.

The proof of Lemma 2 is deferred to Appendix E. Here we establish the relation between source
adversarially robust risk and target adversarially robust risk. It shows that the adversarial discrepancy
and adversarial complexity measure R̂D(ℓ̃ ◦ H∆H) on source and target domains are the two key
quantities controlling the deviation between the model’s performance on the two domains. Hence,
to answer our previously proposed question, why the robust risk is harder to adapt to different
domain, it is essential to study the connection between adversarial and non-adversarial Rademacher
complexities overH∆H class.

3 MAIN RESULTS

3.1 BINARY CLASSIFICATION SETTING

We start with the binary classification problem where the labels come from {−1,+1}. Like in
Section 4.1 of Yin et al. (2019), we introduce the hypothesis class of linear functions with bounded
weights:

H := {hw : x 7→ ⟨w, x⟩ , w ∈ Rd : ∥w∥p ≤W} , (5)

where p ≥ 1. Moreover, we consider the following loss ℓ(hw(x), y) := ϕ(yhw(x)) where ϕ is a
monotonic non-increasing and Lϕ-Lipschitz function. With such a loss ϕ, the non-adversarial class
of loss functions overH∆H becomes

ℓ ◦ H∆H :=
{
x 7→ ℓ(hw(x), hw′(x)) := ϕ

(
hw(x)hw′(x)

)
: hw, hw′ ∈ H

}
.

However, directly analyzing ℓ ◦ H∆H class will be difficult since we do not assume the formula of
ϕ explicitly. Hence, following Yin et al. (2019), let us define the following class of functions

f ◦ H∆H :=
{
x 7→ hw(x)hw′(x) : hw, hw′ ∈ H

}
.

We switch from the study of the Rademacher complexity defined in (1) over the function class
introduced in (5), that is for linear classifiers applied to binary classification, to the following formula

R̂D(f ◦ H∆H) = Eσ

[
sup

w,w′:∥w∥p≤W,∥w′∥p≤W

1

n

n∑
i=1

σiw
⊤xiw

′⊤xi

]
. (6)

Indeed, by Ledoux-Talagrand contraction property (Ledoux & Talagrand (2013)) of Rademacher
complexity we have that R̂D(ℓ ◦ H∆H) ≤ LϕR̂D(f ◦ H∆H). Thus, in the following lemma we
aim at estimating R̂D(f ◦ H∆H).
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Lemma 3 (Rademacher complexity for binary classification under linear hypothesis). Consider
hypothesis class defined in (5). Assume that a set of data {x1, ...,xn} are draw from D. Let
R̂(f ◦ H∆H) be defined as in (6). Then the following statement holds true for non-adversarial
Rademacher complexity :

R̂D(f ◦ H∆H) ≤
W 2

n

√√√√2

∥∥∥∥∥
n∑

i=1

(xix⊤
i )

2

∥∥∥∥∥
2

log(2d) +
∥X∥22,∞ log(2d)

3

·{1, 1 ≤ p ≤ 2

d1−2/p, p > 2
,

where X ∈ Rn×d is the data matrix and i-th row of X is xi.

The proof of Lemma 3 is deferred to the Appendix G.1. Lemma 3 shows that the magnitude of the
non-adversarial Rademacher overH∆H class depends on the spectral norm of data covariance ma-
trix. It implies that a more diverse dataset will result in a larger Rademacher complexity, and hence
harder to perform domain adaptation. We notice that Kuroki et al. (2019) also gave an estimation
of the upper bound of R̂D(f ◦ H∆H) in their Lemma 5, but our bound is superior to theirs in the
following two aspectives: (1) Our bound is tighter in terms of the dependency on covariance matrix,
since our bound depends on

∥∥∑n
i=1(xix

⊤
i )

2
∥∥
2

while their bound depends on
∑n

i=1

∥∥(xix
⊤
i )

2
∥∥2
F

.
(2) We consider that model capacity is controlled by p-norm while they only consider 2-norm.

Then, let us specify the class of functions involved in the definition of the adversarial Rademacher
complexity ofH∆H in (3) as follows:

ℓ̃ ◦ H∆H :=

{
max

∥δ∥∞≤ϵ
ϕ
(
hw(x+ δ)hw′(x+ δ)

)
: hw, hw′ ∈ H

}
,

and let us define

f̃ ◦ H∆H :=
{
x 7→ min

∥δ∥∞≤ϵ
hw(x+ δ)hw′(x+ δ) : hw, hw′ ∈ H

}
. (7)

With the above notations, we can characterize the adversarial counterpart of (6). Again by Ledoux-
Talagrand’s property, as in Yin et al. (2019); Awasthi et al. (2020), we get that R̂D(ℓ̃ ◦ H∆H) ≤
LϕR̂D(f̃ ◦ H∆H), where

R̂D(f̃ ◦ H∆H) = Eσ

[
sup

w,w′:∥w∥p≤W,∥w′∥p≤W

1

n

n∑
i=1

σi min
∥δ∥∞≤ϵ

w⊤(xi + δ)w
′⊤(xi + δ)

]
. (8)

Theorem 1 (Adversarial Rademacher complexity for binary classification under linear hypothesis).
Consider hypothesis class defined in (5). Assume a set of data {x1, ...,xn} are drawn from D.
Let R̂D(f ◦ H∆H) and R̂D(f̃ ◦ H∆H) be defined as in (6) and (8), respectively. The following
statement holds true for adversarial Rademacher complexity overH∆H function class under linear
hypothesis (5):

R̂D(f̃ ◦ H∆H) ≤ R̂D(f ◦ H∆H) + 2
W 2

√
n
ϵd1/p

∗
(
1 +
√
d

√
log(3

√
n)

)(
ϵd1/p

∗
+ 2 ∥X∥p∗,∞

)
,

where p∗ is such that 1/p + 1/p∗ = 1, and X ∈ Rn×d is the data matrix and i-th row of X is xi.
Moreover, the following lower bound also holds:

R̂D(f̃ ◦ H∆H) ≥ R̂D(f ◦ H∆H) +

{
0, 1 ≤ p ≤ 2
W 2

n (1− d1−2/p)Eσ

∥∥∑n
i=1 σixix

⊤
i

∥∥
2
, p > 2

. (9)

The proofs for Theorem 1 are deferred to Appendices G.2 and G.3. From (1), we notice that the
upper bound of R̂D(f̃ ◦ H∆H) has the smallest dependence in model dimension d if the weights
are constrained by the ℓ1-norm (p = 1). This is a similar observation as in Yin et al. (2019) where
they consider single domain setting. However, in their single domain setting, when p = 1, adver-
sarial Rademacher complexity is dimension free while we still have

√
d dependency. This heavier

dependence is likely due to the fact that R̂D(f̃ ◦H∆H) is defined by coupling two models and hence
enlarges the complexity. The bound achieves the sublinear convergence O(1/

√
n) over the number
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of samples n, and quadratic dependence on maximum model weight W . It implies that models with
suppressed norm can help adversarially robust domain adaptation since it reduces the Rademacher
complexity, as we will see in the experiments.

The lower bound result in (9) shows that, adversarial Rademacher complexity over H∆H will be
always larger than non-adversarial one, which implies that adversarial robust domain adaptation is
at least as hard as non-adversarial domain adaptation, and that is why, as we will also see in our
experiments, given a model, the gap between its source domain robust risk and target domain robust
risk is usually larger than that in terms of standard risk. Moreover, the gap between adversarial
and non-adversarial complexity is controlled by the spectral norm of Rademacher variable induced
covariance matrix. This dependence reveals that a more diverse dataset would be harder to transfer
robustness, compared to the standard domain adaptation.

3.2 LINEAR REGRESSION SETTING

In this section we consider linear regression problems. The hypothesis class of linear functions with
bounded weights remains the same as in (5). However, we consider the following class of quadratic
loss functions:

ℓ ◦ H∆H :=
{
x 7→ ℓ(hw(x), hw′(x)) := (hw(x)− hw′(x))2, hw, hw′ ∈ H

}
. (10)

The following lemma establishes the upper bound of non-adversarial Rademacher complexity over
H∆H in the above setting.

Lemma 4 (Rademacher complexity for regression under linear hypothesis). Let H be the set of
linear functions with bounded weights as defined in (5). Then the following statement holds true for
non-adversarial Rademacher complexity overH∆H class:

R̂D(ℓ ◦ H∆H) ≤
4W 2

n

√√√√2

∥∥∥∥∥
n∑

i=1

(xix⊤
i )

2

∥∥∥∥∥
2

log(2d)+
1

3
∥X∥22,∞ log(2d)

·{1 1 ≤ p ≤ 2

d1−2/p p > 2
,

where X ∈ Rn×d is the data matrix and i-th row of X is xi.

The proof of Lemma 4 is deferred to Appendix H.1. As in the binary classification case presented
in Section 3.1, we are able to relate the non-adversarial Rademacher complexity overH∆H class to
the spectral norm of data covariance matrix.

Theorem 2 (Adversarial Rademacher complexity for regression under linear hypothesis). LetH be
the set of linear functions with bounded weights as defined in (5). Then the following statement
holds true for adversarial Rademacher complexity overH∆H function class:

R̂D(ℓ̃ ◦ H∆H) ≤ R̂D(ℓ ◦ H∆H)

+ 4
W 2

√
n

(
2
√
dϵ ∥X∥2,∞ + dϵ2

)(√
2d log(6

√
n) + 1

)
·
{
1, 1 ≤ p ≤ 2

d1−2/p, p > 2
,

where X ∈ Rn×d is the data matrix and i-th row of X is xi. Meanwhile, the following lower bound
holds as well:

R̂D(ℓ̃ ◦ H∆H) ≥ R̂D(ℓ ◦ H∆H) +

{
0, 1 ≤ p ≤ 2
4W 2

n (1− d1−2/p)Eσ

∥∥∑n
i=1 σixix

⊤
i

∥∥
2
, p > 2

.

The proof of Theorem 2 is deferred to Appendices H.2 and H.3. Few comments can be made
concerning the above theorem. First, the upper bound of adversarial Rademacher complexity also
depends quadratically onW and adversarial budget ϵ, and super-linearly on model dimension d. Sec-
ond, for the lower bound, we established the similar gap between R̂D(ℓ̃◦H∆H) and R̂D(ℓ◦H∆H)
as in classification setting, which means the data diversity also affects hardness of adversarially ro-
bust domain adaptation in regression setting.
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4 EXTENSION TO NEURAL NETWORKS WITH RELU ACTIVATION

We next extend our analysis methods to more complicated neural network function class. In this
section, we will present our results for two-layer ReLU neural networks. That is, we consider the
following hypothesis class

H := {hw : x 7→ a⊤ReLU(Wx) , a ∈ Rd,W ∈ Rd×d : ∥a∥p ≤ A, ∥W∥p ≤W}. (11)

The following theorem establishes the relation between Adversarial Rademacher complexity and
non-adversarial version in classification setting. As in Section 3.1, we consider the same loss func-
tions of the form ℓ(hw(x), y) := ϕ(yhw(x)) in classification setting, and ℓ2 loss in regression
setting.
Theorem 3 (Adversarial Rademacher complexity on ReLU neural network class). Let H be the
set of two-layer ReLU neural networks with bounded weights as defined in (11). Then, the follow-
ing statement holds true for adversarial Rademacher complexity over H∆H function class, with
classification loss

R̂D(f̃ ◦ H∆H) ≤ RD(f ◦ H∆H)

+
A2W 2

n
ϵ
√

d log(2d)

√√√√2

n∑
i=1

(
√
dϵ+ 2 ∥xi∥2)2+

1

3

√
log(2d)(

√
dϵ+ 2 ∥X∥2,∞)

·

{
1, 1 ≤ p ≤ 2

d2−4/p, p > 2
.

Similarly the following statement holds true for adversarial Rademacher complexity over H∆H
function class with ℓ2 loss:

R̂D(ℓ̃ ◦ H∆H) ≤ R̂D(ℓ ◦ H∆H)

+
A2

n
W 2ϵ

√
d log(2d)

3
√√√√2

n∑
i=1

(
√
dϵ+ 2 ∥xi∥2)2 +

√
log(2d)(

√
dϵ+ 2 ∥X∥2,∞)

·

{
1, 1 ≤ p ≤ 2

d2−4/p, p > 2
.

The proof of Theorem 3 is deferred to Appendices I.1 and I.2. As we can see from the above
theorem, we get the similar upper bound for ReLU neural network class to what we showed in the
linear model case. The upper bound of adversarial Rademacher can be bounded by non-adversarial
version plus terms depending on the norm of each layer, and the norm of data points. We would
like to mention that, unlike the linear case where we show that the gap between adversarial and non-
adversarial Rademacher complexity is lower bounded, here we do not establish such lower bound,
due to the difficulty of analyzing ReLU unit.

5 ADVERSARIAL TRAINING HELPS TRANSFER TO DIFFERENT DOMAIN

Here we discuss the connection between standard ERM learning and adversarially robust learning.
As observed by prior works Salman et al. (2020); Deng et al. (2021), if a model is adversarially
trained on the source domain, then its standard accuracy on target domain is sometimes better than
if it had been fitted via vanilla ERM on source domain. In this section, we try to explain this phe-
nomena from adversarially robust domain adaptation perspective. We found that, when adversarial
budget is large enough, small source adversarial risk almost guarantees the small target domain
standard risk. First, we need to introduce the following optimization problem.
Definition 5. Let p and p′ be two vectors on the N -dimensional simplex and let ℓ be a 0-1 vector.
Let also Λ be an arbitrary subset of [N ] := {1, . . . , N}. The Subset Sum Problem with Structural
Objective can be defined as solving the following combinatorial optimization problem: min

ℓ̃∈{0,1}N

∣∣∣p⊤ℓ̃− p′⊤ℓ
∣∣∣

s.t. ℓ̃i = ℓi, ∀ i ∈ [N ] \ Λ
.

We denote its optimal value as V ∗(p′,p, ℓ,Λ).

The above problem is a variant of Subset Sum Problem Hartmanis (1982), which is also NP-
complete. We look for a subset of coordinates of a simplex vector p, such that their sum is closest
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to a given goal. The given goal has special structure: it is defined as sum of a subset of coordinates
in another simplex vector p′. If the constraint set Λϵ has more indices, the optimal value will be
smaller since we can determine the value on more coordinates of ℓ̃. In the following lemma, we
explain how this combinatorial measure helps us to connect adversarially robust and standard risks
for the binary classification task.

Lemma 5. Consider binary classification task, with sign linear classifier class H = {hw : hw =
sign(w⊤x), ∥w∥p ≤ W} and 0-1 loss function ϕ(x, y) = 1

2 |x− y|. Assume all domains share the
same labeling function y(x) ∈ {−1, 1}. The following statement holds for any T ′:

RT ′(hw, y) ≤ Radv−label
T (hw, y) + V ∗(p′,p, ℓ,Λϵ),

where ℓ is the loss vector such that ℓi = 1
2 | sign(w

⊤xi) − y(xi)|, with xi ∈ X . The vectors p,
p′ are probability mass vectors of T and T ′, i.e., p(x) = PX∼T (X = x),x ∈ X and p′(x) =
PX∼T ′(X = x),x ∈ X Moreover, Λϵ = {i : |w⊤xi| ≤ ϵ∥w∥1,xi ∈ X ,∀w, ∥w∥p ≤W}.

The corresponding proof is given in Appendix J. Lemma 5 shows that, the standard risk on domain
T ′ can be bounded by robust risk on domain T , plus the quantity controlled by ϵ. Since the set Λϵ

stores all indices i such that we can choose to flip ℓ̃i’s value between 0 and 1, then if we have larger
ϵ, there will be more indices in Λϵ, which means there are more coordinates in ℓ̃ we can play with,
and hence smaller value of V ∗.

6 EMPIRICAL RESULTS

In this section, we verify the theoretical implications through empirical studies on a multi-domain
dataset, DIGITS Ganin & Lempitsky (2015). DIGITS has 28 × 28 images and includes 5 different
domains: MNIST (Lecun et al., 1998), SVHN (Netzer et al., 2011), USPS (Hull, 1994), SynthDigits
(Ganin & Lempitsky, 2015), and MNIST-M (Ganin & Lempitsky, 2015). All domain datasets are
subsampled to contain 7438 images to eliminate the effect of number of samples in generalization.

Given a model hw parameterized by w, we consider two training methods:

Adversarial Training: min
w

1

n

∑n

i=1
max

∥δ∥∞≤ϵ
ℓ(hw(xi + δ), y(xi)), (12)

Standard Training: min
w

1

n

∑n

i=1
ℓ(hw(xi), y(xi)). (13)

To solve the inner maximization in (12), we leverage k-step PGD (projected gradient descent) attack
(Madry et al., 2018) with a constant noise magnitude ϵ. Following (Madry et al., 2018), we use
ϵ = 8/255, k = 7, and attack inner-loop step size 2/255, for training, and adversarial test. Then we
use Adam to minimize the losses with 100 epochs and learning rate of 10−2 decaying in a cosine
manner. We evaluate the model performance by: (1) standard accuracy (SA): classification accuracy
on the clean test set; and (2) robust accuracy (RA): classification accuracy on adversarial images
perturbed from the original test set.

How does adversarial robustness transfer arcoss domains? In this experiments, we use a con-
volutional network whose architecture is elaborated in Appendix K. We report the transfer accuracy
in Table 1 where models are trained on source domain (first column in each row) and tested on dif-
ferent target domains (the rest columns), as well as the difference between source SA/RA and target
SA/RA. The experiment has the following implications: (1) We observe that transfer difference ∆
is more significant on RA than SA. For example, for the model trained on MNIST dataset, no matter
trained standardly or adversarially, their testing RAs on all other domains drop dramatically than
SAs. It implies that adversarially robust domain adaptation is harder than standard domain adapta-
tion, as illustrated by Theorem 1. (2) The models trained on complicated dataset may gain higher
robust accuracy at simple dataset, e.g., SVHN→ {MNIST, SynthDigits and USPS} and MNIST-M
→MNIST. The increase can be attributed to that the source domain has more complicated features
and thus more robust features are learnt. However, exploring the reason behind this interesting
phenomena is beyond the scope of this paper.

8
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Table 1: Transferred standard (SA %) and robust (RA %) accuracies tested on different domains
from the DIGITS datasets. ∆ indicates the difference between the train and test domain accuracy.

Target MNIST MNIST-M SVHN SynthDigits USPS
Source SA RA SA RA SA RA SA RA SA RA

Standardly-trained models

MNIST Acc 98.8 95.9 34.7 15.3 16.0 5.9 25.0 7.8 49.9 27.9
∆ +0.0 +0.0 −64.1 −80.6 −82.8 −90.1 −73.7 −88.2 −48.9 −68.0

MNIST-M Acc 97.2 76.7 94.1 28.5 33.9 0.0 49.1 1.7 63.6 5.3
∆ +3.1 +48.2 +0.0 +0.0 −60.2 −28.5 −45.0 −26.8 −30.5 −23.2

SVHN Acc 59.6 32.7 47.2 5.2 87.5 6.0 84.3 28.4 64.5 22.5
∆ −27.9 +26.7 −40.3 −0.8 +0.0 +0.0 −3.2 +22.4 −22.9 +16.5

SynthDigits Acc 83.6 57.0 57.9 9.1 73.0 3.8 96.1 59.8 82.7 40.4
∆ −12.5 −2.8 −38.2 −50.7 −23.2 −56.1 +0.0 +0.0 −13.4 −19.4

USPS Acc 67.0 54.3 25.8 13.1 9.6 5.1 31.2 13.1 98.7 94.1
∆ −31.7 −39.8 −73.0 −80.9 −89.2 −89.0 −67.6 −81.0 +0.0 +0.0

Adversarially-trained models

MNIST Acc 99.0 98.3 49.5 31.9 19.4 14.6 32.2 17.3 59.7 38.8
∆ +0.0 +0.0 −49.5 −66.4 −79.6 −83.7 −66.9 −81.0 −39.4 −59.5

MNIST-M Acc 96.9 94.5 93.0 76.8 26.9 11.5 46.4 25.4 66.5 46.8
∆ +4.0 +17.7 +0.0 +0.0 −66.1 −65.3 −46.5 −51.4 −26.5 −30.0

SVHN Acc 56.2 46.6 43.3 18.0 76.2 42.6 78.9 60.2 66.8 51.3
∆ −20.0 +4.0 −32.9 −24.6 +0.0 +0.0 +2.7 +17.6 −9.3 +8.7

SynthDigits Acc 84.9 75.6 58.0 25.8 64.1 17.9 95.6 84.8 82.6 64.8
∆ −10.6 −9.2 −37.6 −59.1 −31.5 −66.9 +0.0 +0.0 −13.0 −20.0

USPS Acc 72.3 65.6 24.1 15.4 9.7 5.3 30.1 16.8 98.9 97.5
∆ −26.6 −31.9 −74.8 −82.2 −89.1 −92.3 −68.8 −80.8 +0.0 +0.0

Figure 1: Robust accuracy drops (∆)
by varying the ℓ1 regularization inten-
sity (µ) and ℓ∞ perturbation ϵ. A linear
classifier is adversarially trained on the
MNIST and tested on target domains.

Adversarial training helps domain adaptation. We can
see from Table 1 that, sometimes when models are adver-
sarial trained on simple dataset (e.g., MNIST and Syn-
thDigits dataset), it is noticeable the standard accuracy on
other datasets are improved. For example, if we do ad-
versarial training on MNIST dataset, we achieve signifi-
cantly higher SA on other dataset, than standard trained
model on MNIST. The same phenomena happens when
we choose SynthDigits or USPS as source domain. Such
advantages are consistent with our Corollary 3.

Does ℓ1 regularization help adversarial transfer? Our
Theorem 1 shows that the adversarial Rademacher com-
plexity over H∆H class is suppressed the most when
the ℓ1-norm of the model parameters is controlled. To
empirically investigate the relation, we consider a linear
model on vectorized images x and solve the following optimization problem with ℓ1 regularization:
minw

1
n

∑n
i=1 max∥δ∥∞≤ϵ ℓ(hw(xi + δ), y(xi)) + µ ∥w∥1 , where µ ≥ 0 is the regularization in-

tensity. In Figure 1, we present the drops of robust accuracy from source domain to target domain
RAS − RAT , regarding the intensity of ℓ1 regularization. Consistent with our theoretical results,
increasing ℓ1 regularization (µ > 0) can reduce the transfer accuracy drops on different level of
adversarial attacks.

7 CONCLUSION

In this paper we propose and analyze the adversarial Rademacher complexity over H∆H class,
which is proven to be key factor that controls the generalization of adversarially robust risk to dif-
ferent domains. We theoretically explain that why adversarial domain adaptation is harder than
different domain than standard domain adaptation. We also characterize the standard accuracy of
a given model on any target domain, using its adversarial accuracy on the source domain, which
matches with the recent observation regarding the superiority of adversarially training.
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A MORE RELATED WORK

Here, we briefly discuss some relevant prior works.

Discrepancy Based Domain Adaptation Theory A significant category of the domain adapta-
tion study is discrepancy based generalization analysis. Ben-David et al. (2006) borrowed the A-
discrepancy from seminal work Kifer et al. (2004), and gave the target domain generalization in
terms of source domain error and this discrepancy measure. Afterwards, Ben-David et al. (2010)
proposed H∆H discrepancy, which is easier to estimate from unlabeld data, and also proved VC
dimenson based generalization bound. Mansour et al. (2009) also consider H∆H discrepancy,
while their analysis depends on Rademacher complexity over H∆H function class. They claim
that in some situation, their learning bound is superior to Ben-David et al. (2010)’s bound. Mohri &
Muñoz Medina (2012) proposed Y-discrepancy which is a labeling function dependent measure, but
hence it cannot be estimated from unlabeled data. Kuroki et al. (2019) advocated a source-guided
discrepancy and showed that it is a tighter discrepancy measure than H∆H discrepancy. Zhang
et al. (2020) proposed localized discrepancy measure, where they argued that when defining a dis-
crepancy measure, considering the whole hypothesis class may be too pessimistic, so they chose to
incorporate risk level as well into the discrepancy definition.

Generalization of Adversarially Robust Learning To characterize the generalization of adver-
sarially robust learning, a line of researches Khim & Loh (2018); Yin et al. (2019); Awasthi et al.
(2020) are conducted via Rademacher complexity point of view. Khim & Loh (2018) is among
the first to examine the adversarial Rademacher complexity under ℓ∞ attack, and as a concurrent
work, Yin et al. (2019) characterized the upper and lower bound of it, and claim that adversarially
robust is at lease as hard as standard ERM learning. Awasthi et al. (2020) further extended Yin
et al. (2019)’s results to adversary set under arbitrary norm constraint, and analyze the complexity
of neural network as well. Another category of generalization studies of robust learning are based
on PAC learning framework. Cullina et al. (2018) proved that empirical robust risk minimization is
a successful robust PAC learner. Montasser et al. (2019) show that, the function classes with finite
VC dimension are adversarially robustly PAC learnable, with the sample complexity related to dual
VC dimension, which could be exponentially larger than vanilla VC dimension. Diochnos et al.
(2019) proved the lower sample complexity bound for robust PAC learning under hybrid attack.
They show that a sample complexity exponetially in the adversary budget is unavoidable.Gourdeau
et al. (2021) also studied the hardness of robust classification under PAC learning framework, and
proved some impossibility results regarding the adversary budget. Diochnos et al. (2018) investi-
gated different adversarial risk definitions, and proved negative results on the uniform distribution.
Pydi & Jog (2022) also analyzed the existing adversarial risk notions, and discovered the difference
and connections among them.

Robustness Transfer Robustness transfer is a newly initiated research area. Shafahi et al. (2019)
discovered that by fine-tuning the network on target domain, the robustness can be inherited by
the new model. Hong et al. (2021) considered the federated learning scenario, where they wish to
transfer robust model from computationally rich users to users that cannot afford adversarial training.
They proposed a batch-normalization based method to share robust among different clients. Fan
et al. (2021) studied when the robust features learnt in contrastive learning can be transferred to
different tasks.

B DIFFERENCE BETWEEN ROBUST LEARNING, STANDARD DOMAIN
ADAPTATION AND ADVERSARIALLY ROBUST DOMAIN ADAPTATION

Here we briefly discuss the difference between the three relevant learning scenario: adversarially
robust learning, standard domain adaptation and adversarially robust domain adaptation. In the goal
of adversarially robust learning, we care about the gap between population robust risk and empirical
robust risk, on the same domain; While in standard domain adaptation, we consider the gap between
the (standard) risk on the target domain and the risk on the source domain. In adversarially robust
domain adaptation, we care about the relation between adversarially robust risks on target and source
domain, respectively.
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C TECHNICAL NOVELTY

In this section we explain our technical novelty compared to existing works regard Adversarial
Rademacher complexity Yin et al. (2019); Awasthi et al. (2020). Taking classification setting for
example, Yin et al. (2019); Awasthi et al. (2020) consider the Rademacher complexity over the
loss class between model predictions and labels, i.e., R = E[supw 1

n

∑n
i=1 σi min∥δ∥≤∞ w⊤(x +

δ)], where the inner minimization problem is linear in w and δ. We consider the
loss between predictions among two models, hence the Rademacher complexity is R =
E[supw,w′

1
n

∑n
i=1 σi min∥δ∥≤∞ w⊤(x + δ)w′⊤(x + δ)], where the inner problem is quadratic

in terms of w and δ. Hence, unlike previous works on single domain Rademacher complexity,
where the inner problem has simple closed form solution, we have to use ε-nets and covering num-
ber idea to prove upper bound. Our another key technical contribution is in the proof of lower
bound results. For lower bound proofs, controlling the magnitude of Rademacher complexity with
the inner problem being quadratic objective is significantly harder than linear objective. We derive
the (complicated) closed form solution to inner quadratic programming, and leverage the symmetric
property of Rademacher random variables to avoid heavy computation.

D USEFUL LEMMAS

In this section, we present necessary lemmas that are used further in the proof of our main results.

D.1 MATRIX CONCENTRATION INEQUALITY

Theorem 4 (Matrix Bernstein inequality, Thm 6.1.1 of Tropp et al. (2015)). Let us denote by ∥.∥2
the spectral norm of matrix. Consider a finite sequence of n independent, random matrices Zi with
common dimension d1 × d2. Assume that

E [Zi] = 0 and ∥Zi∥2 ≤ L, ∀i ∈ [n] .

Let Y :=
∑n

i=1 Zi. Then,

E [∥Y∥2] = E

[∥∥∥∥∥
n∑

i=1

Zi

∥∥∥∥∥
2

]
≤
√
2Var(Y) log(d1 + d2) +

1

3
L log(d1 + d2) , (14)

where the matrix variance is given by

Var(Y) :=max
{∥∥E [YY⊤]∥∥

2
,
∥∥E [Y⊤Y

]∥∥
2

}
=max

{∥∥∥∥∥
n∑

i=1

E
[
ZiZ

⊤
i

]∥∥∥∥∥
2

,

∥∥∥∥∥
n∑

i=1

E
[
Z⊤

i Zi

]∥∥∥∥∥
2

}
.

D.2 BASIC LEMMAS

Lemma 6 (Basic squared norm inequality). For any vector a, b, we have that ∥a− b∥22 ≤ 2 ∥a∥22 +
2 ∥b∥22.

Lemma 7 (Hölder inequality). Let p ∈ R such that 1 < p < ∞. Let p∗ be its conjugate, that is if
1 < p <∞, p∗ is such that 1

p + 1
p∗ = 1. Let v,w ∈ Rd, then the following inequality holds

|⟨v, w⟩| ≤ ∥v∥p ∥w∥p∗ .

If p = 1, we set p∗ =∞.

Lemma 8 (Equivalence of p-norms). Let q > p ≥ 1, then for all v ∈ Rd we have ∥v∥q ≤ ∥v∥p ≤
d1/p−1/q ∥v∥q . It also holds for q =∞, that is ∥v∥∞ ≤ ∥v∥p ≤ d1/p ∥v∥∞.
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Lemma 9 (Maximum dot product over ℓ∞ ball). The ℓ∞ and ℓ1 norms are duals of each other. That
is:

max
∥x∥∞≤ϵ

z⊤x = ϵ ∥z∥1 , (15)

and this maximum is attained for x∗ = ϵsgn(z), where sgn denotes the element-wise sign function.

Proof. Hölder inequality implies that for all z, x ∈ Rp,

z⊤x ≤ |z⊤x| ≤ ∥x∥∞ ∥z∥1 ≤ ϵ ∥z∥1 .

Finally, we notice this upper bound is reached for x∗ = ϵsgn(z) as

z⊤x∗ = ϵz⊤sgn(z) = ϵ

p∑
i=1

zisgn(zi) = ϵ ∥z∥1 .

Lemma 10 (Minimum dot product over ℓ∞ ball). Let z ∈ Rd, the solution of

min
∥x∥∞≤ϵ

z⊤x = −ϵ ∥z∥1 , (16)

is attained at x∗ = −ϵsgn(z).

Proof. Same reasoning as in Lemma 9.

Lemma 11 (Lower bound of minimum “quadratic” form over ℓ∞ ball). Let z ∈ Rd, the solution of

min
∥x∥∞≤ϵ

⟨u, x⟩⟨v, x⟩ ≥ −ϵ2 ∥u∥1 ∥v∥1 , (17)

Proof. Let x ∈ B∞(0d, ϵ) which denotes the ℓ∞ centered ball of radius ϵ > 0. Hölder’s inequality
for dual norms applied twice gives us:

|⟨u, x⟩⟨v, x⟩| ≤ ∥x∥2∞ ∥u∥1 ∥v∥1 ≤ ϵ
2 ∥u∥1 ∥v∥1 ,

which directly implies that

min
∥x∥∞≤ϵ

⟨u, x⟩⟨v, x⟩ ≥ −ϵ2 ∥u∥1 ∥v∥1 .

Remark 1. We make several comments on the above Lemma 11:

• Note that if v = u, then the objective becomes positive and 0 is a simpler and sharp lower bound
as it is reached for x = 0d.

• Else if v = −u, then applying Lemma 12 implies that the minimum is reached and equals
−ϵ2 ∥u∥21 which means the lower bound in (17) is sharp.

• Else if v⊥u, then one should be able to prove that the minimum is reached at something like
x∗ = ϵ u−v

∥u−v∥∞
, which correspond to an objective equaling: ⟨u, x∗⟩⟨v, x∗⟩ = −ϵ2 ∥u∥2

2∥v∥
2
2

∥u−v∥2
∞

.

Lemma 12 (Maximum squared dot product over ℓ∞ ball). We have that

max
∥x∥∞≤ϵ

(z⊤x)2 = ϵ2 ∥z∥21 , (18)

and this maximum is attained for x ∈ {ϵsgn(z),−ϵsgn(z)}, where sgn denotes the element-wise
sign function.

Proof. Hölder inequality implies that for all z, x ∈ Rp,

(z⊤x)2 ≤ ∥x∥2∞ ∥z∥
2
1 ≤ ϵ

2 ∥z∥21 .

Finally, we notice this upper bound is reached for x∗ = ±ϵsgn(z) as

(z⊤x∗)2 = ϵ2(z⊤sgn(z))2 = ϵ2 ∥z∥21 .

14



Under review as a conference paper at ICLR 2023

Lemma 13. Let A be a symmetric matrix, we have that

sup
∥w∥2≤W,∥w′∥2≤W

w⊤Aw′ = ∥A∥2 .

Proof. Let w,w′ with ℓ2−norm smaller than W . By Cauchy-Schwarz’s inequality we directly get
that

w⊤Aw′ ≤ |⟨w, Aw′⟩|
Cauchy-Schwarz
≤ ∥A∥2 ∥w∥2 ∥w

′∥2 ≤W
2 ∥A∥2 . (19)

We then perform eigendecomposition on A:

w⊤Aw′ = w⊤UΣU⊤w′ =W 2y⊤Σy′ ,

where Σ is a diagonal matrix containing eigenvalues λi’s of A, U is an orthogonal matrix since A
is symmetric, y := 1

W U⊤w and y′ := 1
W U⊤w′. In this orthogonal basis, let i∗ be the coordinate

of the eigenvalue λi∗ with largest magnitude in absolute value. We denote by (ei)i∈[d] the canonical
basis of Rd. Let y = ei∗ and y′ = sgn(λi∗)y, we get

y⊤Σy′ = |λi∗ | =
√
max
i∈[d]

λi(A)2 =
√
λmax(A2) = ∥A∥2 .

Thus, the upper bound in (19) is attained by inverting the change of variable from y,y′ to w,w′.

Lemma 14. Let A ∈ Rd×d. Then the following statements hold:

sup
∥w∥p≤W,∥w′∥p≤W

w⊤Aw′ ≤ sup
∥w∥2≤W,∥w′∥2≤W

w⊤Aw′ ·
{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2
, (20)

sup
∥w∥p≤W,∥w′∥p≤W

w⊤Aw′ ≥ sup
∥w∥2≤W,∥w′∥2≤W

w⊤Aw′ ·
{
d1−2/p, if 1 ≤ p ≤ 2

1, else if p > 2
. (21)

Proof. We begin with proving the first inequality. If 1 ≤ p ≤ 2, we know that:

Bp(W ) ⊆ B2(W ).

Hence sup∥w∥p≤W,∥w′∥p≤W w⊤Aw′ ≤ sup∥w∥2≤W,∥w′∥2≤W w⊤Aw′.

If p > 2, since 1
d1/2−1/p ∥w∥2 ≤ ∥w∥p, we know that ∥w∥p ≤ W implies 1

d1/2−1/p ∥w∥2 ≤ W . So
we have:

Bp(W ) := {w : ∥w∥p ≤W} ⊆ {w :
1

d1/2−1/p
∥w∥2 ≤W} ⊆ B2(Wd1/2−1/p).

Hence:

sup
∥w∥p≤W,∥w′∥p≤W

w⊤Aw′ ≤ sup
∥w∥2≤Wd1/2−1/p,∥w′∥2≤Wd1/2−1/p

w⊤Aw′

≤ sup
∥w∥2≤W,∥w′∥2≤W

w⊤Aw′ · d1−2/p .

Now we switch to prove the second inequality. If 1 ≤ p ≤ 2, then ∥w∥2 ≥ 1
d1/p−1/2 ∥w∥p, so we

know

B2(W ) := {w : ∥w∥2 ≤W} ⊆ {w :
1

d1/p−1/2
∥w∥p ≤W} = Bp(d1/p−1/2W ).

Hence:

sup
∥w∥2≤W,∥w′∥2≤W

w⊤Aw′ ≤ sup
∥w∥p≤d1/p−1/2W,∥w′∥p≤d1/p−1/2W

w⊤Aw′

≤ d2/p−1 sup
∥w∥p≤W,∥w′∥p≤W

w⊤Aw′ .

15
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If p > 2, then we have

B2(W ) ⊆ Bp(W ),

so we can conclude the relation:

sup
∥w∥2≤W,∥w′∥2≤W

w⊤Aw′ ≤ sup
∥w∥p≤W,∥w′∥p≤W

w⊤Aw′.

Lemma 15 (Partition). Let us define A := {−1,+1}N . Then, there must be an equal partition
of A = A+ + A−, such that A− is obtained by multiplying −1 on each vector in A+. That is,
|A+| = |A−| and A− = {−a,a ∈ A+}.

Proof. We prove by induction. When N = 1, we have A1 = {−1, 1}, and we can partition it as
A+ = {1}, and A− = {−1};
The we assume the hypothesis holds for N = k, that is, Ak := {−1,+1}k can be partition as
Ak = A+

k + A−
k such that |A+

k | = |A
−
k | and A−

k = {−a,a ∈ A+
k }. Now, for N = k + 1, we

append all vectors a ∈ A+
k by 1, and put [a⊤, 1] into A+

k+1 and append all vectors a ∈ A−
k by −1,

and put [a⊤,−1] into A−
k+1. It can be verify that, |A+

k+1| = |A
−
k+1| and A−

k+1 = {−a,a ∈ A+
k+1}.

D.3 QUADRATIC OBJECTIVE SUBJECT TO INFINITE NORM CONSTRAINT

Lemma 16. Let w ∈ Rp, a ∈ R and ϵ ≥ 0. Let us consider the problem

δ∗ = argmax
δ∈Rp:∥δ∥∞≤ϵ

(w⊤δ + a)2 .

The solution is given by
δ∗ = ϵsgn(a)sgn(w) ∈ Rp , (22)

where we overload the notation sgn denotes in the mean time a single element and a coordinate wise
sign operator, i.e., sgn(a) ∈ R but sgn(w) ∈ Rp. Moreover, the maximum reached is

(wT δ∗ + a)2 = (ϵsgn(a)wT sgn(w) + a)2 = (ϵ ∥w∥1 + |a|)
2 . (23)

Proof. Let us give a first intuition and proof in dimension one and then extend this to larger dimen-
sions.

• Case p = 1 (w becomes w). In this setting the problem intuition is clear: one should select δ,
with maximal amplitude, that makes δw having the same sign as a. If a and w have the same sign,
then δ = ϵ. Else, δ = −ϵ.

• Case p ∈ N∗. For all w, δ ∈ Rp, Hölder inequality gives that

|w⊤δ| ≤ ∥δ∥∞ ∥w∥1 .

Let δ ∈ Rp such that ∥δ∥∞ ≤ ϵ. Then, this implies that on the feasible set

|w⊤δ| ≤ ϵ ∥w∥1 . (24)

Thus,

(wT δ + a)2 = (wT δ)2 + 2awT δ + a2

(24)
≤ ϵ2 ∥w∥21 + 2awT δ + a2

≤ ϵ2 ∥w∥21 + 2|a||wT δ|+ a2

(24)
≤ ϵ2 ∥w∥21 + 2|a|ϵ ∥w∥1 + a2

= (ϵ ∥w∥1 + |a|)
2 .

Finally, one can check that upper bound of the objective is attained for δ∗ given in (22).

16
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Lemma 17. Let w ∈ Rp, a ∈ R and ϵ ≥ 0. Let us consider the problem

δ∗ = argmin
δ∈Rp:∥δ∥∞≤ϵ

(wT δ + a)2 . (25)

Let I := {i ∈ [p] : wi ̸= 0}.
• If ϵ ∥w∥1 ≥ |a|, then a solution is given by{

δ∗i = − a
∥w∥1

wi

|wi| ∀i ∈ I
δ∗i = 0 ∀i ∈ [p]\I

.

• Else ϵ ∥w∥1 < |a|, and a the solution is given by{
δ∗i = −ϵ a

|a|
wi

|wi| ∀i ∈ I
δ∗i = 0 ∀i ∈ [p]\I

.

This solution can be condensed in the following formulation:δ∗i = −a wi

|wi|
min

{
1

∥w∥1
,
ϵ

|a|

}
∀i ∈ I

δ∗i = 0 ∀i ∈ [p]\I
. (26)

The minimal value is given by:

min
δ∈Rp:∥δ∥∞≤ϵ

(wT δ + a)2 = a2
(
1−min

{
1,
ϵ∥w∥1
|a|

})2

.

Remark 2. Note that in general there are an infinite number of solutions to (25) as in (26) one can
choose arbitrarily the value of δ∗i for all i ∈ [p]\I (as soon as it is kept smaller than ϵ in absolute
value).

Proof. Let [p] := {1, . . . , p}. Let us try to build a solution which drives the dot product w⊤δ
towards −a. Let I := {i ∈ [p] : wi ̸= 0}.

Case 1: If ϵ ∥w∥1 ≥ |a|. Let us δ∗ ∈ Rp such that{
δ∗i = − a

∥w∥1

wi

|wi| ∀i ∈ I
δ∗i = 0 ∀i ∈ [p]\I

.

This vector is in the feasible set as ∥δ∗∥∞ = maxi∈I
|a|

∥w∥1

|wi|
|wi| =

|a|
∥w∥1

≤ ϵ, as assumed. Then,

wT δ∗ + a = − a

∥w∥1

∑
i∈I

w2
i

|wi|
+ a = 0 .

This means that if the entries of vector w are large enough (in absolute value), we can build a feasible
vector δ∗ such that the objective in (25) is zero.

Case 2: If ϵ ∥w∥1 < |a|. Let us δ∗ ∈ Rp such that{
δ∗i = −ϵ a

|a|
wi

|wi| ∀i ∈ I
δ∗i = 0 ∀i ∈ [p]\I

.

This vector is in the feasible set as ∥δ∗∥∞ = maxi∈I ϵ
|a|
|a|

|wi|
|wi| = ϵ, as assumed. Then,

wT δ∗ + a = −ϵ a
|a|
∑
i∈I

w2
i

|wi|
+ a = a

(
1− ϵ

∥w∥1
|a|

)
︸ ︷︷ ︸

∈[0,1]

.

17
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This means that if the entries of vector w are too small (in absolute value), we can only build a
feasible vector δ∗ such that w⊤δ∗ close too −a. And the corresponding objective in (25) becomes

a2
(
1− ϵ∥w∥1

|a|

)2
.

Finally, one just can show with Hölder inequality that (wT δ + a)2 ≥ a2
(
1− ϵ∥w∥1

|a|

)2
for all δ in

the feasible set, which concludes the proof. If a ≥ 0, the computation follows easily, else we can
just replace δ ← −δ to get back to the former case.

18
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E PROOF OF GENERALIZATION LEMMA ( LEMMA 2)

In this section we provide the proof of Lemma 2. First let us introduce the following helper lemma.

Lemma 18. Assume Ŝ and T̂ are the sets of data drawn from S and T , with size nS and nT
respectively, and the value of ˜ℓ(·) is bounded by M . Then we have:

|discadvH∆H(S, T )− discadvH∆H(Ŝ, T̂ )| ≤ R̂S(ℓ̃ ◦ H∆H) + R̂T (ℓ̃ ◦ H∆H)

+

3M

√
log(2/c)

nS
+ 3M

√
log(2/c)

nT

 .

Proof. Since absolute value satisfies triangle inequality, we have:

discadvH∆H(S, T )
(4)
≤ discadvH∆H(S, Ŝ) + discadvH∆H(T , T̂ ) + discadvH∆H(Ŝ, T̂ ) .

According to Rademacher-based generalization bound of Mohri et al. (2018), we know that

discadvH∆H(S, Ŝ) = max
h,h′∈H

|Radv
S (h, h′)−Radv

Ŝ (h, h′)| ≤ RŜ(ℓ̃ ◦ H∆H) + 3M

√
log(2/c)

nS
,

and so is for discadvH∆H(T , T̂ ).

Proof of Lemma 2.

Proof. Since the loss function ℓ̃ satisfies triangle inequality, we can split Radv
T (w,v∗

T ) into the
following terms:

Radv−label
T (hw, yT ) ≤ Radv

T (hw, hw∗
S
) +Radv

T (hw∗
S
, hw∗

T
) +Radv

T (hw∗
T
, yT )

≤ Radv
S (hw, hw∗

S
) + discadvH∆H(T ,S) +Radv

T (hw∗
S
, hw∗

T
) +Radv

T (hw∗
T
, yT )

≤ Radv
S (hw, hw∗

S
) + discadvH∆H(T̂ , Ŝ) +Radv

T (hw∗
S
, hw∗

T
) +Radv

T (hw∗
T
, yT )

+ R̂S(ℓ̃ ◦ H∆H) + R̂T (ℓ̃ ◦ H∆H) +

3M

√
log(2/c)

nS
+ 3M

√
log(2/c)

nT


≤ Radv−label

S (hw, yS) +Radv−label
S (hw∗

S
, yS)

+ discadvH∆H(T̂ , Ŝ) +Radv
T (hw∗

S
, hw∗

T
) +Radv

T (hw∗
T
, yT )

+ R̂S(ℓ̃ ◦ H∆H) + R̂T (ℓ̃ ◦ H∆H) +

3M

√
log(2/c)

nS
+ 3M

√
log(2/c)

nT

 ,

where we plug in Lemma 18 at last step.

F EXTENSIONS

F.1 ESTIMATION OF ADVERSARIAL DISCREPANCY FROM STANDARD DISCREPANCY

The following Lemma gives the bound if we estimate adversarial H∆H discrepancy from standard
H∆H discrepancy.
Lemma 19. The following relations between adversarial discrepancy from standard discrepancy
holds for linear model class with bounded norm: H = {hw : x 7→ ⟨w, x⟩, ∥w∥p ≤ W}. For
Lϕ-Lipschitz binary classification loss, we have:

discadvH∆H(Ŝ, T̂ ) ≤ discH∆H(Ŝ, T̂ )

+ 2W 2Lϕ

√
dϵ

 1

nT

∑
xi∈T̂

∥xi∥2 +
1

nS

∑
xi∈Ŝ

∥xi∥2

 ·{1 1 ≤ p ≤ 2

d1−2/p p > 2
.
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For ℓ2 regression loss, we have:

discadvH∆H(Ŝ, T̂ ) ≤ discH∆H(Ŝ, T̂ )

+ 8
√
dϵW 2

 1

nT

∑
xi∈T̂

∥xi∥2 +
1

nT

∑
xi∈Ŝ

∥xi∥2

 ·{1 1 ≤ p ≤ 2

d1−2/p p > 2
.

Proof. Let Bp(W ) := {w ∈ Rd : ∥w∥p ≤W} be the ℓp-norm centered ball with radius W . By the
definition of discadvH∆H(Ŝ, T̂ ), we have:

discadvH∆H(Ŝ, T̂ ) (4)
= max

w,w′∈{w:∥w∥p≤W}
|Radv

T̂ (w,w′)−Radv
Ŝ (w,w′)|

≤ max
w,w′∈Bp(W )2

|RT̂ (w,w
′)−RŜ(w,w

′) +Radv
T̂ (w,w′)−RT̂ (w,w

′)

− (Radv
Ŝ (w,w′)−RŜ(w,w

′))|
(2)
≤ discH∆H(Ŝ, T̂ ) + max

w,w′∈Bp(W )2
|Radv

T̂ (w,w′)−RT̂ (w,w
′)|

+ max
w,w′∈Bp(W )2

|Radv
Ŝ (w,w′)−RŜ(w,w

′)| .

Now we study the gap maxw,w′∈Bp(W )2 |Radv
T̂ (w,w′) − RT̂ (w,w

′)| and
maxw,w′∈Bp(W )2 |Radv

Ŝ (w,w′)−RŜ(w,w
′)|. For linear classification, we have:

max
w,w′∈Bp(W )2

|Radv
T̂ (w,w′)−RT̂ (w,w

′)|

= max
w,w′∈Bp(W )2

∣∣∣∣∣∣ 1

nT

∑
xi∈T̂

max
δ:∥δ∥∞≤ϵ

(ϕ(⟨w, xi + δ⟩ · ⟨w′, xi + δ⟩)− ϕ(⟨w, xi⟩ · ⟨w′, xi⟩))

∣∣∣∣∣∣
≤ max

w,w′∈Bp(W )2

∣∣∣∣∣∣ 1

nT

∑
xi∈T̂

max
δ:∥δ∥∞≤ϵ

Lϕ|(⟨w, xi + δ⟩ · ⟨w′, xi + δ⟩)− (⟨w, xi⟩ · ⟨w′, xi⟩)|

∣∣∣∣∣∣
≤ max

w,w′∈Bp(W )2

∣∣∣∣∣∣ 1

nT

∑
xi∈T̂

max
δ:∥δ∥∞≤ϵ

Lϕ|w⊤ ((xi + δ)(xi + δ)
⊤ − xix

⊤
i

)
w′|

∣∣∣∣∣∣
≤Lϕ

1

nT

∑
xi∈T̂

max
w,w′∈Bp(W )2

∣∣w⊤ ((xi + δ
∗
i )(xi + δ

∗
i )

⊤ − xix
⊤
i

)
w′∣∣

Cauchy-Schwarz
≤ Lϕ

1

nT

∑
xi∈T̂

max
w,w′∈Bp(W )2

∥w∥2∥(xi + δ
∗
i )(xi + δ

∗
i )

⊤ − xix
⊤
i ∥2∥w′∥2

≤ Lϕ
1

nT

∑
xi∈T̂

max
w,w′∈Bp(W )2

∥w∥2∥δ∗ix⊤
i + xiδ

∗
i
⊤∥2∥w′∥2 ,

where δ∗i is a maximizer of the i-th optimization problem in δ over the ℓ∞-ball of radius ϵ. We know

that ∥w∥2 ≤W ·
{
1 1 ≤ p ≤ 2

d1/2−1/p p > 2
, and ∥δ∗ix⊤

i + xiδ
∗
i
⊤∥2 ≤ 2

√
dϵ∥xi∥2, so we have:

max
w,w′∈Bp(W )2

|Radv
T̂ (w,w′)−RT̂ (w,w

′)| ≤W 2Lϕ
1

nT

∑
xi∈T̂

2
√
dϵ∥xi∥2 ·

{
1 1 ≤ p ≤ 2

d1−2/p p > 2
.
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which concludes the proof for linear classification setting. Now we switch to regression setting:

max
w,w′∈Bp(W )2

|Radv
T̂ (w,w′)−RT̂ (w,w

′)|

= max
w,w′∈Bp(W )2

∣∣∣∣∣∣ 1

nT

∑
xi∈T̂

max
δ:∥δ∥∞≤ϵ

∥⟨w, xi + δ⟩ − ⟨w′, xi + δ⟩∥22 − ∥⟨w, xi⟩ − ⟨w′, xi⟩∥22

∣∣∣∣∣∣
= max

w,w′∈Bp(W )2

∣∣∣∣∣∣ 1

nT

∑
xi∈T̂

max
δ:∥δ∥∞≤ϵ

∥⟨w −w′, xi + δ⟩∥22 − ∥⟨w −w′, xi⟩∥22

∣∣∣∣∣∣
= max

w,w′∈Bp(W )2

∣∣∣∣∣∣ 1

nT

∑
xi∈T̂

(w −w′)⊤
[
(xi + δ

∗
i )(xi + δ

∗
i )

⊤ − xix
⊤
i

]
(w −w′)

∣∣∣∣∣∣
= max

w,w′∈Bp(W )2

∣∣∣∣∣∣(w −w′)⊤
1

nT

∑
xi∈T̂

[
δ∗ix

⊤
i + xiδ

∗
i
⊤] (w −w′)

∣∣∣∣∣∣
Now, we let v := w −w′, and re-write the above inequality as:

max
w,w′∈Bp(W )2

|Radv
T̂ (w,w′)−RT̂ (w,w

′)|

Cauchy-Schwarz
≤ max

v:∥v∥p≤2W

∥∥v⊤∥∥
2

∥∥∥∥∥∥ 1

nT

∑
xi∈T̂

[
δ∗ix

⊤
i + xiδ

∗
i
⊤]∥∥∥∥∥∥

2

∥v∥2

≤

∥∥∥∥∥∥ 1

nT

∑
xi∈T̂

[
δ∗ix

⊤
i + xiδ

∗
i
⊤]∥∥∥∥∥∥

2

4W ·
{
1 p ≤ 2

d1−2/p p > 2

≤ 8
√
dW

1

nT

∑
xi∈T̂

∥xi∥2 ·
{
1 p ≤ 2

d1−2/p p > 2
.

where we use norm equivalence (Lemma 8) to bound ∥v∥2.

F.2 ADVERSARIALLY ROBUST DOMAIN ADAPTATION GENERALIZATION BOUND

In this section, we will present the generalizatin bound of adversarially robust domain adaptation,
using our upper bound for adversarial Rademacher complexity over H∆H class. An immediate
implication of Theorem 1 is the following bound:
Corollary 1 (Adversarially Robust Domain Adapation Learning Bound, Linear Classification). As-
sume that the loss function ℓ̃ is symmetric and obeys the triangle inequality. We further assume ℓ̃ is
bounded by M . Then, for any hypothesis hw ∈ H , the following holds:

Radv−label
T (hw, yT ) ≤ Radv−label

S (hw, yS) +Radv−label
S (hw∗

S
, yS)

+ discadvH∆H(T̂ , Ŝ) +Radv
T (hw∗

T
, hw∗

S
) +Radv

T (hw∗
T
, yT )

+ R̂S(ℓ ◦ H∆H) + R̂T (ℓ ◦ H∆H) + 3M

√ log(2/c)

nS
+

√
log(2/c)

nT


+ Õ

(
Lϕϵd

1/p∗
W 2
√
d

(
ϵd1/p

∗
+ 2 ∥XT ∥p∗,∞√

nT
+
ϵd1/p

∗
+ 2 ∥XS∥p∗,∞√

nS

))
,

where p∗ is such that 1/p + 1/p∗ = 1, and XS and XT are the data matrix concatenated by data
points from Ŝ and T̂ , respectively.

Proof. Combining Lemma 2 and Theorem 1 will conclude the proof.
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An immediate implication of Theorem 2 is the following result.

Corollary 2 (Adversarially Robust Domain Adapation Learning Bound, Linear Regression). As-
sume that the loss function ℓ̃ is symmetric and convex. Also let Ŝ and T̂ have nS and nT data
points, respectively. We further assume ℓ̃ is bounded by M . Then, for any hypothesis hw ∈ H , the
following holds with probability at least 1− c:

Radv−label
T (hw, yT ) ≤ 6Radv−label

S (hw, yS) + 6Radv−label
S (hw∗

S
, yS)

+ 4discadvH∆H(T̂ , Ŝ) + 3Radv
T (hw∗

T
, hw∗

S
) + 3Radv

T (hw∗
S
, yT )

+MO

√ log(2/c)

nS
+

√
log(2/c)

nT

+ 3R̂S(ℓ ◦ H∆H) + 3R̂T (ℓ ◦ H∆H)

+ Õ
(
W 2

√
nS

(
dϵ ∥XS∥2,∞ + d3/2ϵ2

)
+

W 2

√
nT

(
dϵ ∥XT ∥2,∞ + d3/2ϵ2

))
×
{
1, 1 ≤ p ≤ 2

d1−2/p, p > 2
,

where XS and XT are the data matrix concatenated by data points from Ŝ and T̂ , respectively.

Proof. The following proof is almost identical to that of Lemma 2, and the only change is that we
apply Jensen’s inequality instead of triangle inequality here:

Radv
T (hw, yT ) ≤ 3Radv

T (hw, hw∗
S
) + 3Radv

T (hw∗
S
, hw∗

T
) + 3Radv

T (hw∗
T
, yT )

≤ 3Radv
S (hw, hw∗

S
) + 3discadvH∆H(T ,S) + 3Radv

T (hw∗
S
, hw∗

T
) + 3Radv

T (hw∗
T
, yT )

≤ 3Radv
S (hw, hw∗

S
) + 3discadvH∆H(T̂ , Ŝ) + 3Radv

T (hw∗
S
, hw∗

T
) + 3Radv

T (hw∗
T
, yT )

+ 3R̂S(ℓ̃ ◦ H∆H) + 3R̂T (ℓ̃ ◦ H∆H) + 3

3M

√
log(2/c)

nS
+ 3M

√
log(2/c)

nT


≤ 6Radv−label

S (hw, yS) + 6Radv−label
S (hw∗

S
, yS)

+ 3discadvH∆H(T̂ , Ŝ) + 3Radv
T (hw∗

S
, hw∗

T
) + 3Radv

T (hw∗
T
, yT )

+ 3R̂S(ℓ̃ ◦ H∆H) + 3R̂T (ℓ̃ ◦ H∆H) + 3

3M

√
log(2/c)

nS
+ 3M

√
log(2/c)

nT


where we plug in Lemma 18 at last step. Finally plugging in Theorem 2 will conclude the proof.

G PROOFS FOR BINARY CLASSIFICATION

G.1 PROOF OF LEMMA 3

Proof. To simplify notations, we omit to specify the fact that the model parameters w and w′ belong
to Rd. We first prove the upper bound results. By definition, we have

R̂D(f ◦ H∆H) = Eσ

[
sup

∥w∥p≤W,∥w′∥p≤W

1

n

n∑
i=1

σiw
Txiw

′Txi

]
(20)
≤ Eσ

[
sup

∥w∥2≤W,∥w′∥2≤W

w⊤

(
1

n

n∑
i=1

σixix
⊤
i

)
w′

]
·
{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2

Lemma 13
=

W 2

n
Eσ

[∥∥∥∥∥
n∑

i=1

σixix
⊤
i

∥∥∥∥∥
2

]
·
{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2
. (27)

We now look for a more explicit upper bound of the above Rademacher complexity depending on
the dimension d and on a norm of covariance of data points x1, . . . ,xn. To do so, we introduce
some notations before applying a matrix Bernstein inequality (Theorem 6.1.1 of Tropp et al. (2015))
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recalled in Theorem 4. Let Zi := σixix
⊤
i ∈ Rd×d for all i ∈ [n]. These random matrices are

symmetric, independent, have zero mean and are such that for all i ∈ [n]. Moreover, let Y :=∑n
i=1 Zi. For each Zi, we notice that it has bounded spectral norm:

∥Zi∥2 =
√
λmax(Z2

i ) =
√
λmax(xix⊤

i xix⊤
i ) = ∥xi∥22 ≤ max

j∈[n]
∥xj∥22 = ∥X∥22,∞ ,

so that according to matrix Bernstein inequality, we get the desired bound

R̂(f ◦ H∆H)
(14)
≤ W 2

n

√√√√2

∥∥∥∥∥
n∑

i=1

(xix⊤
i )

2

∥∥∥∥∥
2

log(2d) +
1

3
∥X∥22,∞ log(2d)


×
{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2
.

G.2 PROOF OF THE UPPER BOUND OF THEOREM 1

Alike the analysis of Theorem 7 from Awasthi et al. (2020), the below study uses the notion of
coverings. For completeness sake, we recall its definition.
Definition 6 (ρ-covering). Let ρ > 0 and let (V, ∥.∥) be a normed space. A set C ⊆ V is an
ϵ-covering of V if for any v ∈ V , there exists v′ ∈ C such that ∥v − v′∥ ≤ ρ.

We also copy Lemma 6 from Awasthi et al. (2020) dealing with the size of coverings of balls.
Lemma 20. Let ρ > 0. Let B ⊆ Rd be a the ball of radius R ≥ 0 in a norm ∥.∥ and let C be one of
the smallest ρ-covering of B w.r.t. ∥.∥. Then,

|C| ≤
(
3R

ρ

)d

.

Now we are ready to present the proof of upper bound of the adversarial Rademacher complexity
for linear binary classification.

Proof of the upper bound of Theorem 1. In this proof, we consider the linear hypothesis class were
the norm of the models is controlled by a general ℓp-norm for p > 0. Let Bp(W ) := {w ∈ Rd :
∥w∥p ≤W}, the hypothesis class defined in (5) then writes

H := {hw : x 7→ ⟨w, x⟩ : w ∈ Bp(W )} .

Similarly, let B∞(ϵ) := {δ ∈ Rd : ∥δ∥∞ ≤ ϵ}.
Recall that we define in (8)

R̂S(f̃ ◦ H∆H) = Eσ

[
sup

w,w′∈Bp(W )2

1

n

n∑
i=1

σi min
δ∈B∞(ϵ)

wT (xi + δ)w
′T (xi + δ)

]

= Eσ

[
sup

w,w′∈Bp(W )2

1

n

n∑
i=1

σi(x
⊤
i ww′⊤xi + min

δ∈B∞(ϵ)
δ⊤ww′⊤δ + x⊤

i (ww′⊤ +w′w⊤)δ)

]

≤ R̂S(f ◦ H∆H) + Eσ

[
sup

w,w′∈Bp(W )2

1

n

n∑
i=1

σi min
δ∈B∞(ϵ)

(
δ⊤ww′⊤δ + x⊤

i (ww′⊤ +w′w⊤)δ
)]

︸ ︷︷ ︸
A

.

Now we examine the upper bound of the second termA using the notion of covering recalled in Def-
inition 6. Let C be a ρ-covering of the ℓp ball Bp(W ) w.r.t. the ℓp-norm, with ρ > 0. Let us define

ψi(w,w
′) := min

δ∈B∞(ϵ)
δ⊤ww′⊤δ + x⊤

i (ww′⊤ +w′w⊤)δ . (28)
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Thus we can rewrite A as

A = Eσ

[
sup

w,w′∈Bp(W )2

1

n

n∑
i=1

σiψi(w,w
′)

]

= Eσ

 sup
w,w′∈Bp(W )2

wc,w
′
c∈C2 : ∥w−wc∥p,∥w′−w′

c∥p≤ρ

1

n

n∑
i=1

σi (ψi(wc,w
′
c) + ψi(w,w

′)− ψi(wc,w
′
c))

 ,

where wc, respectively w′
c, is the closest element to w, resp. w′, in C. Using the subadditivity of

the supremum, we get

A ≤ Eσ

[
sup

w̃,w̃′∈C2

1

n

n∑
i=1

σiψi(w̃, w̃
′)

]
+ Eσ

[
sup

w,w′∈Bp(W )2

1

n

n∑
i=1

σi (ψi(w,w
′)− ψi(wc,w

′
c))

]

≤ Eσ

[
sup

w̃,w̃′∈C2

1

n

n∑
i=1

σiψi(w̃, w̃
′)

]
+ sup

w,w′∈Bp(W )2

1

n

n∑
i=1

|ψi(w,w
′)− ψi(wc,w

′
c)|

≤ Eσ

[
sup

w̃,w̃′∈C2

1

n

n∑
i=1

σiψi(w̃, w̃
′)

]
︸ ︷︷ ︸

(I)

+max
i∈[n]

sup
w,w′∈Bp(W )2

|ψi(w,w
′)− ψi(wc,w

′
c)|︸ ︷︷ ︸

(II)

. (29)

where we recall that wc, resp. w′
c, is the closest vector to w, resp. w′, in C.

Bounding (I): We first need to bound the left-hand side term (I). We introduce the vector

ψ(w̃, w̃′) := [ψ1(w̃, w̃
′), . . . , ψn(w̃, w̃

′)]⊤ ∈ Rn .

By Massart’s lemma (Lemma 5.2 of Massart (2000)), we are able to control the first term (I) in (29):

(I) = Eσ

[
sup

w̃,w̃′∈C2

1

n

n∑
i=1

σiψi(w̃, w̃
′)

]
≤
K
√

2 log(|C|2)
n

, (30)

with K given by the largest ℓ2-norm of ψ over the covering C2, that is

K2 = max
w̃w̃′∈C2

∥ψ∥22 = max
w̃w̃′∈C2

n∑
i=1

ψi(w̃, w̃
′)2 . (31)

Now we examine the upper and lower bound of ψi(w̃, w̃
′). For upper bound, by taking δ = 0 we

know that ψi(w̃, w̃
′) is non-positive. Thus, we only have to control how negative this term can be.

Let w̃, w̃′ ∈ C2, we have

ψi(w̃, w̃
′) = min

δ∈B∞(ϵ)
δ⊤w̃w̃′⊤δ + x⊤

i (w̃w̃′⊤ + w̃′w̃⊤)δ

≥ min
δ∈B∞(ϵ)

δ⊤w̃w̃′⊤δ + min
δ∈B∞(ϵ)

x⊤
i (w̃w̃′⊤ + w̃′w̃⊤)δ

Lemma 10
= min

δ∈B∞(ϵ)
δ⊤w̃w̃′⊤δ − ϵ

∥∥(w̃w̃′⊤ + w̃′w̃⊤)xi

∥∥
1
. (32)

We focus on the first term which is a quadratic optimization problem under infinite norm constraints.
For all δ,w,w′ ∈ B∞(ϵ)×Bp(W )2, this quadratic form can be lower bounded by calling Hölder’s
inequality twice and norm equivalence, that is if p∗ ≥ 1 we have ∥v∥p∗ ≤ d1/p

∗ ∥v∥∞:

δ⊤w̃w̃′⊤δ ≥ −|δ⊤w̃w̃′⊤δ|
Lemma 7
≥ −∥δ∥2p∗ ∥w̃∥p ∥w̃

′∥p
Lemma 8
≥

{
−d2/p∗ ∥δ∥2∞ ∥w̃∥p ∥w̃′∥p if p > 1

−∥δ∥2∞ ∥w̃∥1 ∥w̃′∥1 else if p = 1

δ∈B∞(ϵ), w̃,w̃′∈Bp(W )2

≥
{
−d2/p∗

ϵ2W 2 if p > 1

−ϵ2W 2 else if p = 1
.
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Using the same tools, we now study the second term

−
∥∥w̃w̃′⊤xi

∥∥
1
= −|⟨w̃′, xi⟩| ∥w̃∥1

Lemma 7
≥ −∥xi∥p∗ ∥w̃′∥p ∥w̃∥1

Lemma 8
≥

{
−d1/p∗ ∥xi∥p∗ ∥w̃′∥p ∥w̃∥p if p > 1

−∥xi∥∞ ∥w̃′∥1 ∥w̃∥1 else if p = 1

w̃,w̃′∈Bp(W )2

≥

{
−d1/p∗

W 2 ∥xi∥p∗ if p > 1

−W 2 ∥xi∥∞ else if p = 1
,

and symmetrically we get the same bound for−
∥∥w̃′w̃⊤xi

∥∥
1
. By taking the convention that d1/p

∗
=

1 if p = 1 (i.e. p∗ = ∞), we drop the disjunction between p = 1 and p > 1 in what follows.
Combining (32) and the above two inequalities, the auxiliary function ψi (28) can be lower bounded
after applying the triangle inequality:

ψi(w̃, w̃
′) ≥ −d2/p

∗
ϵ2W 2 − 2ϵd1/p

∗
W 2 ∥xi∥p∗ .

So that we get

ψi(w̃, w̃
′)2 ≤ (d2/p

∗
ϵ2W 2 + 2ϵd1/p

∗
W 2 ∥xi∥p∗)

2

≤ ϵ2d2/p
∗
W 4(ϵd1/p

∗
+ 2max

j∈[n]
∥xj∥p∗)

2

= ϵ2d2/p
∗
W 4(ϵd1/p

∗
+ 2 ∥X∥p∗,∞)2 .

Finally we get the following upper bound for K defined in (31):

K ≤
√
nϵd1/p

∗
W 2(ϵd1/p

∗
+ 2 ∥X∥p∗,∞) ,

which, jointly with the application of Lemma 20 implies the upper bound for (I):

(I)
(30)
≤

K
√
2 log |C|2
n

≤
ϵd1/p

∗
W 2(ϵd1/p

∗
+ 2 ∥X∥p∗,∞)

√
n

√
4d log(3W/ρ) . (33)

Bounding (II). Now we turn to bounding the second term of (29). Let w,w′ ∈ Bp(W )2 and let
wc, resp. w′

c, be the closest element to w, resp. w′, in C. Let us define an “implicit” minimizer
w.r.t. δ (the objective being continuous over a closed ball it is attained) for ψi(wc,w

′
c):

δ∗c := argmin
∥δc∥∞≤ϵ

δ⊤c wcw
′⊤
c δc + x⊤

i (wcw
′⊤
c +w′

cw
⊤
c )δc . (34)

Thus, we have

ψi(w,w
′)− ψi(wc,w

′
c)

(34)
= min

δ∈B∞(ϵ)
δ⊤ww′⊤δ + x⊤

i (ww′⊤ +w′w⊤)δ − (δ∗c)
⊤wcw

′⊤
c δ

∗
c − x⊤

i (wcw
′⊤
c +w′

cw
⊤
c )δ

∗
c

≤(δ∗c)⊤ww′⊤δ∗c + x⊤
i (ww′⊤ +w′w⊤)δ∗c − (δ∗c)

⊤wcw
′⊤
c δ

∗
c − x⊤

i (wcw
′⊤
c +w′

cw
⊤
c )δ

∗
c

=(δ∗c)
⊤(ww′⊤ −wcw

′⊤
c )δ∗c + x⊤

i (ww′⊤ −wcw
′⊤
c +w′w⊤ −w′

cw
⊤
c )δ

∗
c

=(δ∗c)
⊤ (w(w′ −w′

c)
⊤ − (wc −w)w′⊤

c

)
δ∗c

+ x⊤
i

(
w(w′ −w′

c)
⊤ − (wc −w)w′⊤

c +w′(w −wc)
⊤ − (w′

c −w′)w⊤
c

)
δ∗c .

We focus on upper bounding a single term of the ones appearing above. By applying Hölder’s
inequality twice and norm equivalence we get:

|(δ∗c)⊤w(w′ −w′
c)

⊤δ∗c |
Lemma 7
≤ ∥w∥p ∥δ

∗
c∥

2
p∗ ∥w′ −w′

c∥p
Lemma 8
≤ ρϵ2d2/p

∗
W ,
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where in the last line we used that ∥w −wc∥p ≤ ρ, by the definition of the ρ-covering of the ball
Bp(W ) w.r.t. the ℓp-norm. Proceeding identically with other terms involving xi we get

|x⊤
i w(w′ −w′

c)
⊤δ∗c |

Lemma 7
≤ ∥xi∥p∗ ∥w∥p ∥w

′ −w′
c∥p ∥δ

∗
c∥p∗

Lemma 8
≤ ρϵd1/p

∗
W ∥xi∥p∗ ,

finally get that

ψi(w,w
′)− ψi(wc,w

′
c) ≤ 2ρϵ2d2/p

∗
W + 4ρϵd1/p

∗
W ∥xi∥p∗ .

Similarly we can prove the same bound holds for other side of the difference (by using an “implicit”
minimizer of ψi(w,w

′). Thus we are able to control (II):

(II)
(29)
= max

i∈[n]
sup

w,w′∈Bp(W )2
|ψi(w,w

′)−ψi(wc,w
′
c)| ≤ 2ρϵd1/p

∗
W
(
ϵd1/p

∗
+2 ∥X∥p∗,∞

)
. (35)

And finally, we proved that

A
(33)+(35)
≤ 2ϵd1/p

∗
W (ϵd1/p

∗
+ 2 ∥X∥p∗,∞)

(
ρ+

√
d

n
W
√

log(3W/ρ)

)
,

which concludes the first part of the proof if we choose ρ =W/
√
n:

A ≤ 2ϵ
d1/p

∗

√
n
W 2

(
1 +
√
d

√
log(3

√
n)

)(
ϵd1/p

∗
+ 2 ∥X∥p∗,∞

)
.

G.3 PROOF OF THE LOWER BOUND OF THEOREM 1

In this subsection we present the proof of lower bound of the adversarial Rademacher complexity
for binary classification under linear hypothesis.

Proof of the lower bound of Theorem 1. Now we are going to prove the lower bound result of ad-
versarial Rademacher complexity. Recall the definition of non-adversarial Rademacher complexity

R̂D(f ◦ H∆H) = E

[
sup

∥w∥p≤W,∥w′∥p≤W

1

n

n∑
i=1

σiw
⊤xix

⊤
i w

′

]

=
1

n
E

[
sup

∥w∥p≤W,∥w′∥p≤W

w⊤

(
n∑

i=1

σixix
⊤
i

)
w′

]
(20)
≤ 1

n
E

[
sup

∥w∥2≤W,∥w′∥2≤2W

w⊤

(
n∑

i=1

σixix
⊤
i

)
w′

]
×
{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2

Lemma 13
=

W 2

n
E

[∥∥∥∥∥
n∑

i=1

σixix
⊤
i

∥∥∥∥∥
2

]
×
{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2
,

due to equivalence of norms. Now, we denote v∗ such that v∗ =
argmax∥w∥p≤W,∥w′∥p≤W

1
n

∑n
i=1 σiw

⊤xix
⊤
i w

′. According to Lemma 13 the maximum
value of 1

n

∑n
i=1 σiw

⊤xix
⊤
i w

′ is:

sup
∥w∥2≤W,∥w′∥2≤W

1

n

n∑
i=1

σiw
⊤xix

⊤
i w

′ =
W 2

n

∥∥∥∥∥
n∑

i=1

σixix
⊤
i

∥∥∥∥∥
2

and if we define S(σ) :=
∑n

i=1 σixix
⊤
i the maxima is attained when v∗ = Wvmax(S(σ)

2) is an
eigenvector of ℓ2-norm W associated to the largest eigenvalue of S(σ)2.
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Now, we switch to adversarial Rademacher:

R̂D(f̃ ◦ H∆H)

= E

[
sup

∥w∥p≤W,∥w′∥p≤W

1

n

n∑
i=1

σi min
∥δ∥∞≤ϵ

w⊤(xi + δ)(xi + δ)
⊤w′

]

≥ E

[
sup

∥w∥2≤W,∥w′∥2≤W

1

n

n∑
i=1

σi min
∥δ∥∞≤ϵ

w⊤(xi + δ)(xi + δ)
⊤w′

]
×
{
d1−2/p, if 1 ≤ p ≤ 2

1, else if p > 2

≥ E

[
sup

∥w∥2≤W

1

n

n∑
i=1

σi min
∥δ∥∞≤ϵ

w⊤(xi + δ)(xi + δ)
⊤w

]
×
{
d1−2/p, if 1 ≤ p ≤ 2

1, else if p > 2

where in the first inequality we used that, if 1 ≤ p ≤ 2, then B2(W ) ⊆ Bp(d1/p−1/2W ) and else
when p > 2, we simply have that B2(W ) ⊆ Bp(W ). According to Lemma 17, we have:

R̂D(f̃ ◦ H∆H) ≥ E

[
sup

∥w∥2≤2W

1

n

n∑
i=1

σi

(
w⊤xi −w⊤xi min

{
1,
ϵ∥w∥1
|w⊤xi|

})2
]

×
{
d1−2/p, if 1 ≤ p ≤ 2

1, else if p > 2
.

Case I: 1 ≤ p ≤ 2.

First, to avoid confusion in different Rademacher variables, let us use σ′ and σ to denote the
Rademacher variables in R̂D(f̃ ◦ H∆H) and R̂D(f ◦ H∆H). Then, let us define v′∗ :=
Wvmax(S(σ

′)2). Then we consider the gap:

R̂D(f̃ ◦ H∆H)− R̂D(f ◦ H∆H)

= Eσ′

[
sup

∥w∥p≤2W

1

n

n∑
i=1

σ′
i

(
w⊤xi −w⊤xi min

{
1,
ϵ∥w∥1
|w⊤xi|

})2
]

− Eσ

[
sup

∥w∥2≤W,∥w′∥2≤W

1

n

n∑
i=1

σiw
⊤xix

⊤
i w

′

]

≥ Eσ′

[
1

n

n∑
i=1

σ′
i

(
v′∗⊤xi − v′∗⊤xi min

{
1,
ϵ∥v′∗∥1
|v′∗⊤xi|

})2
]
− Eσ

[
1

n

n∑
i=1

σiv
∗⊤xix

⊤
i v

∗

]

=
W 2

n
Eσ′

[
n∑

i=1

σ′
i

(
−2(vmax(S(σ

′)2)⊤xi)
2 min

{
1,
ϵ∥vmax(S(σ

′)2)∥1
|vmax(S(σ′)2)⊤xi|

})]

+
W 2

n
Eσ′

[
n∑

i=1

σ′
i

(
(vmax(S(σ

′)2)⊤xi)
2 min

{
1,
ϵ∥vmax(S(σ

′)2))∥1
|vmax(S(σ′)2)⊤xi|

}2
)]

Let us define

I(σ′) :=

n∑
i=1

σ′
i

(
−2(vmax(S(σ

′)2)⊤xi)
2 min

{
1,
ϵ∥vmax(S(σ

′)2)∥1
|vmax(S(σ′)2)⊤xi|

})
and

J(σ′) :=

n∑
i=1

σ′
i

(
(vmax(S(σ

′)2)⊤xi)
2 min

{
1,
ϵ∥vmax(S(σ

′)2)∥1
|vmax(S(σ′)2)⊤xi|

}2
)

,

so that

R̂D(f̃ ◦ H∆H)− R̂D(f ◦ H∆H) ≥
W 2

n
(Eσ′ [I(σ′)] + Eσ′ [J(σ′)]) .

We are now going to prove that I(σ) + I(−σ) = 0 and J(σ) + J(−σ) = 0.
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First we know that vmax(S(σ)
2) = vmax(S(−σ)2), since S(−σ)2 = (−

∑n
i=1 σixix

⊤
i )

2 = S(σ)2.
So

I(σ) + I(−σ) =
n∑

i=1

σ′
i

(
−2(vmax(S(σ

′)2)⊤xi)
2 min

{
1,
ϵ∥vmax(S(σ

′)2)∥1
|v⊤

max(S(σ)
2)xi|

})

+

n∑
i=1

−σi
(
−2(vmax(S(σ

′)2)⊤xi)
2 min

{
1,
ϵ∥vmax(S(σ

′)2)∥1
|vmax(S(σ′)2)⊤xi|

})
= 0.

Similarly J(σ) + J(−σ) = 0.

According to Lemma 15, we can split {−1,+1}n into A+ and A−, such that |A+| = |A−| and
A− = −A+ where − is element-wised negative sign. So we know:

Eσ[I(σ)] =
∑

σ∈A+

1

2n
I(σ) +

∑
σ∈A−

1

2n
I(σ) =

∑
σ∈A+

1

2n
I(σ) +

∑
σ∈A+

1

2n
I(−σ) = 0

Eσ[J(σ)] =
∑

σ∈A+

1

2n
J(σ) +

∑
σ∈A−

1

2n
J(σ) =

∑
σ∈A+

1

2n
J(σ) +

∑
σ∈A+

1

2n
J(−σ) = 0

Hence we conclude that R̂D(f̃ ◦ H∆H) ≥ R̂D(f ◦ H∆H).
Case II: p > 2.

Similarly we have that

R̂D(f̃ ◦ H∆H)− R̂D(f ◦ H∆H)

= Eσ′

[
sup

∥w∥p≤2W

1

n

n∑
i=1

σ′
i

(
w⊤xi −w⊤xi min

{
1,
ϵ∥w∥1
|w⊤xi|

})2
]

− d1−2/pEσ

[
sup

∥w∥2≤W,∥w′∥2≤W

1

n

n∑
i=1

σiw
⊤xix

⊤
i w

′

]

≥ Eσ′

[
1

n

n∑
i=1

σ′
i

(
v′∗⊤xi − v′∗⊤xi min

{
1,
ϵ∥v′∗∥1
|v′∗⊤xi|

})2
]

− d1−2/pEσ

[
1

n

n∑
i=1

σiv
∗⊤xix

⊤
i v

∗

]

=
W 2

n
(1− d1−2/p)Eσ

∥∥∥∥∥
n∑

i=1

σixix
⊤
i

∥∥∥∥∥
+
W 2

n
Eσ′

[
n∑

i=1

σ′
i

(
−2(vmax(S(σ

′)2)⊤xi)
2 min

{
1,
ϵ∥vmax(S(σ

′)2)∥1
|vmax(S(σ′)2)⊤xi|

})]

+
W 2

n
Eσ′

[
n∑

i=1

σ′
i

(
(vmax(S(σ

′)2)⊤xi)
2 min

{
1,
ϵ∥vmax(S(σ

′)2)∥1
|vmax(S(σ′)2)⊤xi|

}2
)]

≥ W 2

n
(1− d1−2/p)Eσ

∥∥∥∥∥
n∑

i=1

σixix
⊤
i

∥∥∥∥∥
2

.

where in the last step we also use the same reasoning as in Case I.
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H PROOFS FOR LINEAR REGRESSION

H.1 PROOF OF LEMMA 4

In this subsection we are going to present the proof of upper bound of the Rademacher complexity
for regression under linear hypothesis.

Proof. We first aim at controlling the non-adversarial Rademacher complexity over theH∆H class.
We specify its definition given in (1) for the linear regression setting below

R̂D(ℓ ◦ H∆H) = Eσ

[
sup

w,w′:∥w∥p≤W,∥w′∥p≤W

1

n

n∑
i=1

σi(w
Txi −w′Txi)

2

]
.

We introduce the variable change v := w −w′, which yields to

R̂D(ℓ ◦ H∆H) = Eσ

[
sup

v:∥v∥p≤2W

1

n

n∑
i=1

σi(v
⊤xi)

2

]
. (36)

We first derive the upper bound of R̂S(ℓ ◦ H∆H). We follow similar steps than in Appendix G.1:
we rewrite the supremum as a spectral norm and then apply a matrix Bernstein inequality. We have
that

R̂D(ℓ ◦ H∆H) = Eσ

[
sup

v:∥v∥p≤2W

1

n

n∑
i=1

σi(v
⊤xi)

2

]

= Eσ

[
sup

v:∥v∥p≤2W

v⊤

(
1

n

n∑
i=1

σixix
⊤
i

)
v

]
(20)
≤ Eσ

[
sup

v:∥v∥2≤2W

v⊤

(
1

n

n∑
i=1

σixix
⊤
i

)
v′

]
·
{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2

=
4W 2

n
Eσ

[∥∥∥∥∥
n∑

i=1

σixix
⊤
i

∥∥∥∥∥
2

]
×
{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2
.

Following exactly the same steps as in Appendix G.1, we apply the matrix Bernstein inequality. Let
us denote by Zi := σixix

⊤
i ∈ Rd×d the random matrices we want to apply Theorem 4 to. Then,

Z2
i = σ2

i (xix
⊤
i )

2 = (xix
⊤
i )

2 is a deterministic matrix. These random matrices Zi are symmetric,
independent, have zero mean and are such that for all i ∈ [n]

∥Zi∥2 =
√
λmax(Z2

i ) =
√
λmax(xix⊤

i xix⊤
i ) = ∥xi∥22 ≤ max

j∈[n]
∥xj∥22 = ∥X∥22,∞ .

Moreover, let Y :=
∑n

i=1 Zi. According to matrix Bernstein inequality, we get the desired bound

R̂D(ℓ ◦ H∆H)

(14)
≤ 4W 2

n

√√√√2

∥∥∥∥∥
n∑

i=1

(xix⊤
i )

2

∥∥∥∥∥
2

log(2d) +
1

3
∥X∥22,∞ log(2d)

×{1 p ≤ 2

d1−2/p p > 2
.

H.2 PROOF OF THE UPPER BOUND OF THEOREM 2

In this subsection we will present the proof of upper bound of the adversarial Rademacher complex-
ity for regression under linear hypothesis.
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Proof. We then examine the adversarial Rademacher complexity of linear regression models defined
in (3) as

R̂S(ℓ̃ ◦ H∆H) = Eσ

 sup
w:∥w∥p≤W

w′:∥w′∥p≤W

1

n

n∑
i=1

σi max
δ:∥δ∥∞≤ϵ

(wT (xi + δ)−w′T (xi + δ))
2

 . (37)

We start by expressing R̂D(ℓ̃◦H∆H) as a function of R̂D(ℓ◦H∆H), its non-adversarial counterpart
studied in Lemma 4. Let v := w −w′. We expend this quantity as follows

R̂S(ℓ̃ ◦ H∆H)
(37)
= Eσ

[
sup

v:∥v∥p≤2W

1

n

n∑
i=1

σi max
δ:∥δ∥∞≤ϵ

(vTxi + vT δ)2

]

= Eσ

[
sup

v:∥v∥p≤2W

1

n

n∑
i=1

σi max
δ:∥δ∥∞≤ϵ

(vTxi)
2 + 2vTxiv

T δ + (vT δ)2

]

≤ R̂S(ℓ ◦ H∆H) + Eσ

[
sup

v:∥v∥p≤2W

1

n

n∑
i=1

σi max
δ:∥δ∥∞≤ϵ

2vTxiδ
Tv + (vT δ)2

]

= R̂S(ℓ ◦ H∆H) + Eσ

[
sup

v:∥v∥p≤2W

1

n

n∑
i=1

σi max
δ:∥δ∥∞≤ϵ

v⊤(2xiδ
⊤ + δδ⊤)v

]
︸ ︷︷ ︸

A

,

(38)
where we used the subadditivity of the supremum in to make appear the non-adversarial Rademacher
complexity overH∆H class.

Now we examine the upper bound of the second termA using the notion of covering recalled in Def-
inition 6. Let C be a covering of the centered ℓp ball of radius 2W , that we denote by Bp(2W ), with
ℓp balls of radius ρ > 0. Let us define

ζi(v) := max
δ:∥δ∥∞≤ϵ

v⊤(2xiδ
⊤ + δδ⊤)v . (39)

Thus we can rewrite A as

A
(39)
= Eσ

[
sup

v∈Bp(2W )

1

n

n∑
i=1

σiζi(v)

]

= Eσ

 sup
v∈Bp(2W )

vc∈C : ∥v−vc∥p≤ρ

1

n

n∑
i=1

σi
(
ζi(vc) + ζi(v)− ζi(vc)

)
≤ Eσ

[
sup
ṽ∈C

1

n

n∑
i=1

σiζi(ṽ)

]
+ Eσ

[
sup

v∈Bp(2W )

1

n

n∑
i=1

σi (ζi(v)− ζi(vc))

]

≤ Eσ

[
sup
ṽ∈C

1

n

n∑
i=1

σiζi(ṽ)

]
︸ ︷︷ ︸

(I)

+ sup
v∈Bp(2W )

1

n

n∑
i=1

|ζi(v)− ζi(vc)|︸ ︷︷ ︸
(II)

. (40)

where vc is the closest element to v in C and where we used the subadditivity of the supremum.

Bounding (I): We first need to bound the left-hand side term (I). We introduce the vector

ζ(ṽ) := [ζ1(ṽ), . . . , ζn(ṽ)]
⊤ ∈ Rn .

By Massart’s lemma (Lemma 5.2 of Massart (2000)), we are able to control the first term (I) in (29):

(I) = Eσ

[
sup
ṽ∈C

1

n

n∑
i=1

σiζi(ṽ)

]
≤
K
√
2 log |C|
n

, (41)
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with K given by the largest ℓ2-norm of ζ over the covering C, that is

K2 = max
ṽ∈C
∥ζ∥22 = max

ṽ∈C

n∑
i=1

ζi(ṽ)
2 ≤ max

v∈Bp(2W )

n∑
i=1

ζi(v)
2 . (42)

Now we examine the upper bound of K. Note that ζi(v) ≥ 0, then we can upper bound as follows

ζi(v) = max
δ:∥δ∥∞≤ϵ

v⊤(2xiδ
⊤ + δδ⊤)v

≤ ∥v∥22 max
δ:∥δ∥∞≤ϵ

∥∥∥2xiδ
⊤ + δδ⊤

∥∥∥
2

≤ ∥v∥22

(
max

δ:∥δ∥∞≤ϵ

∥∥∥2xiδ
⊤
∥∥∥
2
+ max

δ:∥δ∥∞≤ϵ

∥∥∥δδ⊤∥∥∥
2

)
= ∥v∥22 max

δ:∥δ∥∞≤ϵ
∥δ∥2

(
2 ∥xi∥2 + max

δ:∥δ∥∞≤ϵ
∥δ∥2

)
∥δ∥2≤

√
d∥δ∥∞
≤ ∥v∥22

√
dϵ
(√

dϵ+ 2 ∥xi∥2
)
, (43)

where we applied Cauchy-Schwarz inequality and the definition of operator norm and then the sub-
additivity of the maximum. Recalling the case disjunction{

∥v∥2 ≤ ∥v∥p , if 1 ≤ p ≤ 2

∥v∥2 ≤ ∥v∥p d1/2−1/p, else if p > 2
, (44)

we are able to upper bound K2, by using (42) and (43) which leads to

K2
(42)
≤ max

v∈Bp(2W )

n∑
i=1

ζi(v)
2

(43)
≤ max

v∈Bp(2W )
∥v∥42 (

√
dϵ)2

n∑
i=1

(√
dϵ+ 2 ∥xi∥2

)2
(44)
≤ max

v∈Bp(2W )
∥v∥4p (

√
dϵ)2

n∑
i=1

(√
dϵ+ 2 ∥xi∥2

)2
·
{
1, if 1 ≤ p ≤ 2

(d1−2/p)2, else if p > 2

= (4W 2)2(
√
dϵ)2

n∑
i=1

(√
dϵ+ 2 ∥xi∥2

)2
·
{
1, if 1 ≤ p ≤ 2

(d1−2/p)2, else if p > 2
.

Then, by taking the square root in the above we get

K ≤ 4W 2
√
dϵ

√√√√ n∑
i=1

(√
dϵ+ 2 ∥xi∥2

)2
·
{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2
.

Jointly with the application of Lemma 20, we can conclude that

(I) ≤ 4
W 2

n

√
dϵ

√√√√ n∑
i=1

(√
dϵ+ 2 ∥xi∥2

)2√
2d log(6W/ρ)×

{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2
. (45)

Bounding (II). Now we turn to bounding the second term of (40)

(II) := sup
v∈Bp(2W )

1

n

n∑
i=1

|ζi(v)− ζi(vc)| ,

recalling that ζi(v) := maxδ:∥δ∥∞≤ϵ v
⊤(2xiδ

⊤ + δδ⊤)v. Let i ∈ [n], v ∈ Bp(2W ) and its
corresponding closest point in the covering vc ∈ C. Let us define{

δ∗ := argmax∥δ∥∞≤ϵ v
⊤(2xiδ

⊤ + δδ⊤)v

δ∗c := argmax∥δ∥∞≤ϵ v
⊤
c (2xiδ

⊤ + δδ⊤)vc
.
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Also, let M∗ := 2xiδ
∗⊤ + δ∗δ∗

⊤. Then, we can make the difference explicit and upper bound it

ζi(v)− ζi(vc) = v⊤(2xiδ
∗⊤ + δ∗δ∗

⊤
)v − v⊤

c (2xiδ
∗
c
⊤
+ δ∗cδ

∗
c
⊤
)vc

≤ v⊤(2xiδ
∗⊤ + δ∗δ∗

⊤
)v − v⊤

c (2xiδ
∗⊤ + δ∗δ∗

⊤
)vc

= v⊤M∗v − v⊤
c M

∗vc

= (v − vc)
⊤M∗v + v⊤

c M
∗(v − vc)

Cauchy-Schwarz
≤ ∥M∗∥2 ∥v − vc∥2 (∥v∥2 + ∥vc∥2)

≤ 4ρW
√
dϵ
(√

dϵ+ 2 ∥xi∥2
)
×
{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2
,

where lastly we used the same arguments leading to (43), the norm transfer in (44) and the inequality
∥.∥2 ≤

√
d ∥.∥∞. Symmetrically, we can show that the above upper bound holds for ζi(vc)− ζi(v).

Thus, (II) is upper bounded by

(II) ≤ 4ρW
√
dϵ

(
√
dϵ+

2

n

n∑
i=1

∥xi∥2

)
×
{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2
. (46)

Let us choose ρ =W/n. We have then proved that

A
(45)−(46)
≤ (I) + (II)

≤

 1

n
4W 2

√
dϵ

√√√√ n∑
i=1

(√
dϵ+ 2 ∥xi∥2

)2√
2d log(6W/ρ) + 4ρW

√
dϵ

(
√
dϵ+

2

n

n∑
i=1

∥xi∥2

)
×
{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2

= 4
W 2

n

√
dϵ

√dϵ+ 2

n

n∑
i=1

∥xi∥2 +

√√√√ n∑
i=1

(√
dϵ+ 2 ∥xi∥2

)2√
2d log(6n)


×
{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2
.

By combining (38), (40) and the above bound, we are able to finish the proof for the upper bound of
the adversarial Rademacher complexity over classH∆H for linear regression. Finally, this gives

R̂S(ℓ̃ ◦ H∆H) ≤ R̂S(ℓ ◦ H∆H)

+ 4
W 2

n

√
dϵ

√dϵ+ 2

n

n∑
i=1

∥xi∥2 +

√√√√ n∑
i=1

(√
dϵ+ 2 ∥xi∥2

)2√
2d log(6n)


×
{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2
.

H.3 PROOF OF THE LOWER BOUND OF THEOREM 2

In this subsection we present the proof of lower bound of the adversarial Rademacher complexity
for regression under linear hypothesis.
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Proof. Recall the definition of non-adversarial Rademacher complexity

R̂D(ℓ ◦ H∆H)
(36)
= E

[
sup

∥v∥p≤2W

1

n

n∑
i=1

σi(v
⊤xi)

2

]
Lemma 8
≤ E

[
sup

∥v∥2≤2W

1

n

n∑
i=1

σi(v
⊤xi)

2

]
·
{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2
,

due to equivalence of norms. Now, we denote v∗ such that v∗ =
argmax∥v∥2≤2W

1
n

∑n
i=1 σi(v

⊤xi)
2. One can verify that the maximum value of

1
n

∑n
i=1 σi(v

⊤xi)
2 is:

sup
∥v∥2≤2W

1

n

n∑
i=1

σi(v
⊤xi)

2 =
1

n
sup

∥v∥2≤2W

v⊤

(
n∑

i=1

σixix
⊤
i

)
v ≤ 4W 2

n

∥∥∥∥∥
n∑

i=1

σixix
⊤
i

∥∥∥∥∥
2

and if we define S(σ) :=
∑n

i=1 σixix
⊤
i the maxima is attained when v∗ = 2Wvmax(S(σ)

2).

Now, we switch to adversarial Rademacher:

R̂D(ℓ̃ ◦ H∆H) = E

[
sup

∥v∥p≤2W

1

n

n∑
i=1

σi max
∥δ∥∞≤ϵ

(v⊤(xi + δ))
2

]
Lemma 14
≥ E

[
sup

∥v∥2≤2W

1

n

n∑
i=1

σi max
∥δ∥∞≤ϵ

(v⊤(xi + δ))
2

]
·
{
d1−2/p, if 1 ≤ p ≤ 2

1, else if p > 2

According to Lemma 16, we have:

R̂D(ℓ̃ ◦ H∆H) = E

[
sup

∥v∥2≤2W

1

n

n∑
i=1

σi(ϵ∥v∥1 + |v⊤xi|)2
]
·
{
d1−2/p, if 1 ≤ p ≤ 2

1, else if p > 2
.

Case I: 1 ≤ p ≤ 2:

First, to avoid confusion in different Rademacher variables, let us use σ′ and σ to denote the
Rademacher variables in R̂D(ℓ̃ ◦ H∆H) and R̂D(ℓ ◦ H∆H). Then, let us define v′∗ :=
2Wvmax(S(σ

′)2)

R̂D(ℓ̃ ◦ H∆H)− R̂D(ℓ ◦ H∆H)

= Eσ′

[
sup

∥v∥p≤2W

1

n

n∑
i=1

σ′
i(ϵ∥v∥1 + |v⊤xi|)2

]
− Eσ

[
sup

∥v∥2≤2W

1

n

n∑
i=1

σi(v
⊤xi)

2

]

≥ Eσ′

[
1

n

n∑
i=1

σ′
i(ϵ∥v′∗∥1 + |v′∗⊤xi|)2

]
− Eσ

[
1

n

n∑
i=1

σi(v
∗⊤xi)

2

]

=
4W 2

n
Eσ′

[
n∑

i=1

σ′
i

(
2ϵ∥vmax(S(σ

′)2)∥1|v⊤
max(S(σ

′)2)xi|+ ϵ2∥vmax(S(σ
′)2)∥21

)]
Let J(σ) =

∑n
i=1 σi

(
2ϵ∥vmax(S(σ)

2)∥1|v⊤
max(S(σ)

2)xi|+ ϵ2∥vmax(S(σ)
2)∥21

)
, and we claim

that J(σ)+ J(−σ) = 0. Now we are going to prove this claim. First we know that vmax(S(σ)
2) =

vmax(S(−σ)2), since S(−σ)2 = (−
∑n

i=1 σixix
⊤
i )

2 = S(σ)2. So

J(σ) + J(−σ) =
n∑

i=1

σi
(
2ϵ∥vmax(S(σ)

2)∥1|v⊤
max(S(σ)

2)xi|+ ϵ2∥vmax(S(σ)
2)∥21

)
+

n∑
i=1

−σi
(
2ϵ∥vmax(S(σ)

2)∥1|v⊤
max(S(σ)

2)xi|+ ϵ2∥vmax(S(σ)
2)∥21

)
= 0.
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According to Lemma 15, we can split {−1,+1}n into A+ and A−, such that |A+| = |A−| and
A− = −A+ where − is element-wised negative sign. So we know:

Eσ[J(σ)] =
∑

σ∈A+

1

2n
J(σ) +

∑
σ∈A−

1

2n
J(σ) =

∑
σ∈A+

1

2n
J(σ) +

∑
σ∈A+

1

2n
J(−σ) = 0

Hence we conclude that R̂D(ℓ̃ ◦ H∆H) ≥ R̂D(ℓ ◦ H∆H).
Case II: p > 2:

Similarly we have:

R̂D(ℓ̃ ◦ H∆H)− R̂D(ℓ ◦ H∆H)

= Eσ′

[
sup

∥v∥p≤2W

1

n

n∑
i=1

σ′
i(ϵ∥v∥1 + |v⊤xi|)2

]
− d1−2/pEσ

[
sup

∥v∥2≤2W

1

n

n∑
i=1

σi(v
⊤xi)

2

]

≥ Eσ′

[
1

n

n∑
i=1

σ′
i(ϵ∥v′∗∥1 + |v′∗⊤xi|)2

]
− d1−2/pEσ

[
1

n

n∑
i=1

σi(v
∗⊤xi)

2

]

= (1− d1−2/p)
4W 2

n
E

∥∥∥∥∥
n∑

i=1

σixix
⊤
i

∥∥∥∥∥
2

+
4W 2

n
Eσ′

[
2

n∑
i=1

σ′
i

(
ϵ∥vmax(S(σ

′)2)∥1|v⊤
max(S(σ

′)2)xi|+ ϵ2∥vmax(S(σ
′)2)∥21

)]

≥ (1− d1−2/p)
4W 2

n
E

∥∥∥∥∥
n∑

i=1

σixix
⊤
i

∥∥∥∥∥
2

,

where in the last step we also use the same reasoning as in Case I.

I PROOF OF NEURAL NETWORK COMPLEXITY BOUNDS

In this section, we will present the proof of upper bound of the adversarial Rademacher complexity
under two-layer neural network hypothesis (Theorem 3). We provide the proof of classification
bound in Appendix I.1, and regression in Appendix I.2.

I.1 PROOF OF BINARY CLASSIFICATION SETTING

Proof of the classification bound of Theorem 3. We recall that Bp(R) stands for the ℓp ball of radius
R (either in vector Rd or matrix Rd×d space). To simplify notations, we denote the coordinate-wise
ReLU activation function by

g(x) := max{0,x},Rd → Rd.

where max is applied coordinate-wisely. Using the definition of the f̃ ◦H∆H class in (7), we upper
bound the adversarial Rademacher complexity in the binary classification setting by expressing it as
its non-adversarial counterpart plus an additional term. Thus we get

R̂D(f̃ ◦ H∆H) = Eσ

 sup
a,a′∈Bp(A)2

W,W′∈Bp(W )2

1

n

n∑
i=1

σi min
∥δ∥∞≤ϵ

a⊤g(W(xi + δ))a
′⊤g(W′(xi + δ))

 .

As the function δ 7→ a⊤g(W(xi + δ))a′
⊤
g(W′(xi + δ)) is continuous as a composition of

continuous function (linear and ReLU), then it reaches a minimum of the compact ℓ∞ ball of ra-
dius ϵ > 0, also denoted by B∞(ϵ). Let δ∗i an argument of the minima of the latter function,
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i.e. δ∗i ∈ argminδ∈B∞(ϵ) a
⊤g(W(xi + δ))a

′⊤g(W′(xi + δ)). With this notation, we can write

R̂D(f̃ ◦ H∆H) ≤ RD(f ◦ H∆H)

+ Eσ

 sup
a,a′∈Bp(A)2

W,W′∈Bp(W )2

1

n

n∑
i=1

σia
⊤g(W(xi + δ

∗
i ))g(W

′(xi + δ
∗
i ))

⊤a′ − ag(Wxi)g(W
′xi)

⊤a′


= RD(f ◦ H∆H)

+ Eσ

 sup
a,a′∈Bp(A)2

W,W′∈Bp(W )2

a⊤

(
1

n

n∑
i=1

σi
(
g(W(xi + δ

∗
i ))g(W

′(xi + δ
∗
i ))

⊤−g(Wxi)g(W
′xi)

⊤))a′
,

Let the term inside the expectation being maximized (as a continuous function over a compact set)
at a∗,a′∗,W∗,W′∗. And let

Si := σi
(
g(W∗(xi + δ

∗
i ))g(W

′∗(xi + δ
∗
i ))

⊤ − g(W∗xi)g(W
′∗xi)

⊤) ∈ Rd×d .

Then, we can rewrite the term in the expectation as

a∗⊤
(
1

n

n∑
i=1

Si

)
a′

∗ Cauchy-Schwarz ineq.
≤ ∥a∗∥2

∥∥a′∗∥∥
2

∥∥∥∥∥ 1n
n∑

i=1

Si

∥∥∥∥∥
2

Lemma 8
≤ ∥a∗∥p

∥∥a′∗∥∥
p

∥∥∥∥∥ 1n
n∑

i=1

Si

∥∥∥∥∥
2

×
{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2

a∗,a′∗∈Bp(A)2

≤ A2

∥∥∥∥∥ 1n
n∑

i=1

Si

∥∥∥∥∥
2

×
{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2
.

Thus we have the following inequality

R̂D(f̃ ◦ H∆H) ≤ RD(f ◦ H∆H) +
A2

n
Eσ

[∥∥∥∥∥
n∑

i=1

Si

∥∥∥∥∥
2

]
×
{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2
. (47)

Let us now estimate the spectral norm of the average of random matrices
∑n

i=1 Si using the matrix
Bernstein inequality of Theorem 4. We have that

∥Si∥2 =
∥∥g(W∗(xi + δ

∗
i ))g(W

′∗(xi + δ
∗
i ))

⊤ − g(W∗xi)g(W
′∗xi)

⊤∥∥
2

= ∥g(W∗(xi + δ
∗
i ))(g(W

′∗(xi + δ
∗
i ))− g(W′∗xi))

⊤

+ (g(W∗(xi + δ
∗
i ))− g(W∗xi))g(W

′∗xi)
⊤∥2

≤
∥∥g(W∗(xi + δ

∗
i ))(g(W

′∗(xi + δ
∗
i ))− g(W′∗xi))

⊤∥∥
2

+
∥∥(g(W∗(xi + δ

∗
i ))− g(W∗xi))g(W

′∗xi)
⊤∥∥

2

Cauchy-Schwarz
≤ ∥W∗(xi + δ

∗
i )∥2

∥∥W′∗δ∗i
∥∥
2
+ ∥W∗δ∗i ∥2

∥∥W′∗xi

∥∥
2

Lemma 8
≤ W 2

√
dϵ(
√
dϵ+ 2 ∥xi∥2)×

{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2
(48)

≤W 2
√
dϵ(
√
dϵ+ 2 ∥X∥2,∞)×

{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2
, (49)
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where we used the 1-Lipschitzness of the ReLU function. Now let us examine the upper bound of
the variance of the sum. We notice that S⊤

i Si is a deterministic matrix as σ2
i = 1. Thus, we have

Var

(
n∑

i=1

Si

)
:=

∥∥∥∥∥
n∑

i=1

Eσ[S
⊤
i Si]

∥∥∥∥∥
2

≤
n∑

i=1

∥Si∥22

(48)
≤
(
W 2
√
dϵ
)2( n∑

i=1

(
√
dϵ+ 2 ∥xi∥2)

2

)
×
{
1, if 1 ≤ p ≤ 2

(d1−2/p)2, else if p > 2
.

Using (49), we can apply matrix Bernstein inequality of Theorem 4 we get

Eσ

[∥∥∥∥∥
n∑

i=1

Si

∥∥∥∥∥
2

]
≤

(
W 2ϵ
√
d

√√√√2

(
n∑

i=1

(
√
dϵ+ 2 ∥xi∥2)2

)
log(2d)

+
1

3
W 2ϵ
√
d(
√
dϵ+ 2 ∥X∥2,∞) log(2d)

)
×
{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2

=W 2ϵ
√
d log(2d)

√√√√2

n∑
i=1

(
√
dϵ+ 2 ∥xi∥2)2 +

1

3

√
log(2d)(

√
dϵ+ 2 ∥X∥2,∞)


×
{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2
.

The above combined with (47) concludes the proof

R̂D(f̃ ◦ H∆H) ≤ RD(f ◦ H∆H)

+
A2

n
W 2ϵ

√
d log(2d)

√√√√2

n∑
i=1

(
√
dϵ+ 2 ∥xi∥2)2 +

1

3

√
log(2d)(

√
dϵ+ 2 ∥X∥2,∞)


×
{
1, if 1 ≤ p ≤ 2

d2−4/p, else if p > 2
.

I.2 PROOF OF REGRESSION SETTING

Proof of the regression bound of Theorem 3. First, by the definition of RD(ℓ̃ ◦ H∆H) we have that

RD(ℓ̃ ◦ H∆H) = Eσ

 sup
a,a′∈Bp(A)2

W,W′∈Bp(W )2

1

n

n∑
i=1

σi max
∥δ∥∞≤ϵ

(
a⊤g(W(xi + δ))− a′g(W′(xi + δ))

)2


≤ RD(ℓ ◦ H∆H)

+ Eσ

 sup
a,a′∈Bp(A)2

W,W′∈Bp(W )2

1

n

n∑
i=1

σi
(
a⊤g(W(xi + δ

∗
i ))− a′⊤g(W′(xi + δ

∗
i ))
)2

−
(
a⊤g(Wxi)− a′⊤g(W′xi)

)2 ]
,

where, like in Appendix I.1, we denote by δ∗i an argument of the maxima of the inner function,
i.e. δ∗i ∈ argmaxδ∈B∞(ϵ)

(
a⊤g(W(xi + δ))− a′g(W′(xi + δ))

)2
. Then, by introducing follow-

ing matrices
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• Pi := g(W(xi + δ
∗
i ))g(W(xi + δ

∗
i ))

⊤ − g(Wxi)g(Wxi)
⊤ ∈ Rd×d

• Qi := g(W′(xi + δ
∗
i ))g(W

′(xi + δ
∗
i ))

⊤ − g(W′xi)g(W
′xi)

⊤ ∈ Rd×d

• Ri := g(W(xi + δ
∗
i ))g(W

′(xi + δ
∗
i ))

⊤ − g(Wxi)g(W
′xi)

⊤ ∈ Rd×d

we can rewrite the upper bound of the adversarial Rademacher complexity as

RD(ℓ̃ ◦ H∆H) ≤ RD(ℓ ◦ H∆H) + Eσ

 sup
a,a′∈Bp(A)2

W,W′∈Bp(W )2

1

n

n∑
i=1

σi(a
⊤Pia+ a′⊤Qia

′ + a⊤Ria
′)



≤ RD(ℓ ◦ H∆H) + Eσ

 sup
a∈Bp(A)

W,W′∈Bp(W )2

1

n

n∑
i=1

σia
⊤Pia



+ Eσ

 sup
a′∈Bp(A)

W,W′∈Bp(W )2

1

n

n∑
i=1

σia
′⊤Qia

′

+ Eσ

 sup
a,a′∈Bp(A)2

W,W′∈Bp(W )2

1

n

n∑
i=1

σia
⊤Ria

′



≤ RD(ℓ ◦ H∆H) +
1

n
Eσ

 sup
a∈Bp(A)

W,W′∈Bp(W )2

a⊤

(
n∑

i=1

σiPi

)
a



+
1

n
Eσ

 sup
a′∈Bp(A)

W,W′∈Bp(W )2

a′⊤

(
n∑

i=1

σiQi

)
a′

+
1

n
Eσ

 sup
a,a′∈Bp(A)2

W,W′∈Bp(W )2

a⊤

(
n∑

i=1

σiRi

)
a′

 .

Following the same steps that lead to (47), we get that

RD(ℓ̃ ◦ H∆H) ≤ RD(ℓ ◦ H∆H)

+
A2

n

(
Eσ

∥∥∥∥∥
n∑

i=1

σiP
∗
i

∥∥∥∥∥+ Eσ

∥∥∥∥∥
n∑

i=1

σiQ
∗
i

∥∥∥∥∥+ Eσ

∥∥∥∥∥
n∑

i=1

σiR
∗
i

∥∥∥∥∥
)

︸ ︷︷ ︸
(I)

×
{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2
,

where the matrices are defined by

• P∗
i := g(W∗

P(xi + δ
∗
i ))g(W

∗
P(xi + δ

∗
i ))

⊤ − g(W∗
Pxi)g(W

∗
Pxi)

⊤ ∈ Rd×d

• Q∗
i := g(W′∗

Q(xi + δ
∗
i ))g(W

′∗
Q(xi + δ

∗
i ))

⊤ − g(W′∗
Qxi)g(W

′∗
Qxi)

⊤ ∈ Rd×d

• R∗
i := g(W∗

R(xi + δ
∗
i ))g(W

′∗
R(xi + δ

∗
i ))

⊤ − g(W∗
Rxi)g(W

′∗
Rxi)

⊤ ∈ Rd×d

for some optimal matrices W∗
P,W

′∗
P ,W

∗
Q,W

′∗
Q,W

∗
R,W

′∗
R with ℓp-norm smaller than W . Now

examine the spectral norm of σiP∗
i , σiQ∗

i and σiR∗
i by following the same steps leading to (48):

∥σiP∗
i ∥2 =

∥∥g(W∗
P(xi + δ

∗
i ))g(W

∗
P(xi + δ

∗
i ))

⊤ − g(W∗
Pxi)g(W

∗
Pxi)

⊤∥∥
2

≤W 2ϵ
√
d(
√
dϵ+ 2 ∥xi∥2)×

{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2
, (50)

∥σiQ∗
i ∥2 =

∥∥g(W′∗
Q(xi + δ

∗
i ))g(W

′∗
Q(xi + δ

∗
i ))

⊤ − g(W′∗
Qxi)g(W

′∗
Qxi)

⊤∥∥
2

≤W 2ϵ
√
d(
√
dϵ+ 2 ∥xi∥2)×

{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2
,

∥σiR∗
i ∥2 =

∥∥g(W∗
R(xi + δ

∗
i ))g(W

′∗
R(xi + δ

∗
i ))

⊤ − g(W∗
Rxi)g(W

′∗
Rxi)

⊤∥∥
2

≤W 2ϵ
√
d(
√
dϵ+ 2 ∥xi∥2)×

{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2
.
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Now we examine the variance of
∑n

i=1 σiP
∗
i ,
∑n

i=1 σiQ
∗
i and

∑n
i=1 σiR

∗
i :

Var

(
n∑

i=1

σiP
∗
i

)
=

∥∥∥∥∥
n∑

i=1

Eσ[P
∗
i
⊤P∗

i ]

∥∥∥∥∥
2

≤
n∑

i=1

∥∥g(W∗
P(xi + δ

∗
i ))g(W

∗
P(xi + δ

∗
i ))

⊤ − g(W∗
Pxi)g(W

∗
Pxi)

⊤∥∥2
2

(50)
≤

n∑
i=1

(
W 2ϵ
√
d(
√
dϵ+ 2 ∥xi∥2)

)2
×
{
1, if 1 ≤ p ≤ 2

d2−4/p, else if p > 2

=
(
W 2ϵ
√
d
)2 n∑

i=1

(√
dϵ+ 2 ∥xi∥2

)2
×
{
1, if 1 ≤ p ≤ 2

d2−4/p, else if p > 2
.

Similarly, we can show that Var (
∑n

i=1 σiQ
∗
i ) and Var (

∑n
i=1 σiR

∗
i ) can be upper bounded the

same way. Now, by applying three times the matrix Bernstein inequality (Theorem 4) we have:

(I) ≤W 2ϵ
√
d log(2d)

3

√√√√2

n∑
i=1

(
√
dϵ+ 2 ∥xi∥2)2 +

√
log(2d)(

√
dϵ+ 2 ∥X∥2,∞)


×
{
1, if 1 ≤ p ≤ 2

d1−2/p, else if p > 2
.

which concludes the proof.

J PROOF OF LEMMA 5

In this section we present the proof of Lemma 5.

Proof. The proof idea is to show that, by perturbing the standard risk on T within the adversary set,
the perturbed risk can approximate the standard risk on T ′ with some error. First, let us define a
perturbed risk for any perturbation

RT (hw, y, δ) := Ex∼T [ℓ(hw(x+ δ), y(x)] (51)

=
∑
x∈X

p(x)
1

2
| sign(w(x+ δ(x))− y(x)|

= p⊤ℓ̃
(
{δi}|X |

i=1

)
. (52)

We then recall the definition of the standard risk on T ′

RT ′(hw, y) =
∑
x∈X

p′(x)
1

2
| sign(w⊤x)− y(x)|

= p′⊤ℓ . (53)

We recall the definition of adversarially robust risk over domain T for the labeling function y(·)

Radv
T (hw, y) = Ex∼T

[
max

∥δ∥∞≤ϵ
ℓ(hw(w + δ), y(x))

]
. (54)

So, for any δ such that ∥δ∥∞ ≤ ϵ, we get that

RT ′(hw, y)−Radv
T (hw, y)

(51)−(54)
≤ RT ′(hw, y)−RT (hw, y, δ)

(52)−(53)
= p′⊤ℓ− p⊤ℓ̃({δi}|X |

i=1) .

Since the above inequality holds for any δ such that ∥δ∥∞ ≤ ϵ, we must have

RT ′(hw, y)−Radv
T (hw, y) ≤ min

∥δi∥∞≤ϵ
|p′⊤ℓ− p⊤ℓ̃({δi}|X |

i=1)| .
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Now, let’s examine the coordinates in Λ. For i-th coordinate, if it is in Λ, we know that

−ϵ∥w∥1 ≤ w⊤xi ≤ ϵ∥w∥1 ,

which implies that, there is a δ that can change the sign of sign(w(x + δ)), and hence change the
value of ℓ̃i. That is, if w⊤xy(x) ≥ 0, there is a δ∗ = argmin∥δ∥∞≤ϵ w

⊤δy(x), such that

w⊤(x+ δ∗)y(x) = w⊤xy(x)− ϵ∥w∥1 ≤ 0 .

Similarly, if w⊤xy(x) ≤ 0, there is a δ∗ = argmax∥δ∥∞≤ϵ w
⊤δy(x), such that:

w⊤xy(x) +w⊤δ∗y(x) = w⊤xy(x) + ϵ∥w∥1 ≥ 0 .

Finally, we get

min
∥δi∥∞≤ϵ

|p′⊤ℓ− p⊤ℓ̃({δi}|X |
i=1)|

=

 min
ℓ̃∈{0,1}N

∣∣∣p⊤ℓ̃− p′⊤ℓ
∣∣∣

s.t. ℓ̃i = ℓi, ∀ i ∈ [N ] \ Λ
= V ∗(p′,p, ℓ,Λ) .

Corollary 3. Continuing with the settings and assumptions in Lemma 5, the following statement
holds with probability at least 1− c:

RT ′(hw, y) ≤ Radv−label
S (hw, y) +Radv−label

S (hw∗
S
, y) + V ∗(p′,p, ℓ,Λϵ)

+ discadvH∆H(Ŝ, T̂ ) +Radv
T (hw∗

T
, hw∗

S
) +Radv

T (hw∗
T
, y)

+ R̂S(ℓ̃ ◦ H∆H) + R̂T (ℓ̃ ◦ H∆H)+3M

(√
log(1/c)

nS
+

√
log(1/c)

nT

)
. (55)

Combining Lemmas 2 and 5 imply Corollary 3. Equation (55) shows that, small robust risk on source
domain will imply small standard risk on any target domain T ′, if the residual error V ∗(p′,p, ℓ,Λϵ)
is also small. The residual error mainly depends on the adversarial budget. If the adversarial budget
ϵ is larger, Λϵ will be larger, which means the quantity V ∗(p′,p, ℓ,Λϵ) will be smaller. However,
there is a trade-off since ϵ will also affect other terms in the right hand side of the bound, such as
adversarial Rademacher and the adversarial disagreement between hw∗

T
and hw∗

S
.

K DETAILS ON EXPERIMENTS

In Table 2, we present the details of the convolutional network. For the convolutional layer (Conv2D
or Conv1D), the first argument is the number channel. For a fully connected layer (FC), we list the
number of hidden units as the first argument.
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Table 2: Convolutional network architecture.
Layer Details

feature extractor

conv1 Conv2D(64, kernel size=5, stride=1, padding=2)
bn1 BN2D, RELU, MaxPool2D(kernel size=2, stride=2)

conv2 Conv2D(64, kernel size=5, stride=1, padding=2)
bn2 BN2D, ReLU, MaxPool2D(kernel size=2, stride=2)

conv3 Conv2D(128, kernel size=5, stride=1, padding=2)
bn3 BN2D, ReLU

classifier

fc1 FC(2048)
bn4 BN1D, ReLU
fc2 FC(512)
bn5 BN1D, ReLU
fc3 FC(10)
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