
Bias and Debias in Code Search:
Improve Search Results beyond Overall Ranking Performance

Anonymous EMNLP submission

Abstract

Code search engine is an essential tool in soft-001
ware development. Many code search meth-002
ods have sprung up, focusing on the overall003
ranking performance of code search. In this004
paper, we study code search from another per-005
spective by analyzing the bias of code search006
models. Biased code search engines provide007
poor user experience, even though they show008
promising overall performance. Due to differ-009
ent development conventions (e.g., prefer long010
queries or abbreviations), some programmers011
will find the engine useful, while others may012
find it hard to get desirable search results. To013
mitigate biases, we develop a general debiasing014
framework that employs reranking to calibrate015
search results. It can be easily plugged into016
existing engines and handle new code search017
biases discovered in the future. Experiments018
show that our framework can effectively re-019
duce biases. Meanwhile, the overall ranking020
performance of code search gets improved af-021
ter debiasing. Our implementation is available022
at: https://anonymous.4open.science/r/023
CodeSearchBias-B2AD.024

1 Introduction025

Software development is a repetitive task as pro-026

grammers usually reuse or get inspiration from ex-027

isting implementations. Studies show programmers028

spent 19% of their programming time on search-029

ing source code (Brandt et al., 2009). Therefore,030

code search, which refers to the retrieval of rele-031

vant code snippets from a codebase according to032

programmer’s intent that has been expressed as a033

query (Liu et al., 2022), has become increasing034

important (Grazia and Pradel, 2022).035

Although much effort has been devoted to im-036

proving code search, existing works mostly empha-037

size the ranking performance of code search w.r.t.038

metrics like Mean Reciprocal Rank (MRR) and Hit039

Ratio@K (HR@K) (Liu et al., 2022; Grazia and040

Pradel, 2022). In this paper, we study code search041

from another perspective. We find that state-of- 042

the-art code search methods prevalently have dis- 043

criminatory behaviors (i.e., different performance) 044

toward queries or code snippets with certain prop- 045

erties (e.g., length). The observation shows, even 046

though the overall ranking performance is good, 047

programmers may still be dissatisfied with search 048

results when their input queries or desired code 049

snippets fall into those categories that code search 050

models cannot handle well. We name our obser- 051

vation as Code Search Bias, inspired by the AI 052

bias that attracts great attention recently (Mehrabi 053

et al., 2021). Code search bias hurts user experi- 054

ence. Due to different development conventions 055

(e.g., prefer long queries or abbreviations), users 056

(programmers) of code search engines with biases 057

will have different user experience, i.e., some users 058

will find the engine useful, while others may find it 059

hard to get desirable search results. 060

Note that most studies of bias in NLP focus on 061

societal bias (Blodgett et al., 2020). For exam- 062

ple, the gender bias of NLP algorithms may pose 063

the danger of giving preference to male applicants 064

in automatic resume filtering systems (Sun et al., 065

2019). However, in applications like search en- 066

gines (Ovaisi et al., 2020) and recommender sys- 067

tems (Chen et al., 2023), some biases without so- 068

cietal factors are widely studied as they make the 069

system biased toward certain search results and 070

harm the performance. For instance, position bias 071

exists in learning-to-rank systems where top search 072

results are more likely to be clicked even if they are 073

not the most relevant results (Agarwal et al., 2019). 074

But it does not mean any discriminatory behaviors 075

toward certain groups of people. Similarly, code 076

search bias does not involve societal factors. 077

Considering that our observation has revealed 078

the widespread code search bias in existing models, 079

we aim at designing a general debiasing frame- 080

work that can be easily plugged into existing code 081

search engines. In the context of code search bias, 082
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debiasing indicates removing the correlations be-083

tween code search quality and certain properties of084

queries and code snippets. Our proposed debiasing085

framework adopts the idea of reranking to calibrate086

search results. It helps state-of-the-art code search087

models overcome code search bias and their overall088

performance can be improved at the meantime. In089

summary, our contributions are:090

1. To our best knowledge, we are the first to study091

code search bias. We reveal the widespread092

existence of seven code search biases.093

2. To mitigate code search bias, we propose a gen-094

eral debiasing framework using reranking. It095

can be easily plugged into existing engines.096

3. Extensive experiments show that our debiasing097

framework not only helps alleviate code search098

bias but also improves the overall ranking per-099

formance of state-of-the-art code search models.100

2 Related Work101

Code Search. Early code search methods adopt102

traditional information retrieval methods to esti-103

mate the relevance between the query and a code104

snippet (Lv et al., 2015; Bajracharya et al., 2010).105

Recent works adopt deep neural networks to embed106

query and code into vectors. Then, the code search107

task is performed by measuring the similarity be-108

tween vectors. Along this direction, various deep109

learning based methods have been proposed, in-110

cluding but not limited to recurrent neural network111

(RNN) based approaches (Gu et al., 2018), convolu-112

tional neural network (CNN) based approaches (Li113

et al., 2020), graph neural network (GNN) based114

approaches (Wan et al., 2019) and pre-training ap-115

proaches (Feng et al., 2020; Guo et al., 2021, 2022).116

Bias and Debias. Many AI systems exhibit cer-117

tain biases that bring unfairness and degrade the118

performance (Mehrabi et al., 2021). Various debi-119

asing methods have been proposed and they can be120

roughly divided into three types:121

1. Pre-processing methods remove biases in train-122

ing data. Calmon et al. (2017) design a123

framework for discrimination-preventing pre-124

processing to enhance data with multi goals.125

Biswas and Rajan (2021) analyze bias prompts126

in data preprocessing pipelines and identify data127

transformers that can mitigate the pipeline bias.128

2. In-processing methods mitigate biases in the129

model training step. Garimella et al. (2021)130

propose a debiasing method that requires pre- 131

training on an extra small corpus with bias miti- 132

gation objectives for mitigating social biases in 133

language models. Lin et al. (2021) propose a 134

debiasing framework with three strategies that 135

be used as regularizers in the training objective 136

of review-based recommender systems. 137

3. Post-processing methods handle biases after 138

model training. Petersen et al. (2021) translate 139

debiasing into a graph smoothing problem and 140

propose a post-processing coordinate descent al- 141

gorithm. Kim et al. (2019) design Multiaccuracy 142

Boost, which uses an auditor to identify subpop- 143

ulation biases and further uses it for debiasing 144

in the post-processing. 145

Although many debiasing methods exist, they 146

cannot be directly used for code search biases. Our 147

method belongs to the post-processing category 148

and it is tailored for removing code search biases. 149

3 Analysis of Code Search Biases 150

In this section, we reveal the widespread existence 151

of code search biases and provide the analysis. 152

3.1 Analysis Settings 153

Data: We use CoSQA dataset1 (Huang et al., 2021) 154

with 20,604 query-code pairs. Each query is writ- 155

ten in English while each code snippet is a Python 156

code snippet. The data is annotated by at least 3 157

human annotators. We randomly split the dataset 158

by 70%/30% for training and test. We adopt byte- 159

pair encoding tokenization, a standard tokenization 160

method used in preprocessing code search data, to 161

tokenize queries and code snippets. As queries 162

are typically short, stop words in queries are not 163

removed. Note that there are other public code 164

search datasets, e.g., CodeSearchNet dataset (Hu- 165

sain et al., 2019), DeepCS dataset (Gu et al., 2018), 166

and CodeXGLUE dataset (Lu et al., 2021). We 167

choose CoSQA dataset as it includes real code 168

search queries, while other datasets use code docu- 169

ments (e.g., the first sentence in the function com- 170

ments) to mimic queries. Using CoSQA helps us 171

better discover biases in a real code search scenario. 172

Code Search Models: We select six represen- 173

tative code search approaches in the literature 174

for our bias analysis, including DeepCS2 (Gu 175

1https://github.com/microsoft/CodeXGLUE/tree/main/Text-
Code/NL-code-search-WebQuery

2https://github.com/guxd/deep-code-search
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et al., 2018), CQIL3 (Li et al., 2020), Code-176

BERT4 (Feng et al., 2020), CoCLR5 (Huang et al.,177

2021), GraphCodeBERT4 (Guo et al., 2021) and178

UniXcoder4 (Guo et al., 2022). They are all un-179

der the MIT license, allowing us to adopt them180

in this study. We have observed similar biases in181

all the six methods. Due to space limitation, we182

only show analysis results of CQIL, CodeBert and183

GraphCodeBERT, and other methods are reported184

in our debiasing experiments in Sec. 5. We follow185

authors’ descriptions to set hyper-parameters when-186

ever possible in order to tune the performance of187

each method towards its best.188

Evaluation Metrics: We use Mean Reciprocal189

Rank (MRR), the most widely used measure for190

code search, to illustrate our bias analysis. It is191

defined as MRR = 1
|Q|

∑|Q|
i=1

1
ranki

, where |Q| is192

the number of queries and ranki indicates the rank193

of the ground-truth code snippet w.r.t. the i-th194

query. We also adopt another prevalent metric Hit195

Ratio@K (HR@K, the percentage of ground-truth196

code snippets that are in the top-K ranking lists197

from code search models) and results are discussed198

in Sec. 5. Note that most current code search stud-199

ies assume that there exists only one good result for200

each query and public code search datasets are de-201

signed this way. Hence, the popular ranking metric202

Normalized Discounted Cumulative Gain (NDCG)203

will be consistent with MRR. Our reported results204

are averaged over several runs.205

3.2 Analysis Results206

Based on the characteristics of code search and207

the data involved in the search process, we have208

found and verified seven code search biases. A209

general motivation to consider these seven factors210

is that they are commonly adopted as parameters211

in the experiments of existing papers as they affect212

the results of code-related tasks (Hu et al., 2022;213

Wan et al., 2018; McBurney and McMillan, 2016).214

The performance of CQIL, CodeBERT and Graph-215

CodeBERT w.r.t. the seven biases are presented in216

Fig. 1. We first group queries (in the test set) or217

ground-truth code snippets in intervals with equal218

lengths w.r.t. certain statistics. Then, we investi-219

gate whether code search models show different220

behaviors towards different intervals. The x-axis221

illustrates the intervals. To better visualize the re-222

3https://github.com/flyboss/CQIL
4https://github.com/microsoft/CodeBERT
5https://github.com/Jun-jie-Huang/CoCLR

sult of bias analysis, data in Fig. 1 (a) and (c) is 223

grouped in an interval with a length of 4, data in 224

Fig. 1 (f) is grouped in an interval with a length of 225

0.15, and data in other subfigures is grouped in an 226

interval with a length of 1. The left y-axis denotes 227

the number of queries or ground-truth code snip- 228

pets in each interval while the right y-axis shows 229

the average MRR score for data in each interval. 230

We provide our analysis as follows: 231

Bias 1 w.r.t. Lengths of Ground-Truth Code 232

Length bias (i.e., model makes decisions based 233

on or affected by the length of texts) has been 234

verified in various information retrieval and nat- 235

ural language processing tasks such as textual 236

matching (Jiang et al., 2022) and machine transla- 237

tion (Murray and Chiang, 2018). This inspires us to 238

investigate the effect of the length of ground-truth 239

code snippets on code search models. 240

Fig. 1 (a) shows the performance of three models 241

w.r.t. code lengths. From Fig. 1 (a), we can see 242

that lengths of most code snippets are between 20 243

and 50. Furthermore, we can observe that: (1) In 244

general, the longer the ground-truth code snippet is, 245

the better the MRR score is. There are some sharp 246

drops in MRR when code length gets much longer. 247

The reason may be the number of ground-truth 248

code snippets in intervals with longer lengths (e.g., 249

> 70) is quite small and a few hard cases affect the 250

average performance in those intervals. (2) Code 251

search models show a clear bias towards intervals 252

with longer lengths of ground-truth code snippets, 253

i.e., longer ground-truth code snippets are more 254

easily to match. For instance, the MRR scores of 255

GraphCodeBERT are 0.57 and 0.83 for the inter- 256

val with average code length 36 and the interval 257

with average code length 68, respectively. Intu- 258

itively, longer ground-truth code snippets provide 259

more semantic information, making it more easy 260

to be modeled and matched. From a software en- 261

gineering perspective, long code snippets are more 262

distinctive than short ones: it is more likely for two 263

short code snippets to be similar, making it hard to 264

distinguish the correct one from other candidates. 265

Bias 2 w.r.t. Lengths of Queries 266

Similar to Bias 1, we have identified the bias 267

w.r.t. lengths of input queries. As shown in Fig. 1 268

(b), as query length increases, MRR decreases, indi- 269

cating that longer queries have worse search results. 270

Bias 3 w.r.t. Numbers of AST Nodes 271

One major difference between natural languages 272
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Figure 1: Examples of code search biases.

(NLs) and programming languages (PLs) is that273

PLs have strict syntax rules that are enforced by274

language grammars. Abstract Syntax Tree (AST),275

used in compilers, represents the abstract syntactic276

structure of the source code. Each node of ASTs de-277

notes a construct or symbol occurring in the source278

code. Compared to plain source code, ASTs are279

abstract and some details (e.g., punctuation and de-280

limiters) are not included. ASTs are used in various281

code-related tasks like code summarization (Alon282

et al., 2019) and code completion (Wang and Li,283

2021) for capturing syntactic information.284

Considering the importance of ASTs for mod-285

eling PL syntax, we investigate the influence of286

ASTs on code search models. Usually, longer code287

snippets correspond to deep ASTs. However, some288

complex yet short code snippets such as list parsing289

in Python may also have deep ASTs. Hence, Bias290

3 is not equivalent to Bias 1. Fig. 1 (c) demon-291

strates the impacts of AST node numbers on the292

performance of code search models. We can ob-293

serve the bias: code search models show diverse294

performance towards different intervals. For exam-295

ple, the MRR scores of GraphCodeBERT are 0.6296

and 0.87 for the interval with average AST node297

number 40 and the interval with average AST node298

number 72, respectively. The performance gap is299

significant in code search.300

Bias 4 w.r.t. Depths of ASTs301

Similar to Bias 3, we further identify the bias302

w.r.t. AST depths which also depict the complexity303

of ASTs. Note a deep AST may not have many304

AST nodes. Hence, Bias 3 and Bias 4 are differ-305

ent. Fig. 1 (d) shows the impact of AST depths.306

In Fig. 1 (d), code snippets are grouped by the307

depth of their ASTs and the interval length is 1. 308

We can observe the existence of bias: code search 309

models have diverse performance towards different 310

intervals containing ASTs with different depths. 311

Bias 5 w.r.t. Numbers of Reserved Words 312

If we do not consider identifiers and constants, 313

the vocabulary of code tokens containing reserved 314

words of a PL is small. We investigate the im- 315

pact of reserved words on the behaviors of code 316

search models. Specially, we consider Python 317

reserved words if, for, while, with, try and 318

except. They are related to control structures and 319

demonstrate the programming logic of designing a 320

function. Fig. 1 (e) demonstrates the performance 321

towards ground-truth code snippets containing dif- 322

ferent numbers of reserved keywords. We can see 323

the existence of a bias: performance of code search 324

models varies when the number of code keywords 325

changes. We can observe that the considerable 326

growth of the MRR score when the number of key- 327

words in ground-truth code snippets increases. One 328

possible reason is that logic-related reserved words 329

in ground-truth code snippets help code search 330

models better capture the logic of the code. There- 331

fore, it is easier for code search models to match 332

the ground-truth code snippet and the user intent 333

that manifests in the queries when code contains 334

more logic-related reserved words. 335

Bias 6 w.r.t. Importance of Words 336

Queries are typically concise, containing only a 337

few words. For each query, we calculate the max 338

TF-IDF values for the words contained in the query 339

to estimate how important words contained in a 340

query are. We have also calculated the average and 341

the minimum TF-IDF values and similar results can 342
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be observed. TF-IDF helps avoid amplifying the343

importance of words that appear more frequently344

in general (e.g., the word “an” in a query “sort345

an array”). When calculating TF-IDF, we treat346

each query in CoSQA as a document. Results are347

presented in Figs. 1 (f), and we can observe the348

existence of a bias, i.e., code search models show349

different performance for queries containing words350

with varying importance. Intuitively, the important351

words (e.g., “sort”) contained in a query help code352

search models better understand user intent and353

match the ground-truth code snippet.354

Bias 7 w.r.t. Numbers of Overlapping Words355

Early code search methods rely on the overlap-356

ping words of queries and code snippets to estimate357

query-code relevance scores. However, overlap-358

ping words received less attention in deep learning359

based code search models (Zhu et al., 2020). We in-360

vestigate the influence of overlaps on the behaviors361

of the three code search models which all leverage362

deep learning. Fig. 1 (g) illustrates the performance363

on test query-code pairs that have different num-364

bers of overlapping words. From the figure, we365

can observe a bias: models produce better MRR366

towards query-code pairs with more overlapping367

words. In other words, deep learning-based code368

search models also capture overlapping words and369

treat them as a strong signal of a matching result,370

confirming the standard hypothesis that overlap-371

ping words affect code search.372

In summary, we have identified seven distinct373

biases, meaning that code search models show dif-374

ferent performance when facing input queries or375

ground-truth code snippets with different character-376

istics. In practice, code search biases result in the377

inconsistence of user experience: depending on the378

characteristics of queries and/or ground-truth code379

snippets, the quality of search results varies.380

4 Mitigate Code Search Biases381

In this section, we illustrate our debiasing frame-382

work shown in Fig. 2. Our goal is to design a gen-383

eral framework: (1) it can be easily plugged into384

existing code search models without much addi-385

tional effort, and (2) it can handle new code search386

biases that are not discovered at the moment.387

We opt to adopt reranking, a post-processing388

method, to calibrate code search results. The idea389

is to rerank the ranking results provided by code390

search models. Even though code search biases391

are prevalent in many cases as we have seen in392

Code 1

Sequential

Reranking

Parallel 

Reranking

def bubble_sort(array):

for i in range(n): …

Query: How to 

write a quick sort

Code 
Search
Engine

Code 2

Code 3

Code 4

Code 3

Code 1

Code 2

Code 4

Figure 2: Overview of the debiasing framework.

Fig. 1, many code search models show promising 393

overall performance (i.e., high MRR or HR@K). 394

Therefore, for biased cases, the ground-truth code 395

snippets are not too far away from the top of search 396

results. Otherwise, the overall MRR scores will 397

be quite low according to its definition. Similarly, 398

we believe that any new code search biases also 399

meet the above condition (i.e., biases exist but over- 400

all search performance is high). For biased cases, 401

a successful reranking method can help ground- 402

truth code snippets emerge on top. Post-processing 403

search results also avoid modifying existing code 404

search models. This way, the designed debiasing 405

framework is orthogonal to a specific code search 406

method and it can be easily used as a reinforcement. 407

Next, we first demonstrate how our framework 408

mitigates one bias. Then, the way that our frame- 409

work mitigates multiple biases is presented. 410

4.1 Mitigate A Single Bias via Reranking 411

Our idea is to use the prior knowledge of bi- 412

ased search from the training data to determinate 413

whether a similar search in the test set will face a 414

bias issue and require reranking. The detailed steps 415

of mitigating a single bias via a single reranker are 416

illustrated as follows: 417

1. Firstly, we embed all queries in the training 418

set into vectors using a pre-trained CodeBERT 419

model. For a test query (i.e., the current search), 420

after it is embedded by the CodeBERT model, 421

we retrieve its top-M most similar queries in 422

the training set based on cosine similarity be- 423

tween vectors. These retrieved queries and their 424

corresponding ground-truth code snippets in the 425

training set will provide some hints on whether 426

the current search may face a certain bias. 427

2. Then, we identify intervals in training data 428

where code search models show very high per- 429

formance. It is likely that search results are not 430

severely biased within these intervals. Other- 431

wise the MRR scores for these intervals should 432
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be low by its definition. For such intervals, it433

is unnecessary to rerank for debiasing. We sort434

the search cases in training set by their MRR435

scores and retrieve cases with top N% maxi-436

mum MRR scores. We adopt k-means to cluster437

the retrieved training search cases into S clus-438

ters. Then, the maximum and minimum MRR439

scores in each cluster are used as the boundaries440

of the cluster.441

3. For a test search t, if its top-M most similar442

training query-code pairs have an average MRR443

score that falls in the range of any cluster, then it444

is likely that code search models provide reason-445

able relevance prediction scores for the candi-446

date code snippets contained in these query-code447

pairs and our method will not rerank these can-448

didate code snippets. For other candidate code449

snippets, reranking is required.450

4. For a candidate code snippet c that requires451

reranking, the reranking score is calculated as:452

R = Scoreoriginal
c + P (Te < Tm), (1)453

where Scoreoriginal
c denotes the original ranking454

score of c, Te represents the MRR value of the455

code search model on a training query-code pair,456

Tm represents the overall MRR value of the code457

search model on the training data, and P (Te <458

Tm) indicates the percentage of training query-459

code pairs that the code search model shows a460

lower MRR score than its overall MRR score461

over all the training pairs.462

5. For the test search t, our method will use rerank-463

ing scores R instead of Scoreoriginal as relevance464

scores for all candidate code snippets that are465

identified to require reranking in Step 3. Then,466

the ranking list is reranked according to new467

relevance scores.468

We discuss the impact of the choices of M , N and469

S in Analysis 5 of Sec. 5.470

4.2 Mitigate Multiple Biases471

To mitigate multiple code biases together, we adopt472

two simple yet effective strategies to assemble re-473

rankers for different code search biases:474

1. Sequential Reranking: Adopt each reranker475

sequentially. The relevance scores from a previ-476

ous reranker will be used as the base relevance477

scores (i.e., Scoreoriginal) in the next reranker.478

2. Parallel Reranking: Adopt each reranker paral-479

lel and use the average of the relevance scores480

Table 1: Examples for two reranking methods for as-
sembling rerankers. “S” and “P” indicate sequential
reranking and parallel reranking, respectively. R1 and
R2 are reranking scores from reranker 1 and reranker 2,
respectively.

Method Code Reranker 1 Reranker 2 Relevance Score

S
c1 Scoreoriginal

c1 +R1 Scoreoriginal
c1 +R1 +R2 Scoreoriginal

c1 +R1 +R2

c2 Scoreoriginal
c2 Scoreoriginal

c2 Scoreoriginal
c2

P
c1 Scoreoriginal

c1 +R1 Scoreoriginal
c1 +R2 Scoreoriginal

c1 + (R1 +R2)/2

c2 Scoreoriginal
c2 Scoreoriginal

c2 Scoreoriginal
c2

from all rerankers between a candidate code 481

snippet and the current search as the prediction. 482

Tab. 1 provides examples to illustrate relevance 483

scores between a query and two candidate code 484

snippets c1 and c2. From final relevance scores 485

of the code snippet c1, we can see that sequen- 486

tial reranking emphasizes the adjustment of rerank- 487

ing as it aggregates reranking terms from different 488

rerankers. Differently, parallel reranking averages 489

reranking terms from different rerankers, avoiding 490

a sharp reranking. If none of the rerankers adjust 491

the relevance score, then the final relevance scores 492

are the same for both methods, as shown in the 493

case of the code snippet c2. Empirically, different 494

ordering shows only slight performance difference, 495

as we will show in Analysis 4 of Sec. 5. 496

Note the above two strategies in our debiasing 497

framework looks similar to Boosting and Bagging 498

methods used in Ensemble Learning (Zhou, 2009), 499

but they are not the same: (1) Compared to Boost- 500

ing methods like AdaBoost (Freund and Schapire, 501

1997), sequential reranking does not increase the 502

weights for wrongly labeled training samples (bi- 503

ased/unbiased cases) in previous reranker since 504

each reranker is designed for different targets (miti- 505

gate different biases) and wrongly labeled samples 506

in the previous reranker may be correct samples for 507

the next reranker. Differently, Boosting methods 508

will increase weights of incorrectly predicted sam- 509

pled for training the next learner. (2) Compared to 510

Bagging methods (Breiman, 1996), parallel rerank- 511

ing does not adopt sampling to prepare different 512

datasets (from the complete training set) for use in 513

each reranker. The reason is that, to make our de- 514

biasing method simple and general, our reranking 515

method is designed as a similarity-based adjuster 516

with simple rules instead of a learning-based ap- 517

proach. In a large training set, most similar queries 518

that are used to judge whether current search is 519

facing bias may not be selected in sampling, which 520

negatively affects debiasing. 521
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Figure 3: Mitigate biases using sequential reranking.

Table 2: Overall performance changes of code search models using sequential reranking.

Method Name
MRR HR@1 HR@5 HR@10

Before After Before After Before After Before After

DeepCS 0.295 0.428 (+45%) 0.219 0.366 (+67%) 0.375 0.489 (+30%) 0.462 0.553 (+20%)
CQIL 0.296 0.384 (+30%) 0.216 0.299 (+38%) 0.377 0.478 (+27%) 0.469 0.557 (+19%)

CodeBERT 0.474 0.569 (+20%) 0.363 0.471 (+30%) 0.598 0.685 (+15%) 0.712 0.782 (+9.8%)
CoCLR 0.756 0.770 (+1.9%) 0.641 0.661 (+3.1%) 0.909 0.917 (+0.88%) 0.967 0.971 (+0.41%)

GraphCodeBERT 0.641 0.695 (+8.4%) 0.524 0.587 (+12%) 0.790 0.831 (+5.2%) 0.882 0.911 (+3.3%)
UniXcoder 0.702 0.737 (+5.0%) 0.584 0.630 (+7.9%) 0.862 0.880 (+2.1%) 0.935 0.940 (+0.53%)

5 Debiasing Experiment522

In this section, we will illustrate the effectiveness of523

our debiasing framework on mitigating code search524

biases. Results are reported using our framework525

to mitigate the seven biases for the six code search526

methods on the CoSQA dataset. By default, the527

order of rerankers in sequential reranking is Biases528

7, 6, 3, 4, 2, 5 and 1. We also analyze the impact529

of reranker order in Analysis 4 of our experiments.530

Our method requires three hyper-parameters: M ,531

N and S, as illustrated in Sec. 4.1. We search M ,532

N and S in {1, 3, 5}, {10, 15, 20} and {1, 3, 5},533

respectively. Best results (M = 1, N = 10 and534

S = 1) are reported.535

Analysis 1: Debiasing Results. We first analyze536

the results after debiasing. Due to space limita-537

tion, we only visualize results of Bias 1 (Lengths538

of Code), Bias 3 (Numbers of AST nodes), Bias539

4 (Depths of ASTs) and Bias 6 (Importance of540

Words) for CQIL, CodeBERT and GraphCode-541

BERT. For other code search methods and biases,542

we observe similar results. Fig. 3 shows the perfor-543

mance before and after mitigating biases using se- 544

quential reranking. The result using parallel rerank- 545

ing is presented in Fig. 6 of Appendix B. From 546

visualization results, we can clearly see that, for 547

all the four biases, MRR scores of most intervals 548

increase after deploying our debiasing framework, 549

showing the effectiveness of our debiasing frame- 550

work. Sequential reranking shows a slightly better 551

debiasing result than parallel reranking (e.g., see 552

CQIL(b) and GraphCodeBERT(b) in Fig. 3 and 553

Fig. 6). However, sequential reranking is not as 554

efficient as parallel reranking as it processes each 555

reranker one by one. 556

Analysis 2: Changes of Code Search Perfor- 557

mance after Debiasing. Tab. 2 illustrates the 558

changes of overall code search performance after 559

debiasing using sequential reranking. Due to page 560

limitation, the results for parallel reranking is pro- 561

vided in Tab. 4 of Appendix C. From results, we 562

can see that, after debiasing, overall code search 563

performance w.r.t. MRR or HR@K significantly 564

increases. The improvements are especially no- 565

ticeable for DeepCS, CQIL and CodeBERT: MRR 566
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Figure 4: Changes of overall MRR after applying each
reranker in sequential reranking.

and HR@K of these methods increase by 9.6%-567

67%. The reason is that the original search per-568

formance of the three methods is not high and569

there is still large room for improvement. Even for570

CoCLR, GraphCodeBERT and UniXcoder which571

show quite high MRR (>0.6) and HR@K (>0.5)572

before debiasing, our debiasing framework still573

helps improve the overall code search performance.574

Thus, we can conclude that mitigating code search575

bias has a positive effect on improving the overall576

code search performance.577

Analysis 3: Impacts of Applying Multiple578

Rerankers. Next, we investigate whether applying579

multiple rerankers brings better debiasing results580

than using a single reranker. Fig. 4 illustrates the581

changes of overall MRR scores for the six code582

search models after applying each reranker using583

sequential reranking in the default order. The hor-584

izontal axis labels (from left to right) show the585

order of rerankers applied. We can observe that586

MRR scores of CodeBERT, DeepCS and CQIL587

gradually increase as more rerankers are applied.588

Eventually, their overall performance after debias-589

ing gets significantly improved compared to their590

original performance. For CoCLR, UniXCoder591

and GraphCodeBERT which have achieved high592

MRR scores before debiasing, applying multiple593

rerankers slightly enhances or does not negatively594

affect their overall performance. Overall, after ap-595

plying seven rerankers, the performance of CoCLR,596

UniXCoder and GraphCodeBERT gets enhanced.597

We can observe a similar trend when using paral-598

lel reranking. In conclusion, the more rerankers599

are applied, the better overall code search perfor-600

mance the code search model can achieve. In other601

words, each reranker indeed contributes to the im-602

provement of the quality of code search results.603

Analysis 4: Impacts of Reranker Order in Se-604

quential Reranking. Since sequential reranking605

has various possible order of rerankers, we ana-606

lyze the impact of reranking order. In addition to607

Figure 5: Sequential reranking in different order.

Table 3: MRR for different hyper-parameters.

Method
M S N

1 3 5 1 3 5 10 15 20

CQIL 0.380 0.329 0.348 0.384 0.380 0.355 0.380 0.380 0.376
CodeBERT 0.569 0.537 0.504 0.572 0.569 0.552 0.569 0.569 0.569

GraphCodeBERT 0.695 0.673 0.660 0.696 0.695 0.690 0.695 0.695 0.695

the default order, we report the debiasing perfor- 608

mance on CodeBERT using sequential reranking 609

with three other orders: order 1 (biases 1, 6, 4, 5, 610

2, 7, 3), order 2 (bases 6, 2, 4, 7, 3, 5, 1) and order 611

3 (biases 4, 6, 2, 1, 5, 3, 7). Fig. 5 demonstrates 612

the performance changes after each reranker is ap- 613

plied in the three order. The horizontal axis labels 614

(from left to right) show rerankers in the applied 615

order. Similar to the observation in Analysis 3, we 616

can see that adding more rerankers help improve 617

the MRR score. And the intermediate debiasing 618

results are slightly different using three different 619

order. But the different order does not affect the 620

final debiasing result too much. 621

Analysis 5: Impacts of Hyper-parameters. We 622

further analyze the impacts of hyper-parameters. 623

Tab. 3 provides the debiasing results of CQIL, 624

CodeBERT and GraphCodeBERT using different 625

hyper-parameters. Each of the MRR score in the 626

table is obtained by changing one hyper-parameter 627

while keeping the other two hyper-parameters the 628

same as the best ones found in hyper-parameter 629

search. From the result, we can conclude that 630

hyper-parameters do not affect results too much. 631

We provide the detailed analysis in Appendix D. 632

Analysis 6: Human Evaluation. We also conduct 633

human evaluation for assessing the quality of debi- 634

asing. The details are described in Appendix E. 635

6 Conclusion 636

In this paper, we reveal the existence of code search 637

biases. We design a general debiasing framework 638

that can be easily plugged into existing search mod- 639

els. In the future, we will explore pre-processing 640

and in-processing methods to improve our frame- 641

work and better mitigate code search biases. 642
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7 Limitations643

In this section, we discuss some limitations of this644

work:645

• Data: When we submitted this manuscript, only646

one real code search dataset CoSQA was pub-647

licly available. Other datasets in the literature648

do not have real search queries, and they use649

code documents to simulate queries. However,650

code documents and queries have different text651

styles (i.e., length). Hence, we only study code652

search bias based on the real data in CoSQA. To653

overcome this limitation, we are constructing an-654

other dataset containing real code search queries655

and will release it for future study.656

• Language: Queries and code snippets in657

CoSQA are written in English and Python, re-658

spectively. It is unclear whether our analysis659

results hold for queries written in other natural660

languages (e.g., French and Chinese). As the661

causes of code search biases analyzed in this662

work should be common across different pro-663

gramming languages (e.g., Java and Go), we664

expect that code search in other programming665

languages also suffers from the biases studied666

in this paper. We leave the study of the impacts667

of different natural languages and programming668

languages on code search bias as future work.669
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A Hardware Used in Our Experiments 825

The experiments were run on a machine with two 826

Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz, 827

256 GB main memory and 8 GeForce RTX 2080 828

Ti graphics cards with 11 GB memory per card. 829

B Additional Results for Analysis 1 830

As additional experimental results for Analysis 1 831

in Sec. 5, Fig. 6 illustrates the performance be- 832

fore and after mitigating biases using using parallel 833

reranking. 834

C Additional Results for Analysis 2 835

As additional experimental results for Analysis 2 in 836

Sec. 5, Tab. 4 illustrates the changes of overall code 837

search performance after debiasing using parallel 838

reranking. 839

D Additional Discussions for Analysis 5 840

From the result in Tab. 3, we can conclude that 841

hyper-parameters do not affect results too much. 842

We provide the analysis as follows: 843

• M indicates how many top-M similar queries 844

in the training set are adopted. We believe the 845

top-1 similar query already provides a hint for 846

our method, and including more similar queries 847

do not bring more information. Hence, changing 848

M does not affect the results too much. 849
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Figure 6: Mitigate biases using parallel reranking.

• N% represents the percentage of chosen train-850

ing search cases with the highest MRR scores.851

Since the training set of CoSQA data contains852

14K query-code pairs, changing N% in {10%,853

15%, 20%} results in 1,400, 2,100 and 2,800854

retrieved cases, respectively. The difference be-855

tween the numbers of retrieved cases is not large,856

compared to the total dataset with 21K query-857

code pairs.858

• S indicates the number of clusters after perform-859

ing kmeans on these N% cases. We find that860

small values of S bring relatively robust and861

good performance of debiasing, as reported in862

Tab. 3. Therefore, we suggest that users set S863

to a small value. If we set S to a much larger864

number (e.g., 100, 500, 1,000), the performance865

becomes inconsistent, and we suspect that di-866

viding retrieved cases into many small clusters867

cannot help find case patterns. Instead, many868

small clusters bring the noise. Hence, we do not869

suggest that users set S to a large value.870

E Details of Human Evaluation871

We randomly pick 200 queries from the test set for872

human evaluation. We choose CQIL as a represen-873

tation of code search models and use it in human874

evaluation. We use our debiasing framework to875

reduce code search biases in the corresponding re-876

sults of CQIL for the 200 queries. We recruit four877

master students majoring in computer science to878

Table 4: Overall performance changes of code search
models using parallel reranking.

Method Name
MRR HR@1

Before After Before After

DeepCS 0.295 0.425 (+44%) 0.219 0.363 (+65%)
CQIL 0.296 0.383 (+29%) 0.216 0.300 (+39%)

CodeBERT 0.474 0.579 (+22%) 0.363 0.483 (+33%)
CoCLR 0.756 0.769 (+1.7%) 0.641 0.661 (+3.1%)

GraphCodeBERT 0.641 0.666 (+3.9%) 0.524 0.552 (+5.3%)
UniXcoder 0.702 0.716 (+2.0%) 0.584 0.602 (+3.1%)

Method Name
HR@5 HR@10

Before After Before After

DeepCS 0.375 0.485 (+29%) 0.462 0.551 (+19%)
CQIL 0.377 0.476 (+26%) 0.469 0.551 (+17%)

CodeBERT 0.598 0.694 (+16%) 0.712 0.780 (+9.6%)
CoCLR 0.909 0.915 (0.66%) 0.967 0.971 (+0.41%)

GraphCodeBERT 0.790 0.810 (+2.5%) 0.882 0.895 (+1.5%)
UniXcoder 0.862 0.872 (+1.2%) 0.935 0.939 (+0.43%)

check the quality of debiasing manually. For each 879

query, we provide the students with two lists. One 880

is the original top-10 search results from CQIL, 881

and the other is the top-10 list after debiasing. The 882

lists for each query are shown in random order. 883

Students are asked to choose which top-10 list is 884

better, and they can also indicate that the two lists 885

are roughly of the same quality. From the results of 886

human evaluation, we find that, for 71.5% queries, 887

lists after debiasing are assessed as better ones. For 888

19.5% queries, the original list and the reranked 889

list are estimated as having similar quality. For 890

the remaining 9% queries, debiasing degrades the 891

quality of the search list. The human evaluation 892

results illustrate that our debiasing method indeed 893

improves the quality of the code search for most 894

queries. The materials of human evaluation are 895

included in our provided repository. 896
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