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ABSTRACT

Deep neural networks (DNNs) are both computation and memory intensive. Large
amounts of costly arithmetic multiply-accumulate (MAC) operations and data
movement hinder its application to edge AI where DNN models are required to run
on energy-constrained platforms. Table lookup operations have potential advan-
tages over traditional arithmetic multiplication and addition operations in terms
of both energy consumption and latency in hardware implementations for DNN
design. Moreover, the integration of weights into the table lookup operation elim-
inates costly weight movements. However, the challenge of using table lookups
is in scaling. In particular, the size and lookup times of tables grow exponentially
with the fan-in of the tables. In this paper, we propose BLUnet, a table lookup-
based DNN model with bit-serialized input to overcome this challenge. Using
binarized time series inputs, we successfully solve the fan-in issue of lookup ta-
bles. BLUnet not only achieves high efficiency but also the same accuracies as
MAC-based neural networks. We experimented with popular models in computer
vision applications to confirm this. Our experimental results show that compared
to MAC-based baseline designs as well as the state-of-the-art solutions, BLUnet
achieves orders of magnitude improvement in energy efficiencies.

1 INTRODUCTION

The success of deep neural networks (DNN) comes at a high cost of computation and storage in
computer systems. In particular, it remains a challenge to deploy them in use-case scenarios where
computing resources and the energy budget are limited, such as edge AI and the artificial intelligence
of things (AIoT). As a result, many optimization methods have been proposed to realize efficient
inference, such as model quantization. With quantization, the precision of trained weights and
activations of a DNN is reduced from full precision (i.e. 32-bit IEEE floating point) to significantly
fewer bits. The state-of-the-art works have successfully compressed the weight and activation to 6
to 8 bits with negligible accuracy drop. Model quantization exploits redundancies in DNN models
to reduce the size of the models significantly, thereby improving computation and storage efficiency.

Going beyond model-level optimization, another research direction examines the efficiency of the
operations involved. AdderNet and spiking neural networks (SNN) are two efficient neural network
designs, where only additions are used in the computations with costly multiplications eliminated.
They are gaining prominence in low-power implementation of DNNs.

Table lookup operation is a standard operation in computing and its hardware counterpart, the lookup
table (LUT), is the core logic unit in field-programmable gate arrays (FPGAs). When the fan-in is
small, table lookup operations have significant advantages over traditional arithmetic multiplication
and addition operations for quantized neural networks in terms of both energy consumption and
latency in hardware implementation. Moreover, the integration of weights into the table lookup
operation will eliminate costly weight movement. These two advantages make the table lookup
operation an ideal substitute for the MAC operation in an efficient quantized DNN design. However,
as the number of fan-in scales, the advantage of table lookup operation vanishes exponentially. In
this work, we propose BLUnet, a table lookup-based quantized DNNs design with bit-serialized
input. With the binary time series input, we successfully solve the fan-in issue of lookup tables and
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achieve high energy efficiency in inference. We carried out an experiment with popular models in
computer vision applications, analyzed the effects of different bit-width, and did a thorough study
on the fan-in of LUT. Experimental results show that compared with the state-of-the-art efficient
DNN designs, BLUnet achieves orders of magnitude improvement in energy consumption.

2 RELATED WORK

An entire class of techniques generally known as model quantization has been used successfully to
reduce the computation overhead, memory storage, and energy consumption of DNN models Ding
et al. (2019); Tung et al. (2018); Hubara et al. (2016a;b); Courbariaux et al. (2015); Zhou et al.
(2016); Wang et al. (2019c); Yang et al. (2019); Han et al. (2015). In model quantization, the pre-
cision of the weights and activations are reduced. However, radical model quantization such as
binarized neural networks (BNN) achieves high computation efficiency, but suffers severe accuracy
drop Hubara et al. (2016b); Lin et al. (2017). Thus, reducing bit widths while ensuring accuracy
is an active research topic Zhou et al. (2016); Wang et al. (2019c); Yang et al. (2019); Guo et al.
(2016). In addition, many works put forward model compression methods that directly consider the
capabilities of the hardware Wang et al. (2019c); Yang et al. (2017). Wang et al. (2019c) explored
quantization policies with a given set of energy constraints. The previous studies on model com-
pression effectively reduce the computation cost and data movement by minimizing the bit width of
weights and activation.

However, the weight access and costly multiplication are still unavoidable. More importantly, the
model compression does not work well on already very compact models. To optimize already com-
pressed models further, the efficiency of the basic operations of DNN were studied. One example is
the design of DNNs that have only addition operations because the hardware efficiency of addition
is much better than that of multiplication. AdderNet family is a typical exploration in this research
direction Chen et al. (2020); You et al. (2020). In AdderNet design, massive multiplications are
traded for much cheaper additions. Another class of neural networks that only involve additions
is spiking neural networks (SNN) Tavanaei et al. (2019); Sengupta et al. (2019); Wu et al. (2019);
Wang et al. (2021).

Table lookup operation is another efficient operation that can be utilized for optimizing DNN de-
signs Umuroglu et al. (2020); Ramanathan et al. (2020); Wang et al. (2019b); Umuroglu et al. (2017).
However, the efficiency of the table lookup operation vanishes exponentially with the scaling up of
its fan-in. Umuroglu et al. (2020) proposed the co-design of neural networks and circuits. However,
it can only support small and customized networks due to the fan-in limitation. Wang et al. (2019b);
Umuroglu et al. (2017) use LUT in FPGA to help implement XNOR gate in BNN, which how-
ever suffered from severe accuracy drop. Different from previous work, in this paper, we propose
BLUnet, a table lookup-based quantized DNNs design with bit-serialized input. With bit-serialised
table lookup operation, BLUnet achieves highly efficient inference.

3 LUT-BASED DNN DESIGN WITH BIT-SERIALIZED INPUT

In this section, we will first describe how to replace arithmetic MAC operations with table lookup
operations, show the much higher efficiency advantage of table lookup operations over MAC opera-
tions in hardware implementation for quantized neural networks, and explain why controlling fan-in
is the key to efficiency. Then we will propose a table lookup-based DNN design with Bit-serialized
input/output to solve the fan-in issues.

3.1 IMPLEMENTATION OF MAC IN QUANTIZED MODELS WITH TABLE LOOKUP OPERATION

We will start the description of BLUnet with the description of a specific LUT operation representing
the computation of the following:

y = f(w0x0 + w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + b). (1)

This is the typical computation of a neuron with six dendrites. Here wi are the 32-bit weights,
and b is the bias. Note that the weights and bias are constants for trained network models. For
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Figure 1: Two different ways of summing 6 inputs: (a) 6-input LUT and (b) 32-bit FP adder for a
6-input neuron with binarized input and output.

reasons that will be clear later, the 6-input LUT as in Fig. 1(a) uses one-bit activation xi and an
activation function f that will produce a one-bit output y. Because xi and y are binary, a size 26

LUT suffices. Fig. 1(b) shows what would be needed to implement Eq. 1 using a full 32-bit adder
in a serial manner. We can of course also implement Eq. 1 using a tree of full 32-bit adders but that
would add to the resource cost. Table 1 shows the energy, latency, and area cost of both options.
The comparison is conducted on the 45nm process node. The data for a 32-bit FP adder is obtained
from Nathan et al. (2013). The data for a 6-input LUT is scaled from Abusultan & Khatri (2014). It
is clear that the LUT implementation is orders of magnitude more efficient than one using arithmetic
logic. In case the activations xi and output y consist of multiple bits, the advantages disappear very
quickly as the table will need to grow exponentially, albeit the computation can still theoretically be
done. Using the LUT directly as described leads, however, to a binarized network that will perform
poorly in terms of accuracy. In the next section, we will show how we can use Eq. 1 and the small
6-input LUT to build a complete DNN with bit-serialized input.

3.2 TABLE LOOKUP-BASED DNN DESIGN WITH BIT-SERIALIZED INPUT/OUTPUT

To overcome the major obstacle of large fan-in, we propose the table lookup-based BLUnet design
with serialized binary input/output. In the rest of this section, we first introduce how to build the
neuron in the DNN model with table lookup operation at the bit level, i.e., the BLUnet neuron. Then,
the construction of a DNN model with individual neurons is presented.

3.2.1 BLU NEURON COMPUTATION

To show how small fan-in table lookup operators are used in our proposed BLUnet, we shall use two
figures with a simple example to demonstrate the computation of a neuron with and without timing
information separately. Eq. 2 shows a normal computation for a neuron with four 2-bit activations
ai and one 2-bit output y. The 2-bit activation ai = a1i a

0
i effectively represent a1i ∗ 21 + a0i ∗ 20.

Negative ai is represented by its two’s complement code.

y = w0(a
1
0 ∗21+a00 ∗20)+w1(a

1
1 ∗21+a01 ∗20)+w2(a

1
2 ∗21+a02 ∗20)+w3(a

1
3 ∗21+a03 ∗20) (2)

Next, we will use a table lookup operation to replace the computation in Eq. 2 to get an (approx-
imate/quantized) two-bit results. Let’s use a concrete example: assuming there are four binary
activations, a0 = 112, a1 = 102, a2 = 012, a3 = 012, respectively, while the four 32-bit FP weights
are w0 = 1.13, w1 = 0.92, w2 = 0.87, and w3 = 0.23 (see Fig. 2(b)). We then serialize the bits
into binary time series inputs. The computation conducted in the LUTs at the first stage at the first
time step is the multiplication of the first input bit and the corresponding weight w followed by an

Table 1: Costs of the 6-input neuron (with activation quantized to binary digit) implementation with
six 32-bit float point addition VS 6-input LUT in terms of energy, latency, and area.

Name Six 32-bit FP additions 6-input LUT
Energy 46.32 pJ (9154x) 5.06 fJ
Latency 26.7 ns (162x) 165.26ps
Area 4804 µm2 (1855x) 2.59 µm2
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Figure 2: Computation of a simple 4 input neuron implemented by LUT-2 with timing information
to show the timing relation

quantization function to quantize the result to a two-bit integer. For example:

b10 · 21 + b00 · 20 = fq(w0a
0
0 + w1a

0
1) (3)

where fq is the quantization function that is integrated into the LUT. In the example, we have b(1×
1.13) + (0× 0.92)c = b1.13c = 1 = 012.

For the computation in the second time step, the computation is:

b30 · 22 + b20 · 21 = fq(w0a
1
0 + w1a

1
1). (4)

Again referring to Fig. 2(b), we have b(1×1.13)+(1×0.92)c = b2.05c = 2 = 102. This completes
the result of the first stage of this LUT yielding the serialized results of b0 = 10012. The relationship
between a and b can be generalized into Eq. 5.

M−1∑
t=0

bt+M ·τi · 2t+τ = fq(

(i+1)·N−1∑
j=i·N

wja
τ
j ) (5)

Using the serialized output of the first stage, the computation in the LUTs of the second stage at first
time step is:

c10 · 21 + c00 · 20 = (b00 + b01) (6)

This is followed by:
c30 · 22 + c20 · 21 = (b10 + b11) (7)

So the sum of b0 = 10012 and b1 = 00012 in the example would yield (01|00|00|10)2. Note that
the carry-in of each bit position is not incorporated in the next bit position but forms part of the
serialized bit stream. Using our example, the first output pair of 102 in (01|00|00|10)2 is effectively
the carry and sum bits of that bit position.

The relationship between b and c can be generalized into Eq. 8.

2∑
t=0

ct+3·τ
i · 2t+τ =

(i+1)·N−1∑
j=i·N

bτj (8)

Finally, the serialized result is sent into an ‘accumulation pooling’ layer (see below) in a pipeline
manner to finally generate a quantized integer output for this neuron.

Fig. 3 shows a more generalized design with Nx inputs. The more inputs there are, the more stages
BLUnet will have. Therefore, BLU neuron would have more computing stages than traditional
neurons. However, thanks to the much smaller latency of table lookup operations than traditional
arithmetic operations as shown in Table 1, the increased number of computing stage would not
affect the latency efficiency of BLU neuron. The serialized data are sent into a single ‘accumulation
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Figure 3: Computation of a n-input neuron implemented by LUT-6 without timing information to
show the structure and connection of LUTs
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Figure 4: DNN model design with BLU neuron

pooling’ layer in a pipelined manner to finally generate a quantized integer output for this neuron.
The function of accumulation pooling layer is given by:

y = fq(

i∑
ci0 · 2bi/Mc+(i mod M)) (9)

where y is the multi-bit quantized output of the neuron and fq is the quantization function, which
can be expressed in Eq. 10, where β is the scaling factor necessary for reducing the input to fq to
the target bitwidth.

fq(v) = bv/2βc (10)

3.2.2 DNN MODEL DESIGN WITH BLU NEURON

Fig. 4 shows a multi-layer perceptron (MLP) style neural network and how to build the correspond-
ing BLUnet with BLU neuron. We can see that as long as the model can be represented as a collec-
tion of neuron computations, the BLU neuron can be used to replace the normal neuron in the DNN
models including convolutional neural networks (CNNs) and MLP to realize efficient inference.
Therefore, BLUnet could be widely applied to any DNN model-based applications. To implement
BLUnet for inference, we just need to pre-calculate the LUT outputs to all possible input bit com-
binations, given the weights from the model. This computation is straightforward because of the
limited number of possibilities.

Due to the high efficiency of table lookup operations, BLUnet is well suited for hardware imple-
mentation of specific accelerators using application specific integrated circuits (ASIC). However,
the aim of this paper is to introduce BLUnet and the overall efficient design idea. Specific accel-
erator design for BLUnet will have to consider the idiosyncrasies of the hardware platform chosen,
such as hardware architecture, process node, etc., and specific hardware design optimizations will
have to be made to obtain the best results, which is more suitable to hardware venues and beyond
the scope of this paper. These issues are orthogonal to the work described here. Like other papers
describing efficient neural network design such as AdderNet, we will use the number of operations
along with their cost in terms of energy and latency as metrics to assess the efficiency of the model
designs.
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3.3 IMPLEMENTATION AND TRAINING FOR BLUNET

We implemented BLUnet in Pytorch for the accuracy results by rewriting the functions for the
convolutional and linear layer. The traditional neuron layers, either nn.Conv2d or nn.Linear,
will output a three dimensional tensor A, with shape (C,W,H), where C, W and H stand for the
number of channels, width and height of the activation tensor. We extended them so that they can
output a four-dimensional tensor A′ whose shape is (C,W,H,L). where the new dimensional size
L stands for the number of first-stage LUTs implemented during the computation. The relationship
between the element αc,w,h in tensors A and the element α′c,w,h,l in tensor A′ follows Eq. 11.

αc,w,h =

L∑
l

α′c,w,h,l (11)

After obtaining tensor A′ using the new function, we quantize each element in the tensor into M
bits using a mask, and then calculate tensor A by Eq. 11. This is the output of each layer in BLUnet.
It should be noted that the value of L equals the number of weights associated to αc,w,h over N , the
fan-in of the LUT. Please check Appendix for more implementation details.

Another advantage of BLUnet lies in its training procedure. Different from previous efficient design
with non-traditional operators, such as AdderNet, which needs to retrain the model from scratch,
BLUnet could utilize the pre-trained weights for conventional models due to the fact that BLUnet
based model design has a similar model structure with the conventional model. To ease the train-
ing effort, in this work, we adopt weights from the pre-training model from a package in Pytorch
TORCHVISION.MODELS. We then do gradient decent with a 1/10 learning rate for extra 20 epochs.
Experiment setting is detailed in Section 4. Code would be made open source after the acceptance.

4 EXPERIMENTS

In this section, we verify the effectiveness of BLUnet on various kinds of models and compare it
with the traditional model design. We also compare our work with state-of-the-art work to further
show its advantages. Then, we explore the relation between LUT type and the energy, latency, and
area of BLUnet. At last, we compare the results of a BLUnet prototype on FPGA with other low
energy solutions on AISC and FPGA to show the advantage of BLUnet for extremely low energy
applications.

4.1 EXPERIMENT SETUP

We built BLUnet with the method described in Section 3.3 and fine-tuned the models from the well-
trained checkpoints until the accuracy is recovered to its maximum point. The fine-tune learning rate
is set 10% of the initial learning rate for the training the model, and it is halved every 4 epochs. The
fine-tuning process can be done in 20 epochs. The experiment is implemented on the workstation
using NVIDIA’s 2080Ti graphic cards. With the trained weights, we build a simulator to simulate
the inference process and calculate the number of table lookup operations required to realize the
inference. Combined with Xilinx XPE toolkit Xilinx (2018), the energy, latency results are obtained.

We test several popular models including LeNet-5, VGG-16, MobileNet, ResNet-18 and ResNet-34
on popular datasets such as MNIST, CIFAR10, CIFAR-100 and ImageNet. We then compare the
accuracy of BLUnet with the baseline accuracy, which is got from conventional models with full-
precision weights and activations (FP32). To make the estimation aligned to the real device, we
estimate the energy consumption and latency of the LUT operation using the data from the Xilinx
XPE toolkit Xilinx (2018) for commercial FPGA devices. Unless specified, we assume LUT-6 is
used (N = 6), which is the most popular LUT type used today in modern FPGA. The notation
‘BLUnet-M ’ corresponds to the BLUnet where each activation is quantized to M bits. We use
LUT −N ×M to form an N -input, M -output LUT group.
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Table 2: Comparison BLUnet with traditional computation on different models.
Dataset / Model Metrics BLUnet-3 BLUnet-4 BLUnet-5 Base.
MNIST / Top-1 accuracy 98.47 99.12 99.17 98.97
LeNet-5 Number of MAC Ops (106) NA NA NA 0.4

Number of LUT-6 Ops (106) 1.5 1.9 2.4 NA
Energy per Op. (fJ) 4.5 5.1 5.6 82k
Latency (ns) 28 38 47 674

Dataset / Model Metrics BLUnet-6 BLUnet-7 BLUnet-8 Base.
CIFAR-10 / Top-1 accuracy 94.97 95.12 95.18 95.3
ResNet-18 Number of MAC Ops (109) NA NA NA 0.6

Number of LUT-6 Ops (109) 3.7 4.2 4.8 NA
Energy per Op. (fJ) 0.5 0.6 0.6 7k
Latency (ns) 878 1024 1170 3222

CIFAR-10 / Top-1 accuracy 93.46 93.65 93.70 93.83
VGG-16 Number of MAC Ops (109) NA NA NA 0.3

Number of LUT-6 Ops (109) 2.1 2.4 2.7 NA
Energy per Op. (fJ) 7.3 7.7 8.1 147k
Latency (ns) 779 909 1039 2137

CIFAR-10 / Top-1 accuracy 90.00 90.97 91.38 91.44
MobileNet Number of MAC Ops (109) NA NA NA 0.05

Number of LUT-6 Ops (109) 0.3 0.4 0.4 NA
Energy per Op. (fJ) 26.1 28 29 560k
Latency (ns) 339 396 452 3641

CIFAR-100 / Top-1 accuracy 76.62 76.94 77.14 77.50
ResNet-18 Number of MAC Ops (109) NA NA NA 0.3

Number of LUT-6 Ops (109) 3.7 4.2 4.8 NA
Energy per Op. (fJ) 0.5 0.6 0.6 7k
Latency (ns) 878 1024 1170 3222

CIFAR-100 / Top-1 accuracy 72.65 73.60 73.87 74.33
VGG-16 Number of MAC Ops (109) NA NA NA 0.3

Number of LUT-6 Ops (109) 2.1 2.4 2.7 NA
Energy per Op. (fJ) 7.3 7.7 8.1 147k
Latency (ns) 779 909 1039 2137

CIFAR-100 / Top-1 accuracy 61.12 63.69 64.27 64.53
MobileNet Number of MAC Ops (109) NA NA NA 0.3

Number of LUT-6 Ops (109) 0.3 0.4 0.4 NA
Energy per Op. (fJ) 26.1 28 29 560k
Latency (ns) 339 396 452 3641

ImageNet / Top-1 accuracy 66.88 69.37 70.03 69.76
ResNet-18 Number of MAC Ops (109) NA NA NA 2

Number of LUT-6 Ops (109) 12 13.8 15.6 NA
Energy per Op. (fJ) 4.2 4.4 4.6 83k
Latency (ns) 883 1031 1178 3235

ImageNet / Top-1 accuracy 71.50 73.19 73.73 73.30
ResNet-34 Number of MAC Ops (109) NA NA NA 4

Number of LUT-6 Ops (109) 24.2 27.9 31.5 NA
Energy per Op. (fJ) 4.2 4.4 4.6 83k
Latency (ns) 1847 2155 2463 5604

4.2 RESULTS OF DIFFERENT MODELS

We compare BLUnet with the traditional computation method on several popular models in terms
of accuracy, latency, number of operations, and energy consumption against baseline models that
use full 32-bit floating-point weights and activation, necessitating the use of floating-point multiply-
accumulate operations. The energy consumption is estimated by counting the number of LUT op-
erations and MAC operations. Latency is estimated under the estimation that maximum parallelism
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Table 3: Comparison between the BLUnet and the state-of-the-art work. A negative value for ‘Acc.
Gain’ represents a drop in accuracy.

ResNet-18 on ImageNet Top-1 Top-5 Acc. Gain Energy (mJ) Norm. Ene.
AdderNet Chen et al. (2020) 69.8 89.1 0.04 28.01 400
Joint Sparsity Choi et al. (2018a) 67.8 NA -1.96 25.50 364
FAQ McKinstry et al. (2018) 69.82 89.1 0.06 2.16 31
UNIQ Baskin et al. (2021) 67.02 NA -2.74 4.32 62
QIL Jung et al. (2019) 67.02 NA -0.56 1.22 17
LQ-Nets Zhang et al. (2018) 68.2 87.9 -1.56 1.22 17
ABC-Net Lin et al. (2017) 65.0 85.9 -4.76 3.38 48
Group-Net Zhuang et al. (2018) 69.2 88.5 -0.56 1.08 15
RegularizationChoi et al. (2018b) 69.2 88.5 -2.46 2.16 31
BLUnet-8 70.03 89.43 0.27 0.07 1
ResNet-34 on ImageNet Top-1 Top-5 Acc. Gain Energy (mJ) Norm. Ene.
NISP Yu et al. (2018) 72.38 90.53 -0.92 81.12 579
FAQ McKinstry et al. (2018) 73.31 91.32 0.01 4.36 31
UNIQ Baskin et al. (2021) 71.09 NA -2.21 8.73 63
QIL Jung et al. (2019) 73.1 NA -0.2 2.45 18
LQ-Nets Zhang et al. (2018) 71.9 90.2 -1.4 2.45 18
ABC-Net Lin et al. (2017) 68.4 88.2 -4.9 6.82 49
BLUnet-8 73.73 91.6 0.43 0.14 1

are applied in classical accelerators, that is, all the multiplication operations in each neuron can be
executed in parallel.

From Table 2, we can see that BLUnet is effective in reducing the energy consumption and latency
of inference, while only incurring a small accuracy drop. For the large dataset, ImageNet, on the
ResNet-18 and ResNet-34 models, our BLUnet-8 design shows a significant improvement over the
respective baselines on energy efficiency, with no drop on top-1 accuracy. The BLUnet-7 design has
an even better energy efficiency but at the cost of 0.39% and 0.11% top-1 accuracy drop. For smaller
datasets such as CIFAR-10, BLUnet-8 can also achieve improvement on energy efficiency with only
0.13% of accuracy drop using the VGG-16 model. In addition to VGG and ResNet, BLUnet also
performs well on the compact MobileNet model.

The experimental results show that although each LUT has a quantization error, the accumulated
quantization error along many LUTs does not impact the accuracy of the models significantly. This
can be attributed to the fact that the quantization error of each LUT is uniformly distributed with a
mean close to zero. A positive quantization error from one LUT may be canceled out by a negative
quantization error in another LUT. Therefore, the total accumulated quantization error is negligible.

4.3 COMPARISON TO STATE-OF-THE-ART

Table 3 compares BLUnet with the state-of-the-art works in terms of accuracy and energy efficiency.
The work listed in the table encompasses quantization and the energy reduction method that simpli-
fies the model into an adder-only format. The energy consumption of the previous work is based on
the number of operations required and the exact energy consumed by the corresponding operation
type and bitwidth. From the table, we can see that BLUnet outperforms all others in terms of energy
reduction, achieving high accuracy. With better top-1 accuracy, BLUnet can achieve at least 10×
further reduction compared to previous works.

The main reason behind the performance of BLUnet is the novel idea of using bit serialization to
solve the fan-in problem of LUTs. This enables us to use very small LUTs to perform the compu-
tation of very complex functions. Finally, the accumulated quantization errors along many LUTs
cancel each other out, resulting in very little accuracy drop compared to the baseline models.

4.4 STUDY ON LUT TYPE FOR ENERGY, LATENCY, AND AREA

Fig. 5 shows design tradeoffs in BLUnet. Today, the most popular LUT type is LUT-6, which has
6 inputs and 26 possible combinations. Another two LUT-types are LUT-4 and LUT-5, which have
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Figure 5: Accuracy, energy improvement, latency improvement and area improvement of BLUnet,
for VGG-16 on CIFAR-10 dataset

four and five inputs, respectively, are also common. Theoretically, implementing BLUnet using
LUT-4 and LUT-5 will increase the total number of LUTs and lower the accuracy because of the
increase in accumulated quantization errors. However, LUT-4 and LUT-5 have higher area efficiency
than LUT-6. Therefore, it is worth exploring especially for resource-constrained scenarios.

From Fig. 5, we can see that on average, LUT-4 and LUT-5 will cause a 0.18% and 0.15% accuracy
drop, respectively. However, compared with the LUT-6 based BLUnet, the LUT-4 based one can
achieve higher area efficiency than LUT-5. This is because the area of LUT-4 is only a quarter of
that of LUT-6. Although the LUT-4 based BLUnet uses more LUTs than the LUT-6 based one, its
overall area efficiency is still higher. Therefore, if 0.18% accuracy drop is acceptable, then LUT-4
based BLUnet is a better choice for area efficiency.

Another observation is that quantizing the activations into still fewer bits can improve the en-
ergy/area efficiency and latency. For example, if we quantize activation by 7 bits (BLUnet-7) instead
of 8 bits (BLUnet-8), we can achieve a comprehensive higher efficiency in energy consumption, la-
tency, and area overhead at the cost of 0.04% accuracy drop. This is because by lowering the
precision of the activation, we can use fewer LUTs in the network.

4.5 PERFORMANCE ON REAL EDGE SILICON

In order to demonstrate the effectiveness of BLUnet on real edge hardware with low energy con-
straints such as wearable devices, we design and implement a BLUnet prototype on FPGA. For a
fair comparison with similar accuracy, we used a two-layer MLP with a hidden layer containing 216
neurons. We compare it with other low energy ASIC/FPGA implementations for edge vision with
MNIST. According to the results in Table 4, compared with other low energy solutions, with similar
accuracy, BLUnet achieves the best energy and throughput efficiency.

Table 4: Comparison between a prototype of BLUnet and other low energy classifiers on real hard-
ware in terms of accuracy, energy per image, and images per second.

Approach Accuracy Energy/image Images/Sec. Tech.
TrueNorth (ASIC) Esser et al. (2015) 95.0% 4000nJ 1 x 103 28nm
Shenjing (Simulation) Wang et al. (2019a) 96.11% 2020nJ 5.95 x 104 28nm
BNN (FPGA) Umuroglu et al. (2017) 95.83% 591nJ 1.24 x 107 28nm
Tianjic (ASIC) Pei et al. (2019) 96.59% 3.8 x 104nJ 40 28nm
BLUnet (FPGA) (This work) 96.55% 21.97 nJ 1.25 x 108 28nm

5 CONCLUSION

In this work, we proposed BLUnet, a table lookup-based DNNs. By serializing the bits of ac-
tivation, we successfully solve the ‘show stopping’ fan-in issue of lookup tables (LUT). BLUnet
achieves high efficiency compared with MAC-based DNN models due to the advantages offered by
the table lookup operation over traditional arithmetic (floating-point) multiply-accumulate (MAC)
operation in hardware implementations. We conducted experiments on BLUnet with popular mod-
els and datasets. Our experimental results show that BLUnet achieves orders of magnitude higher
improvement compared with not only MAC-based baseline designs but also the state-of-the-art effi-
cient DNN designs that employ a wide range of optimization techniques.
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REPRODUCIBILITY STATEMENT

We provide experimental instructions in the appendix to help the reproducibility. Source code would
be made open source after the acceptance.
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A APPENDIX: EXPERIMENTAL INSTRUCTIONS

We implement BLUnet by re-writing neuron layers in Pytorch platform. The convolutional layer
and the linear layer use different methods, which will be discussed in two parts.

A.1 CONVOLUTIONAL LAYER

For nn.conv2d, the key idea in this algorithm is to decompose the original convolutional compu-
tation into many groups so that we can implement the quantization error among LUTs. Therefore,
instead of computing the traditional convolutional layers with only one group, we compute a con-
volutional layer with ch in groups, where ch in is the number of input channels. As a result,
there is one input channel in each group. Our algorithm is to make sure that within every group, the
only input channel will do convolution with all weights it involves with in the original computation
algorithm. It then lists all results as multiple output channels for further processing.

In Fig. 6. we show how our implementation works using a simple example. In this example, the
input activation size is 2x2x3, and the filter size is 1x1x3x2, so the output activation size is 2x2x2.

Before the main algorithm, we obtain the dimension of the original weights from the following code.

ch out, ch in, kernel x, kernel y = self.weight.shape[0],
self.weight.shape[1], self.weight.shape[2], self.weight.shape[3]

A.1.1 BASIC ALGORITHM

To make it easy to understand, we first show how it works in a 1× 1 kernel convolution layer.

In the original computation loop, all MAC operations along all the input channels are accumulated
to one single sum. In our new algorithm, we do not sum these MAC operation results over all input
channels. Instead, the result from each input channel is separately calculated. In the new algorithm,
the number of the output channel is ch out* ch in, which means that for each input channel,
there are ch out output channels.

To implements this, we need to covert the weight matrix by repeating some weights. This can be
done by transposing and reshaping the original weight matrix.

weight expend = torch.transpose(self.weight, 0, 1).reshape(ch in *
ch out, -1, kernel x, kernel y)

The next step is the key to this algorithm. We do the convolution using the converted weight matrix.

activation expand = F.conv2d(input = input, weight = weight expend,
bias = None, stride = self.stride, padding = self.padding,
dilation = self.dilation, groups = self.in channels)
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Figure 6: Comparison between the traditional method and our implementation.
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Then we need to read out the batch size, and activation size for further processing.

batch num, act x, act y = activation expand.shape[0],
activation expand.shape[2], activation expand.shape[3]

Now for every six MAC outputs, we use LUT-6 to realize the function, which can realize the six
MAC operations at a single time.

activation regrouped = activation expand.view(batch num, ch in, -1,
act x, act y)

activation regrouped = torch.sum(activation regrouped.view(batch num,
-1, 6, ch out, act x, act] y), 2)

In this step, we apply the quantization function to the tensor in the last step. This is to realize the
quantizing function of each LUT due to the reason that the LUT output would not be a full precision
value. Here the parameter res activation indicates the quantization bits.

activation regrouped quantized = QuantizeThrough.apply(activation regrouped,
res activation)

Finally, we implement the following addition function with LUT-based operations.

activation = torch.sum(activation regrouped quantized, 1)

A.1.2 EXTENSION TO GENERALLY CASES

In the previous part, we discuss the method on 1 × 1 convolutional layer. In this part, we will use
an example to briefly introduce the method for N × N convolutional layers. For instance, in a
3 × 3layer, each output result is the accumulation of 9 MAC operations. Since 9 is greater than 6,
the fan-in of the LUT, we need to divide the 9 MAC operations into 3 groups by using a mask and
further decompose the output results.

weight mask = torch.tensor([[[1, 1, 1], [0, 0, 0], [0, 0, 0]],
[[0, 0, 0], [1, 1, 1], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [1, 1,
1]]]).view(1, 1, 3, 3 ,3).expand(ch in, ch out, -1, -1, -1)

We then use the masked weight to do convolutions. As a result, the output channels will be further
extended by 3.

activation expand = F.conv2d(input = input, weight =
weight masked.reshape(ch in * ch out * 3, -1, kernel x, kernel y),
bias = None, stride = self.stride, padding = self.padding,
dilation = self.dilation, groups = self.in channels)

Because in this example, each group contains three MAC operations, we combine any two of them
to get the result with six MAC operations.

activation regrouped = torch.transpose(activation regrouped, 1,
2).reshape(batch num, ch out, -1, 2, act x, act y)

The later steps would follow the basic algorithm.

A.2 LINEAR LAYER

For the linear layer, we transform the computation into 1D convolutional layers. The basic idea is
similar to what we do for convolutional layers. We decompose the computation into several groups.
Each group includes six MAC operations. The reason why the 1D convolutional layer is used is that
it can help us to compute the result in parallel.

The first thing in this algorithm is to convert weight and input activation in order to fit into 1D
convolutional layer.

input expand = input.view(batch num, -1, 6)

weight expend = torch.transpose(weight.view(element out, -1, 6), 0,
1).reshape(-1, 1, 6)
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Afterwards, we use the standard 1D convolutional function to compute the results in parallel.

activation expand = F.conv1d(input = input expand, weight =
weight expend, bias = None, stride = 1, padding = 0, dilation =
1, groups = input expand.shape[1])

Finally, we apply the quantization function to the output tensor and sum results, and implement the
following addition function with LUT-based operations.
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