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Abstract

In text classification, neural network methods
often turn out to be an overkill. Compressor-
based methods are simpler, but previous works
in this area fail to achieve a result comparable
with neural network methods. In this paper, we
combine a simple compressor like gzip with
a k-nearest-neighbor classifier for text classi-
fication. Without any training, pre-training or
fine-tuning, our method achieves results that
are competitive with deep learning methods on
seven datasets, and it even outperforms BERT
and sentence-BERT on one dataset. In addition,
we demonstrate the robustness of our method
in the few-shot setting.

1 Introduction

Text classification, as one of the most fundamental
tasks in natural language processing (NLP), has
improved substantially with the help of neural net-
works (Li et al., 2022). Needless to say, most neu-
ral networks are data hungry, the degree of which
increases with the number of parameters. Addition-
ally, hyperparameters need to be carefully tuned
across different datasets. Pre-processing (e.g., to-
kenization, stop words removal, etc.) is another
tailored procedure for text that requires careful han-
dling for different models and datasets. The benefit
of using neural networks contributes mainly to its
ability of capturing latent correlations and recogniz-
ing implicit patterns (LeCun et al., 2015); however,
given their greater complexity, they may be overkill
for simple tasks like text classification. For exam-
ple, Adhikari et al. (2019b) find that a simple long
short-term memory network (LSTM; Hochreiter
and Schmidhuber, 1997) with appropriate regular-
ization can achieve competitive results. Shen et al.
(2018) further show that even word-embedding-
based methods can achieve results comparable to
convolutional neural networks (CNNs) and recur-
rent neural networks (RNNs).

In this paper, we propose a simpler method us-
ing only a lossless compressor and absolutely zero
training. Lossless compressors aim to represent
information using as few bits as possible by assign-
ing shorter codes to symbols with larger probability.
We hypothesize that the regularity and the probabil-
ity distribution captured by the compressor can be
used effectively toward a zero-training classifier.

Several studies attempt to use compressors for
topic classification (Teahan and Harper, 2003;
Frank et al., 2000), based on the intuition that
the minimum cross entropy between a document
and a language model of a class built by a com-
pressor indicates the class of the document. But
this line of work fails to compete with the state
of the art by then. Another line of compressor-
based methods (Khmelev and Teahan, 2003; Keogh
et al., 2004) takes advantage of the Normalized
Compression Distance (NCD) (Li et al., 2004), a
distance metric derived from Kolmogorov complex-
ity. However, few (Marton et al., 2005; Coutinho
and Figueiredo, 2015) explore NCD’s application
to topic classification, and none applies the com-
bination of NCD and k-nearest-neighbor (kNN)
classifier when k > 1 to topic classification. We
build our work upon the latter line of work.

Our contributions are as follows: (1) We are
the first to use NCD together with kNN on topic
classification — this allows us to carry out com-
prehensive experiments on large datasets and to
compare the results with neural network models,
which has not been done in this area before; (2) We
use a compressor-based method that requires zero
training to achieve results comparable to neural
network models that have millions of parameters
on seven out of eight datasets; (3) We demonstrate
that when labeled data is extremely limited, our
method outperforms non-pretrained neural network
methods; (4) We show that our method is more ro-
bust than pre-trained models on out-of-distributed
datasets; (5) We find that, being a universal base-



line, our method is particularly suitable for datasets
that are easily compressible.

2 Related Work

2.1 Compressor-Based Text Classification
Compressor-based distance metrics have been used
mainly for plagiarism detection (Chen et al., 2004),
clustering (Vitányi et al., 2009) and classifying time
series data (Chen et al., 1999; Keogh et al., 2004).

Several previous works explore methods using a
compressor-based distance metric for text classifi-
cation: Li et al. (2004) applies it to language identi-
fication as language are different in length by nature
(e.g., addresses <English>, adressebok <Norwe-
gian>, adressekartotek <Danish>); Khmelev and
Teahan (2003) uses it for authorship categorization;
Frank et al. (2000); Teahan and Harper (2003) uti-
lize Prediction by Partial Matching (PPM) for topic
classification. PPM, a text compression scheme
utilizing language modeling, estimates the cross
entropy between the probability distribution built
on class c and the document d: Hc(d). The intu-
ition is that the lower the cross entropy is, the more
likely that d belongs to c.

Summarized in Russell (2010), the procedure
of using compressor to estimate Hc(d) is that: (1)
for each class c, concatenate all samples dc in the
training set belonging to c; (2) compress dc as one
long document to get the compressed length C(dc);
(3) concatenate the given test sample du with dc
and compress to get C(dcdu); (4) the predicted
class is argmincC(dcdu)− C(dc).

The major drawback of this method is that con-
catenating all training documents in one class
makes it hard to take full advantage of large train-
ing set, as compressors like gzip has a limited size
of sliding window, which is responsible for “how
much” the compressor can look back to find re-
peated patterns. Marton et al. (2005) further in-
vestigate the distance metric C(d

(i)
c dc) − C(d

(i)
c )

where d
(i)
c is a single document belonging to class

c. Coutinho and Figueiredo (2015); Kasturi and
Markov (2022) focus on improving representations
based on compressor to improve the classification
accuracy.

To the best of our knowledge, all the previous
work use relatively small datasets like 20News and
Reuters-10. There is neither a comparison between
compressor-based methods and deep learning meth-
ods nor any comprehensive study on large-sized
datasets.

2.2 Deep Learning for Text Classification

The deep learning methods used for text classifi-
cation can be divided into two: transductive learn-
ing, represented by Graph Convolutional Networks
(GCN) (Yao et al., 2019), and inductive learning,
where both recurrent neural networks (RNN) and
convolutional neural networks (CNN) are main
forces. We focus on inductive learning in this paper
as transductive learning assumes the test dataset is
presented during the training.

Zhang et al. (2015) first use the character-
based CNN with millions of parameters for text
classification. Conneau et al. (2017) extend
the idea with more layers. Along the line of
RNNs, Kawakami (2008) introduce a method that
uses LSTMs (Hochreiter and Schmidhuber, 1997)
to learn the sequential information for classifica-
tion. To better capture the important information
regardless of its position in the sentence, Wang
et al. (2016) incorporate the attention mechanism
into the relation classification. Yang et al. (2016)
include a hierarchical structure for sentence-level
attention.

As the number of parameters and the complexity
of models increase, Joulin et al. (2017) start to
explore the possibility of using simple linear model
with a hidden layer coping with n-gram features
and hierarchical softmax to improve efficiency.

The status quo of classification is further
changed by the prevalence of pre-trained models
like BERT (Kenton and Toutanova, 2019), with
thousands of millions of parameters pre-trained
on corpus containing billions of words. BERT
can achieve the state of the art on numerous
tasks including text classification (Adhikari et al.,
2019a) with just some fine-tunings. Built on
BERT, Reimers and Gurevych (2019) calculate se-
mantic similarity between pairs of sentences effi-
ciently by using a siamese network architecture
and fine-tuning on multiple NLI datasets (Bowman
et al., 2015; Williams et al., 2018).

3 Our Approach

Kolmogorov complexity (Kolmogorov, 1963)
K(x) characterizes the length of the shortest bi-
nary program that can generate x. K(x) is theo-
retically the ultimate lower bound for information
measurement. Given this notion of information
measurement, how, do we compare information
content between two objects? To this end, Bennett
et al. (1998) define information distance E(x, y)



as the length of the shortest binary program that
converts x to y:

E(x, y) = max{K(x|y),K(y|x)} (1)

= K(xy)−min{K(x),K(y)} (2)

However, E(x, y) is not computable as Kol-
mogorov complexity is incomputable, and absolute
distance makes comparison among objects hard. Li
et al. (2004) proposes a normalized and computable
version of information distance, Normalized Com-
pression Distance (NCD), utilizing compressed
length C(x) to approximate Kolmogorov complex-
ity K(x). Formally, it’s defined as follows (detailed
derivation is shown in Appendix A):

NCD(x, y) =
C(xy)−min{C(x), C(y)}

max{C(x), C(y)}
(3)

The intuition behind using compressed length is
that the length of x that has been maximally com-
pressed by a compressor is close to K(x). The
higher the compression ratio, the closer C(x) is
to K(x). Our main experiment results use gzip
as the compressor, thus, C(x) means the length
of x after compressed by gzip. C(xy) is the com-
pressed length of concatenation of x and y. With
the distance matrix NCD provides, we can then use
k-nearest-neighbor to classify.

Our method can be implemented with fifteen
lines of Python code below, whose input is train-
ing_set, test_set, both of which consist of an array
of (text, label), and k:

1 import gzip
2 import numpy as np
3

4 for (x1, _) in test_set:
5 Cx1 = len(gzip.compress(x1.encode ())

)
6 distance_from_x1 = []
7 for (x2, _) in training_set:
8 Cx2 = len(gzip.compress(x2.

encode ())
9 x1x2 = " ".join([x1, x2])

10 Cx1x2 = len(gzip.compress(x1x2.
encode ())

11 ncd = (Cx1x2 - min(Cx1 ,Cx2)) /
max(Cx1 , Cx2)

12 distance_from_x1.append(ncd)
13 sorted_idx = np.argsort(np.array(

distance_from_x1))
14 top_k_class = training_set[

sorted_idx [:k], 1]
15 predict_class = max(set(top_k_class)

, key=top_k_class.count)

Listing 1: Python Code for Text Classification with Gzip

4 Experiments

4.1 Datasets
We choose this diverse basket of datasets to investi-
gate the effects of the number of training samples,
the number of classes and the length of the text on
accuracy. The details of each dataset’s statistics are
listed in Table 1. Previous works on text classifica-
tion have two disjoint preferences when choosing
evaluation datasets: CNN and RNN-based methods
favor large scale datasets (AG News, SogouNews,
DBpedia, YahooAnswers) for evaluation, whereas
transductive methods like graph convolutional neu-
ral network focus on datasets with smaller training
sets (20News, Ohsumed, R8, R52) (Li et al., 2022).
We include datasets on both sides in order to investi-
gate how our method performs with both abundant
training samples and limited ones. Apart from the
variation of the dataset sizes, we also take the ef-
fects of number of classes into consideration by
intentionally including datasets like R52 to eval-
uate our the performance on datasets with large
number of classes. Previous work (Marton et al.,
2005) show that the length of text also affects the
accuracy of compressor-based methods.

4.2 Baselines
We compare our result with (1) neural network
methods that require training and (2) zero-training
methods that use the kNN classifier directly, with
or without pre-training. Specifically, we choose
mainstream architectures for text classification,
like logistic regression, fasttext (Joulin et al.,
2017), RNNs with or without attention (vanilla
LSTM (Hochreiter and Schmidhuber, 1997), bidi-
rectional LSTMs (Schuster and Paliwal, 1997) with
attention (Wang et al., 2016), hierarchical attention
networks (Yang et al., 2016)), CNNs (character
CNNs (Zhang et al., 2015), recurrent CNNs (Lai
et al., 2015), very deep CNNs (Conneau et al.,
2017)) and BERT (Devlin et al., 2019) (Adhikari
et al., 2019a). We also include three other zero-
training methods: word2vec (W2V) (Mikolov et al.,
2013), pre-trained sentence BERT (Reimers and
Gurevych, 2019), and the length of the instance, all
using a kNN classifier. To prevent the class from
being predicted based on text length, we evaluate a
baseline where the instance text length is used as
the only input into a kNN classifier. We call this
baseline the TextLength method.

We present model statistics and trade-offs in Ta-
ble 2. Since the number of classes, the vocab-



Dataset #Training #Test #Classes Avg#Words Avg#Chars #Vocab

AG News 120,000 7,600 4 43.9 236.4 128,349
SogouNews 450,000 60,000 5 589.4 2780 610,908

DBpedia 560,000 70,000 14 53.7 301.3 1,031,601
YahooAnswers 1,400,000 60,000 10 107.2 520.8 1,554,607

20News 11,314 7,532 20 406.02 1902.5 277,330
ohsumed 3,357 4,043 23 212.1 1273.2 55,142

R8 5,485 2,189 8 102.4 586.8 23,584
R52 6,532 2,568 52 109.6 631.4 26,283

Table 1: Details of datasets used for evaluation.

Model #Param Pre-training Training External Data Pre-Process

TFIDF+LR 260,000 ✗ ✓ ✗ tok+tfidf+dict (+lower)
LSTM 5,190,000 ✗ ✓ ✗ tok+dict (+wv+lower+pad)

Bi-LSTM+Attn 8,210,000 ✗ ✓ ✗ tok+dict (+wv+lower+pad)
HAN 29,700,000 ✗ ✓ ✗ tok+dict (+wv+lower+pad)

charCNN 2,700,000 ✗ ✓ ✗ dict (+lower+pad)
textCNN 30,700,000 ✗ ✓ ✗ tok+dict (+wv+lower+pad)
RCNN 18,800,000 ✗ ✓ ✗ tok+dict (+wv+lower+pad)

VDCNN 13,700,000 ✗ ✓ ✗ dict (+lower+pad)
fasttext 8,190,000 ✗ ✓ ✗ tok+dict (+lower+pad+ngram)
BERT 109,000,000 ✓ ✓ ✓ tok+dict+pe (+lower+pad)
W2V 0 ✓ ✗ ✗ tok+dict (+lower)

SentBERT 0 ✓ ✗ ✓ tok+dict (+lower)
TextLength 0 ✗ ✗ ✗ ✗

gzip 0 ✗ ✗ ✗ ✗

Table 2: Models used for comparison and their number of parameters; whether they are pre-trained; whether data
augmentation is used and whether pre-processing is needed.

ulary size, and the dimensions affect the num-
ber of parameters, we estimate the model size us-
ing AGNews. This dataset has a relatively small
vocabulary size and number of classes, hence
making the estimation of the lower bound out of
the studied datasets. Some methods require pre-
training either on the target dataset or on other ex-
ternal datasets. Most neural networks require pre-
processing like tokenization (“tok”), building vo-
cabulary dictionaries and mapping tokens (“dict”),
using pre-trained word2vec (“wv”), lowercasing
the words (“lower”) and padding the sequence to
a certain length (“pad”). Other model-specific pre-
processing includes adding extra bag of n-grams
(“ngram”) for fasttext and using positional embed-
ding (“pe”) for BERT.

4.3 Result on Full Dataset

We train all baselines on eight datasets (training
details are in Appendix B). The result of using the
full training sets are shown in Table 3. As we can
see, our method performs surprisingly well on AG
News, SogouNews, R8 and R52. For AG News,
fine-tuning BERT achieves the best performance
among all methods, and gzip, with no pretraining,
achieves competitive result, within 0.007 points of

BERT. On SogouNews, gzip achieves the best re-
sult among these methods. SogouNews is a special
dataset that includes Pinyin — a phonetic romaniza-
tion of Chinese. The worst method on this dataset
is textCNN, RCNN and sentence BERT where they
either assume the unit is a “word" in English or is
heavily pre-trained on English corpus. The accu-
racy of gzip on DBpedia is about 1% lower than
other neural network methods. For YahooAnswers,
the accuracy of gzip is about 7% lower than the av-
erage neural methods. This may due to the fact that
the vocabulary size of YahooAnswers is large, mak-
ing it hard for the compressor to compress (detailed
discussion is in Section 5).

Starting from 20News dataset, the training size
becomes smaller, where non-pretrained deep learn-
ing models are thought to be less advantageous. On
the 20News dataset, pre-trained methods achieve
the best result and gzip’s accuracy is in the middle.
Ohsumed is a dataset containing paper abstracts in
the medical domain, aimed at categorizing 23 car-
diovascular diseases. On Ohsumed, gzip is lower
than textCNN, DocBERT, SentBERT, competitive
to LR and higher than others. For R8, gzip has
the third highest accuracy, only lower than HAN
and DocBERT. For R52, gzip ranks the fourth, sur-



Model AGNews SogouNews DBpedia YahooAnswers 20News Ohsumed R8 R52

Training Required
TFIDF+LR 0.898 0.939 0.982 0.715 0.827 0.549 0.949 0.874

LSTM 0.861 0.952 0.985 0.708 0.657 0.411 0.937 0.855
Bi-LSTM+Attn 0.917 0.952 0.986 0.732 0.588 0.271 0.868 0.693

HAN 0.896 0.957 0.986 0.745 0.646 0.462 0.960 0.914
charCNN 0.914 0.951 0.986 0.712 0.401 0.269 0.823 0.724
textCNN 0.817 0.662 0.981 0.728 0.751 0.570 0.951 0.895
RCNN 0.912 0.820 0.984 0.702 0.716 0.472 0.810 0.773

VDCNN 0.913 0.968 0.987 0.734 0.491 0.237 0.858 0.750
fasttext 0.911 0.930 0.978 0.702 0.690 0.218 0.827 0.571
BERT 0.944 0.952 0.992 0.768 0.868 0.741 0.982 0.960

Zero Training
W2V 0.892 0.943 0.961 0.689 0.460 0.284 0.930 0.856

SentBERT 0.940 0.860 0.937 0.782 0.778 0.719 0.947 0.910
Zero Training & Zero Pre-Training

TextLength 0.275 0.247 0.093 0.105 0.053 0.090 0.455 0.362
gzip (ours) 0.937 0.975 0.970 0.638 0.685 0.521 0.954 0.896

Table 3: Test accuracy with each section’s best results bolded, and best results beaten by gzip underlined.

passed by HAN, DocBERT and SentBERT.

Overall, BERT-based models are robust even
when the size of training samples are small, but do
not excel when the dataset is out of distributed
of the pre-training corpus (e.g., SogouNews).
Character-based models like charCNN and VD-
CNN perform badly when the training data is small
and the vocabulary size is large (e.g., 20News). The
advantage of word-based models is non-obvious
when the training data is small either, but they are
better at handling big vocabulary size. They are
also inferior to character-based models when classi-
fying corpus that are not English, similar to BERT-
based models. Logistic regression with TFIDF
features, although doesn’t achieve the best on any
dataset, is very robust to the size of the dataset. The
result of TextLength is close to random guess on
all but R8 and R52, showing that the distribution
of length doesn’t reflect the information of class in
other six datasets, indicating the compressed length
information used in NCD does not benefit from the
length distribution of different classes.

gzip does not perform well on extremely large
dataset (e.g., YahooAnswers), but are competitive
on medium and small-size datasets, and it’s robust
to non-English corpus. Performance-wise, the only
non-preptrained deep learning model that’s com-
petitive to gzip is HAN, who surpass gzip on 50%
datasets and still achieve relatively high accuracy
when it’s beaten by gzip, unlike textCNN. The dif-
ference is that gzip doesn’t require training.

4.4 Few-Shot Learning

We further compare the result of gzip under the
few-shot-learning setting with deep learning meth-
ods on AGNews, SogouNews and DBpedia. We
chose these three datasets as their scale is large
enough to cover 100-shot setting and they vary in
text lengths as well as languages. Specifically, we
use n-shot labeled examples per class from training
dataset, where n = {5, 10, 50, 100}. We choose
methods whose trainable parameters range from
zero parameters like word2vec and sentence BERT
to hundreds of millions of parameters like BERT,
covering both word-based models (HAN) and the
n-gram one (fasttext).

The result is plotted in Figure 1 (detailed num-
bers are shown in Appendix C). As we can see, gzip
outperforms non-pretrained models on 5, 10, 50 set-
tings for all three datasets and especially in the
n = 5 setting, gzip outperforms deep learning mod-
els by large margin. For example, the accuracy
of gzip is 115% better than fasttext on AGNews
5-shot setting. In the 100-shot setting, gzip also
outperforms non-pretrained models on AGNews
and SogouNews but is a little bit lower than them
on DBpedia.

It’s been investigated in the previous
work (Nogueira et al., 2020; Zhang et al.,
2021) that pre-trained models are excellent
few-shot learners. The advantages of BERT and
SentBERT on the AGNews are obvious where
they achieve the highest and the second highest
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Figure 1: Comparison among different methods using different shots on AG News, SogouNews and DBpedia, with
95% confidence interval over five trials.

accuracy on every shot number. However, on
SogouNews, both BERT and SentBERT are
surpassed by gzip on every shot number, consistent
with the result on full dataset. This is reasonable
as the inductive bias learned from the pre-training
data is so strong—notice how low the accuracy
is when only given 5-shot training samples to
BERT, that hinders BERT to be applied to the
dataset that’s significantly different from the
pre-trained datasets. The surprising part is that
even on DBpedia gzip still outperforms SentBERT
on 50-shot and 100-shot settings. Note that BERT
has been pre-trained on Wikipedia and DBpedia
is extracted from Wikipedia, which may explain
the nearly perfect score of BERT on DBpedia. In
general, the larger the number of labeled training
samples are, the closer that the accuracy gap
between gzip and deep learning models are, except
for W2V, which is extremely unstable. This is due
to the vectors being trained for a limited set of
words, meaning that numerous tokens in the test
set are out-of-vocabulary.

5 Analyses

To understand the merits and shortcomings of using
gzip for classification, we evaluate gzip’s perfor-
mance in terms of both the absolute accuracy and
the relative performance compared to the neural
methods. An absolute low accuracy with a high
relative performance suggests that the dataset it-
self is difficult, while a high accuracy with a low
relative performance means the dataset is better
solved by a neural network. We analyze both the
relative performance and the absolute accuracy re-
garding the vocabulary size and the compression
rate of both datasets (i.e., how easily a dataset can
be compressed) and compressors (i.e., how well a
compressor can compress).

To represent the relative performance with re-
gard to other methods, we use the normalized rank

percentage, computed as rank of gzip
total#methods ; the lower the

score, the better gzip is. We use “bits per charac-
ter”(bpc) to evaluate the compression rate. The
procedure is to randomly sample a thousand in-
stances from the training and test set respectively,
calculate the compressed length and divide by the
number of characters. Sampling is to keep the size
of the dataset a constant.
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Figure 2: Relative performance v.s. vocabulary size and
compression rate.

5.1 Relative Performance
Combining Table 1 and Table 3, we see that ac-
curacy is largely unaffected by the average length
of a single sample: with the Spearman coefficient
rs = −0.220. But the relative performance is more
correlated with vocabulary size (rs = 0.561) as we
can see in Figure 2. SogouNews is an outlier in the
first plot: on a fairly large vocabulary-sized dataset,
gzip ranks the first. The second plot may provide
an explanation for that — the compression ratio



for SogouNews is high which means even with a
relatively large vocabulary size, there are also repet-
itive information that can be squeezed out. With
rs = 0.785 on the correlation between the normal-
ized rank percentage and the compression rate, we
can see when a dataset is easier to compress, our
method may be a strong candidate as a classifier.

5.2 Absolute Accuracy
Similarly we evaluate the accuracy of classification
with respect to the vocabulary size and we’ve found
there is almost no monotonic relation (rs = 0.071).
With regard to bpc, the monotonic relation is not as
strong as the one with the rank percentage (rs =
−0.56). Considering the effect that vocabulary size
has on the relative performance, our method with
gzip may be more susceptible to the vocabulary
size than neural network methods. To distinguish
between a “hard” dataset and an “easy” one, we
average all models’ accuracies. The dataset that has
the lowest accuracies are 20News and Ohsumed,
which are two datasets that have the longest average
length of texts.

5.3 Using Other Compressors
With compressor-based distance metrics we can use
any compressor. Because of the large size of the
test set of the datasets, we randomly chose 1,000
test samples to evaluate and repeat the experiments
for each setting five times to calculate the mean
and 95% confidence interval.

We carry out experiments on other three com-
pressors: bz2, lzma and zstandard under the few-
shot setting. Each of them has different underlying
algorithms from gzip. bz2 uses Burrows-Wheeler
algorithm to permute the order of characters in the
strings to create more repeated “substrings” that
can be compressed. That’s one of the reasons
why bz2 has a higher compression ratio (e.g., it
can achieve 2.57 bpc on AGNews while gzip can
achieve only 3.38 bpc). lzma is based on LZ77, a
dictionary-based compression algorithm, where the
idea is to use (offset, length) to represent the n-gram
that has previously appeared in the search buffer.
lzma then uses range coding to further encode (off-
set, length). Similarly, gzip uses DEFLATE algo-
rithm, which also uses LZ77 and instead of range
coding, it takes advantage of Huffman coding to
further encode (offset, length). zstandard (zstd) is
a new compression algorithm that’s built on LZ77,
Huffman coding as well as Asymmetric Numeral
Systems (ANS) (Duda, 2009). We pick zstd to eval-

uate for its fast speed, with close compression rate
to gzip. A competitive result may indicate it can be
used to speed up the classification.

We plot all the test accuracy in Figure 4 with
the compression ratio for each compressor. Com-
pression ratio is calculated by original size

compressed size , so the
larger the compression ratio is, the more a com-
pressor can compress. We use compression ratio
instead of bpc here as the latter one is too close to
each other and cannot be differentiated from one
another. Markers of ‘+’ represents the mean of
each compressor’s test accuracy across different
shot settings. The dataset is not explicitly labeled
but we can tell that there are roughly three clusters
in the plot. AGNews is the cluster with the lowest
compression ratio and SogouNews is the one with
the highest compression ratio. Note that gzip and
zstd with compression ratio of about 7 belongs to
the SogouNews result.

On SogouNews, both gzip and zstd have the com-
pression ratio equal to about 7; bz2 and lzma have
the compression ratio over 9. The difference of
accuracy is more obvious on the AGNews and DB-
pedia with bz2 being the worst-performing com-
pressor. This is counterintuitive, as a compressor
with a higher compression ratio suggests that it can
approximate Kolmogorov complexity better, and
bz2 has a higher compression ratio. We conjecture
it may be because in practice, Burrows-Wheeler
algorithm used by bz2 dismisses the information of
character order. This is shown more clearly in Fig-
ure 4 — bz2 is always lower than the regression
line. In general, gzip achieves a relatively high
and stable accuracy across three datasets. lzma is
competitive with gzip but the speed is much slower.

We’ve found in Section 5.1 that for a single com-
pressor, the easier a dataset can compress, the more
probable it can achieve a higher accuracy than deep
learning models. Here we investiage the correlation
across compressors. We’ve found the compression
ratio and test accuracy has a moderate monotonic
and linear correlation and as the shot number in-
creases, the linear correlation is more obvious with
rs = 0.605 for all shot settings and Pearson corre-
lation rp = 0.575, 0.638, 0.691, 0.719 respectively
on 5, 10, 50 and 100 setting across four compres-
sors. Combining the special case of bz2 with the
linear correlation between compression ratio and
test accuracy, we know that in general a compressor
with a high compression ratio can perform better
on a more compressible dataset. But the actual
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Figure 3: Comparison among different compressors on AG News, SogouNews and DBpedia, with 95% confidence
interval over five trials.
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Figure 4: Compression ratio V.S. Test Accuracy across
different compressors on three datasets under different
shot settings

Method AGNews SogouNews DBpedia YahooAnswers
gzip(ce) 0.739±0.046 0.741±0.076 0.880±0.010 0.408±0.012

gzip(kNN) 0.752±0.041 0.862±0.033 0.852±0.008 0.352±0.014

Table 4: Comparison with other compressor-based meth-
ods under the 100-shot setting.

compression algorithm still has its effect on the test
accuracy despite the high compression ratio.

5.4 Using Other Compressor-Based Methods

The distance metric used by previous work (Marton
et al., 2005; Russell, 2010) is mainly C(dcdu) −
C(dc) as we mention in Section 2.1. Although
using this distance metric is faster than pair-wise
distance matrix computation on small datasets, it
has several drawbacks: (1) Most compressors have
a limited “size”, for gzip it’s the sliding window
size that can be used to search back of the repeated
string while for lzma it’s the dictionary size it can
keep record of. This means even if there are large
number of training samples, the compressor cannot
take full advantage of those samples; (2) When dc
is large, compressing dcdu can be really slow and
this slowness cannot be solved by parallelization.
These two main drawbacks stop this method to be
applied to a really large dataset. Thus, we ran-
domly pick 1000 test samples and 100-shot from

each class in training samples to compare these two
methods. In Table 4, “gzip (ce)” means using the
cross entropy C(dcdu)−C(dc) while “gzip (kNN)”
refers to our method. We carry our each experi-
ment for five times and calculate the mean and 95%
confidence interval. On AGNews and SogouNews
using kNN and NCD is better than using cross
entropy. The reason for the large accuracy gap be-
tween them on SogouNews is probably because
each instance in SogouNews is very long, causing
about 11.2K per sample, while gzip typically has
32K window size only. Only concatenation a few
samples makes the compression ineffective. The
cross-entropy method does perform very well on
YahooAnswers, which may benefit from using mul-
tiple references in the single category as YahooAn-
swers is a divergent dataset created by numerous
online users.

We also test the performance of compressor-
based cross entropy method on full AGNews
dataset as it is a relatively smaller one with shorter
single instance. The accuracy is 0.745, not much
higher than 100-shot setting, which further con-
firms that using C(dcdu)−C(dc) as a distance met-
ric cannot take full advantage of the large datasets.

6 Conclusions and Future Work

In this paper, we use gzip together with a
compressor-based distance metric to achieve clas-
sification accuracy comparable to neural network
classifiers on seven out of eight datasets. We also
show the effectiveness of using this method in few-
shot scenarios. In future works, we will extend this
work by generalizing gzip to neural compressors
on text, as recent studies (Jiang et al., 2022) show
that combining neural compressors that derived
from deep latent variables models with compressor-
based distance metrics for image classification can
even outperform semi-supervised methods.



7 Limitations

The computation complexity for kNN is O(n2).
Thus, one limitation of our method is its speed.
Multi-threads and multi-processes can largely
boost the speed. Furthermore, Lempel-Ziv Jaccard
Distance (LZJD) (Raff and Nicholas, 2017), a more
efficient version of NCD can be explored to alle-
viate the inefficiency problem. Another potential
limitation is that we only talk about traditional com-
pressors in the paper and traditional compressors
are only able to capture the orthographic similarity.
For example, given a word “good”, gzip takes 7
more bytes to compress “goodness” but it takes 9
more bytes to compress “niceness”. The ability
to compress redundant semantic information may
be made possible by neural compressors built on
latent variable models (Townsend et al., 2018).
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A Derivation of NCD

Recall that information distance E(x, y) is:

E(x, y) = max{K(x|y),K(y|x)} (4)

= K(xy)−min{K(x),K(y)} (5)

E(x, y) equates the similarity between two objects
with the existence of a program that can convert one
to another. The simpler the converting program is,
the more similar the objects are. For example, the
negative of an image is very similar to the original
one as the transformation can be simply described
as “inverting the color of the image”.

In order to compare the similarity, relative dis-
tance is preferred. Vitányi et al. (2009) propose a
normalized version of E(x, y) called Normalized
Information Distance (NID).

Definition 1 (NID) NID is a function: Ω × Ω →
[0, 1], where Ω is a non-empty set, defined as:

NID(x, y) =
max{K(x|y),K(y|x)}
max{K(x),K(y)}

. (6)

Equation (6) can be interpreted as follows: Given
two sequences x, y, K(y) ≥ K(x):

NID(x, y) =
K(y)− I(x : y)

K(y)
= 1− I(x : y)

K(y)
,

(7)
where I(x : y) = K(y) − K(y|x) means the
mutual algorithmic information. I(x:y)

K(y) means the
shared information (in bits) per bit of information
contained in the most informative sequence, and
Equation (7) here is a specific case of Equation (6).

Normalized Compression Distance (NCD) is a
computable version of NID based on real-world
compressors. In this context, K(x) can be viewed
as the length of x after being maximally com-
pressed. Suppose we have C(x) as the length of
compressed x produced by a real-world compres-
sor, then NCD is defined as:

NCD(x, y) =
C(xy)−min{C(x), C(y)}

max{C(x), C(y)}
. (8)

NCD is thus computable in that it not only uses
compressed length to approximate K(x) but also
replaces conditional Kolmogorov complexity with
C(xy) that only needs a simple concatenation of
x, y.

B Implementation Details

We use different hyper-parameters for full-dataset
setting and few-shot setting.

For both LSTM, Bi-LSTM+Attn, fasttext, we
use embedding size = 256, dropout rate = 0.3.
For full-dataset setting, the learning rate is set to
be 0.001 and decay rate = 0.9 for Adam opti-
mizer (Kingma and Ba, 2015), number of epochs
= 20, with batch size = 64; for few-shot setting,
the learning rate = 0.01, the decay rate = 0.99,
batch size = 1, number of epochs = 50 for 50-shot
and 100-shot, epoch = 80 for 5-shot and 10-shot.
For LSTM and Bi-LSTM+Attn, we set RNN layer
= 1, hidden size = 64. For fasttext, we use 1
hidden layer whose dimension is set to be 10.

For HAN, we use 1 layer for both word-level
RNN and sentence-level RNN, the hidden size of
both of them are set to 50, the hidden sizes of both
attention layers are set to be 100. It’s trained with
batch size = 256, 0.5 decay rate for 6 epochs.

For BERT, the learning rate is set to be 2e − 5
and the batch size is set to be 16.

For charCNN and textCNN, we use the same
hyper-parameters setting in Adhikari et al. (2019b)
except when in the few-shot learning setting, we
reduce the batch size to 1, reducing the learning
rate to 1e− 4 and increase the number of epochs
to 60. For VDCNN, we use the shallowest 9-layer
version with embedding size set to be 16, batch
size set to be 64 learning rate set to be 1e − 4
for full-dataset setting and batch size = 1, epoch
number = 60 for few-shot setting. For RCNN, we
use embedding size = 256, hidden size of RNN
= 256, learning rate = 1e− 3 and same batch size
and epoch setting as VDCNN for full-dataset and
few-shot settings.

For pre-processing, we don’t use any pre-trained
word embedding for any word-based models. Nei-
ther do we use data augmentation during the train-
ing. The procedures of tokenization for both word-
level and character-level, padding for batch pro-
cessing are, however, inevitable.

For all zero-training methods, the only hyper-
parameter is k. We set k = 2 for all the methods
on all the datasets and we report the maximum
possible accuracy getting from the experiments
for each method. For Sentence-BERT, we use the
“paraphrase-MiniLM-L6-v2” checkpoint.

For neural network methods, we use publicly
available code for charCNN and textCNN imple-
mented by Adhikari et al. (2019b), and we use Wolf



et al. (2020) for BERT.
Our method only requires CPUs and we use 8-

core CPUs to take advantage of multi-processing.
The time of calculating distance matrix using gzip
takes about half an hour on AGNews, two days on
DBpedia and SogouNews, six days on YahooAn-
swers.

All the datasets can be downloaded from torch-
text and text categorization corpora.

C Few-Shot Results

The exact numerical value of accuracy shown
in Figure 1 is listed in three tables below.

Dataset AGNews
#Shot 5 10 50 100

fasttext 0.273±0.021 0.329±0.036 0.550±0.008 0.684±0.010

Bi-LSTM+Attn 0.269±0.022 0.331±0.028 0.549±0.028 0.665±0.019

HAN 0.274±0.024 0.289±0.020 0.340±0.073 0.548±0.031

W2V 0.388±0.186 0.546±0.162 0.531±0.272 0.395±0.089

BERT 0.803±0.026 0.819±0.019 0.869±0.005 0.875±0.005

SentBERT 0.716±0.032 0.746±0.018 0.818±0.008 0.829±0.004

gzip 0.587±0.048 0.610±0.034 0.699±0.017 0.741±0.007

Table 5: Few-Shot result on AG News

Dataset SogouNews
#Shot 5 10 50 100

fasttext 0.545±0.053 0.652±0.051 0.782±0.034 0.809±0.012

Bi-LSTM+Attn 0.534±0.042 0.614±0.047 0.771±0.021 0.812±0.008

HAN 0.425±0.072 0.542±0.118 0.671±0.102 0.808±0.020

W2V 0.141±0.005 0.124±0.048 0.133±0.016 0.395±0.089

BERT 0.221±0.041 0.226±0.060 0.392±0.276 0.679±0.073

SentBERT 0.485±0.043 0.501±0.041 0.565±0.013 0.572±0.003

gzip 0.649±0.061 0.741±0.017 0.833±0.007 0.867±0.016

Table 6: Few-Shot result on SogouNews

Dataset DBpedia
#Shot 5 10 50 100

fasttext 0.475±0.041 0.616±0.019 0.767±0.041 0.868±0.014

Bi-LSTM+Attn 0.506±0.041 0.648±0.025 0.818±0.008 0.862±0.005

HAN 0.350±0.012 0.484±0.010 0.501±0.003 0.835±0.005

W2V 0.325±0.113 0.402±0.123 0.675±0.05 0.787±0.015

BERT 0.964±0.041 0.979±0.007 0.986±0.002 0.987±0.001

SentBERT 0.730±0.008 0.746±0.018 0.819±0.008 0.829±0.004

gzip 0.622±0.022 0.701±0.021 0.825±0.003 0.857±0.004

Table 7: Few-Shot result on DBpedia

https://pytorch.org/text/stable/index.html
https://pytorch.org/text/stable/index.html
http://disi.unitn.it/moschitti/corpora.htm

