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Abstract

Geometric alignment appears in a variety of applications, ranging from domain
adaptation, optimal transport, and normalizing flows in machine learning; optical
flow and learned augmentation in computer vision and deformable registration
within biomedical imaging. A recurring challenge is the alignment of domains
whose topology is not the same; a problem that is routinely ignored, potentially
introducing bias in downstream analysis. As a first step towards solving such
alignment problems, we propose an unsupervised algorithm for the detection of
changes in image topology. The model is based on a conditional variational auto-
encoder and detects topological changes between two images during the registration
step. We account for both topological changes in the image under spatial variation
and unexpected transformations. Our approach is validated on two tasks and
datasets: detection of topological changes in microscopy images of cells, and
unsupervised anomaly detection brain imaging.

1 Introduction

Geometric alignment is a fundamental component of widely different algorithms, ranging from
domain adaptation [7], optimal transport [40] and normalizing flows [35, 42] in machine learning;
optical flow [21, 51] and learned augmentation [20] in computer vision, and deformable registration
within biomedical imaging [5, 15, 19, 39, 53]. A recurring challenge is the alignment of domains
whose topology is not the same. When the objects to be aligned are probability distributions [35], this
appears when distributions have different numbers of modes whose support is separated into separate
connected components. When the objects to be aligned are scenes or natural images, the problem
occurs with occlusion or temporal changes [51]. In biomedical image registration, the problem is
very common and happens when the studied anatomy differs from "standard" anatomy [36]. Despite
being extremely common, this problem is routinely ignored or accepted as inevitable, potentially
introducing bias in downstream analysis.

We study two cases from biomedical image registration. One is the alignment of image slices to
reconstruct a 3d volume, where changes in topology between slices introduce challenges in post-
processing (Figure 1). The other is the registration of brain MRI scans, where tumors give common
examples of anatomies that are topologically different from healthy brains. In deformable image
registration, a "moving image" is mapped via a nonlinear transformation to make it as similar as
possible to a "target" image, enabling matching local features or transferring information from one
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Image pair Unsupervised prediction

Topological change

Figure 1: Left: Example of topological changes between two adjacent slices of human blood cells
imaged via serial block-face scanning electron microscopy [41]. We aim to detect the change of
topology caused by an emerging organelle within the cell (highlighted by the red arrow) while
accounting for non-linear deformations of the image introduced by natural shape changes between
slices. Right: Heatmap of the likelihood of topological changes predicted by our unsupervised model.

image to another. It is common to numerically stabilize the estimation of the transformation by
constraining the predicted transformation to be diffeomorphic, that is, bijective and continuously
differentiable in both directions. In particular, diffeomorphic transformations are homeomorphic, or
topology-preserving, which implies that a common topology is assumed across all images [13, 15].
This topology is often provided by a common template image Itemplate, from which all other images
are obtained via the transformation Φ from the group of diffeomorphisms G. Under this common
topology assumption, the set of all images is given by

I = {Itemplate ◦ Φ|Φ ∈ G} .

Topological differences in biomedical images can be caused by a variety of processes. For instance,
image slices obtained from a volume do not all contain the same elements. Tumor growth or the
removal of surgical tissue can alter the topology of an image. Various processes can lead to the
replacement or deformation of organic tissue, which cannot be mapped to the original image. We
choose to model these topological differences as the inability to obtain one image from the other via a
homeomorphic transformation of the image domain. Since, within image registration, transformations
are assumed to be continuously differentiable, we are effectively modelling topological differences
between pairs of images via the failures of diffeomorphic image registration in aligning them.

As most registration algorithms align images based on intensity, e.g. minimizing mean squared error
(MSE), these tissue changes make it difficult to map images correctly. The strong local deformations
required to deal with the non-diffeomorphic part of the image inevitably also deform the surrounding
area, leading to distorted transformation fields in topologically matching parts of the image [36].
These transformation fields adversely affect downstream tasks, for example indicating false size
changes in adjacent regions.

Previous work on aligning topologically inconsistent domains. Attempting to relax the same-
image assumption induced by fully diffeomorphic transformations is not new. In the context of organs
sliding against each other, several approaches exist, most of which rely on pre-annotating the sliding
boundary using organ segmentation [6, 10, 22, 37, 43, 46], with a few extensions to un-annotated
images [38, 45].

When topological holes are created or removed in the domain, for example through tumors, patholo-
gies, or surgical resections, the loss function used for registration can be locally weighted or masked
[26, 29, 30], or an artificial insection can be grown to correct anatomies [36]. These approaches rely
on annotation of the topological differences, which have to be provided manually or by segmentation.
An exception is given by Li and Wyatt [30], which detects changes in topology from the difference
between the aligned images. This depends crucially on the ability to find a good diffeomorphic
registration outside the anomaly, which is difficult all the while the applied transformation is still
diffeomorphic.
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An alternative approach to registering topologically inconsistent images is to inpaint the difference in
the source images to obtain a topologically consistent quasi-normal image. Then standard registration
methods can be used on the altered images. Quasi-normal images can be obtained through low-
rank and sparse matrix decomposition [32, 33], principle component analysis [16, 18], denoising
VAEs [52], or learning of a blended representation [17]. Registration with the quasi-normal approach
retains the diffeomorphic properties of the transformation but does not register the topologically
inconsistent areas of the images.

Our contribution. We propose an unsupervised algorithm for the detection of changes in image
topology. To this end, we train a conditional variational autoencoder for predicting image-to-image
alignment, obtaining a per-target-pixel probability of being obtained from the moving image via
diffeomorphic transformation. We combine a semantic loss function trained to extract contextual
information [8], with a learnable prior of transformations [9], allowing us to incorporate both the
reconstruction error, as well as knowledge about the expected transformation strength.

We test the validity of our approach on a novel dataset of cell slices with annotated topological
changes and on the proxy task of unsupervised brain-tumor detection. We also validate our approach
by investigating a spatial "topological inconsistency likelihood", and showing that this likelihood is
higher in regions where topological inconsistencies are known to be common. Our model is able to
detect topological inconsistencies with a purely registration-driven framework, and thus provides the
first step towards an end-to-end registration model for images with topological discrepancies. The
implementation is available at github.com/SteffenCzolbe/TopologicalChangeDetection.

2 Background

2.1 Notation of images and transformations

We view an image I interchangeably as two different structures. First, it is a continuous function
I : ΩI → R

C , where ΩI = [0, 1]D is the domain of the image, and C the number of channels.
This function can be approximated by a grid of n pixels with positions xk ∈ ΩI leading to the

image representation I
(c)
k , where c is an index over the channels and Ik = (I

(1)
k , . . . , I

(C)
k )T = I(xk).

Second, this pixel grid is accompanied by a graph structure that encodes the neighbourhood of each
pixel. In this view, the set of neighbours of a pixel with index k (for example the 4-neighbourhood
of a pixel on the image grid) is referred to as N(k) and |N(k)| is the number of neighbours. The
neighborhoods of a pixel gives rise to a graph which can be described via the graph laplacian
Λ ∈ R

n×n with Λk,k = |N(k)| and Λk,k′ = −1 when pixel k′ ∈ N(k), and zero otherwise.

Applying a spatial transformation Φ : RD → R
D to an image is written as J = I ◦ Φ, which can be

seen as its own image with domain ΩJ = [0, 1]D with pixel coordinates yk ∈ ΩJ and Jk = I(Φ(yk)).
The transformation Φ can be seen as a vector field on the image domain which assigns each pixel

in J a position on I and thus it can be parameterized as a pixel grid Φ
(d)
k , d = 1, . . . , D at the pixel

coordinates of J using Φ(yk) = yk +Φk. To make this choice of coordinate system clear, we will
refer to a transformation that moves a pixel position from the domain ΩJ to the corresponding pixel
in domain ΩI as ΦJ→I, whenever it is not clear from the context. If Φ is a diffeomorphism, it can
alternatively be parameterized by a vector field V on the tangent space around the identity, where the
mapping between the tangent space and the transformation is given by Φ = exp(V ), which amounts
to integration over the vector field [2].

2.2 Variational registration framework

It is possible to phrase the problem of fitting a registration model in terms of variational inference,
using an approach similar to conditional variational autoencoders [47]. Here, we summarize the
approach taken by [9, 31]. For a D-dimensional image pair (I,J), we assume that J is generated
from I by drawing a transformation Φ from a prior distribution p(Φ|I), apply it to I and then add
pixel-wise noise:

p(J|I) =

∫

pnoise(J|I ◦ Φ)p(Φ|I) dΦ

This includes the common topology assumption implicitly via p(Φ|I), which is typically chosen
to produce invertible transformations depending only on the topology of I, as well as the noise
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model which does not assume systematic changes between J and I. This model can be learned using
variational inference using a proposal distribution q(Φ|I,J) with evidence lower bound (ELBO)

log p(J|I) ≥ Eq(Φ|I,J) [log pnoise(J|I ◦ Φ)]−KL(q(Φ|I,J)‖p(Φ|I)) . (1)

In contrast to variational autoencoders, the decoder is given by the known application of Φ to I. Thus,
the degrees of freedom in this model are in the choice of the encoder, prior, and the noise distribution.

Dalca et al. [9] proposed to parameterize Φ as a vector field V
(d)
k on the tangent space, which turns

application of Φ = exp(V ) into sampling an image with a spatial transformer module [24]. As a
prior for this parameterization, they chose a prior independent of I

p(Φ) =
D
∏

d=1

N
(

V (d) | 0,Λ−1
)

,

where we used the implicit identification of Φ and V and the precision matrix Λ is chosen as the
Graph Laplacian over the neighbourhood graph (see notation). Using an encoder that for each pixel

proposes q(V
(d)
k |I,J) = N (µ

(d)
k , v

(d)
k ), the KL divergence is derived as

KL
(

q(Φ|I,J)‖p(Φ|I)
)

=
1

2

D
∑

d=1

n
∑

k=1

− log v
(d)
k +|N(k)|v

(d)
k +

∑

l∈N(k)

(

µ
(d)
k − µ

(d)
l

)2

+const . (2)

It is worth noting that this equation is invariant under translations of µ. This invariance manifests in
rank-deficiency of Λ and as a result, const is infinite. Thus, sampling from the prior and bounding
the objective is impossible. Still training with this term works in practice as images are usually
pre-aligned with an affine transformation and thus translations are close to zero. We will present a
slightly modified approach, rectifying the missing eigenvalue.

3 Detection of topological differences

The variational approach for learning the distribution of transformations introduced before optimizes
an ELBO on log p(J|I). This information is enough to detect images that contain topological
differences under the assumption that these images will overall have a lower likelihood. However, in
our application, we need not only to detect the existence but also the position of outliers in the image.
For this, we have to ensure that log p(J|I) can be decomposed into a likelihood for each pixel of the
image. It is immediately obvious by inspection of the ELBO (1) together with the KL-Divergence (2),
that the lower bound on log p(J|I) can be decomposed into pixel-wise terms if log pnoise(J|I ◦Φ) can
be decomposed as such. To enforce this, we will introduce a general form of error function, which
can be decomposed and includes the MSE as a special case. For this, we first map the images I and J

to feature maps over the pixel positions k via a mapping fk(I) ∈ R
F and define the loss as:

pnoise(J|I ◦ Φ) =
n
∏

k=1

N (fk(J)|fk(I) ◦ Φ,Σf ) , (3)

where Σf ∈ R
F×F is a diagonal covariance matrix with variances learned during training.

The ability to decompose the likelihood is not enough for a meaningful metric, as we have to ensure
that each term is calculated in the correct coordinate system. This depends on the parameterisation
and regularisation of Φ. In the approach by Dalca et al. [9] the parameterization V of Φ is defined on
the tangent space and consequently the prior is also on this space. Since the connection between Φ
and V is given by integration of the vector field, decomposing (2) for a single pixel k will produce
estimates based on the local differential of the transformation, but will not take the full path with
starting and endpoints into account. Thus, correct cost assignments require integration of (2) over the
computed path, which is expensive and suffers from severe integration inaccuracies. Instead, we will
use an alternative approach, where we parameterize Φ directly as a vector field on the image domain.
Transformations parameterized this way are not necessarily invertible anymore, yet smoothness is
still encouraged by the prior.

Learnable prior Using this parameterization, we extend the approach by Dalca et al. [9] and
introduce a parameterized prior on Φk that is learned simultaneously with the model:

p(Φ) =

D
∏

d=1

N
(

Φ(d) | 0,Λ−1
αβ

)

, Λαβ = αΛ +
β

n2
✶✶

T (4)
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The expected variations and translations between transformation vectors are governed by α and β.
Unlike most works in image registration, we do not treat these as tuneable hyperparameters, but
instead view them as unknowns to be fitted to the data during training similar to [28, 49]. For efficient
learning, we use an estimate for the optimal values for α, β over a batch of samples during training,
and use a running average at test time. A detailed explanation is given in supplementary material A.

The second term of (4) ensures that Λαβ is invertible, by adding a multiple of the eigenvector

✶ = (1, . . . , 1)T . It can be verified easily that Λ✶ = 0. Unlike adding a multiple of the identity matrix
to Λ, adding the missing eigenvalue does not modify the prior in any other way than regularizing
the translations. Further, it ensures that the KL divergence of the resulting matrix can be quickly
computed up to a constant as α and β do not modify the same eigenvalues. Recomputing the
KL-divergence for n transformation vectors in D dimensions leads to

2KL (q(Φ|I,J)‖pαβ(Φ)) = −(n− 1)D logα−D log β + β

D
∑

d=1

(

1

n

n
∑

i=1

µ
(d)
i

)2

+

D
∑

d=1

n
∑

k=1

− log v
(d)
k +

(

α|N(k)|+
β

n2

)

v
(d)
k + α

∑

l∈N(k)

(

µ
(d)
k − µ

(d)
l

)2

+ const (5)

Decomposed error metric We define our pixel-wise error measure for topological change detection

based on the ELBO (1) with KL-divergence (5) as follows, where we compute µ
(d)
k and v

(d)
k via the

proposal distribution q(Φ|I,J) and pick Φ
(d)
k = µ

(d)
k :

Lk(J|I) = − logN (fk(J)|fk(I) ◦ Φ,Σf ) +
βµ

(d)
k

n2

D
∑

d=1

n
∑

i=1

µ
(d)
i

+

D
∑

d=1

− log v
(d)
k +

(

α|N(k)|+
β

n2

)

v
(d)
k + α

∑

l∈N(k)

(

µ
(d)
k − µ

(d)
l

)2

. (6)

We will treat the loss over all pixels L(J|I) = (L1(J|I), . . . , Ln(J|I)) as another image with domain
and pixel coordinates the same as J. This measure is not symmetric. The prior distribution does
not treat the distributions q(Φ|I,J) and q(Φ|J, I) equally. If ΦJ→I maps a line in J to an area in
I, this will incur a large visible feature along the line due to violating the smoothness assumption
encoded in the prior. On the other hand, if an area in J gets mapped to a line in I, the overall error
contribution is smoothed out over the area. To rectify this issue, we will compute a bidirectional
measure Lsym(J|I) = L(J|I) +L(I|J) ◦ΦI→J, where ΦI→J is the same as the one used to compute

L(J|I). For this measure it holds that if ΦJ→I = Φ−1
I→J

, we have Lsym(I|J) = Lsym(J|I) ◦ ΦJ→I up
to interpolation errors caused by the finite coordinate grid.

Topological outlier detection Lsym detects topological changes between two images. However,
for evaluation on the Brain dataset, we are interested in topological outliers. Outliers can be detected
using Lsym by contrasting the observed deviations with the observed deviations within a larger set of
control images C. This leads to the score

Q(J) = EI∈C [Lsym(J|I)− EK∈C [Lsym(I|K)] ◦ ΦI→J] . (7)

4 Evaluation

We evaluate our approach on two tasks. In the first, we measure prediction agreement with annotated
topological changes on a dataset of cell slices. For this, we introduce the first dataset with annotated
topological differences for image registration (see Section 4.1), which allows us to significantly
expand on the evaluation strategies of prior work [26, 29, 30]. In the second task, we adapt our
approach to anomaly detection in order to detect brain tumors on slices of MRI images.

On the change detection task, we use our model prediction of Lsym directly. On the anomaly detection
task, we use the score (7), which subtracts the average scores over healthy patients for each pixel.

We compare our model to the following baselines:
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1. Two unsupervised approaches for topological change detection:

• Li and Wyatt’s [30] intensity difference and image gradient-based approach using a deterministic
registration model [5] to obtain the transformations.

• Using the same model, we devise a method based on the Jacobian Determinant of the transfor-
mation field |JΦ|. We expect strong stretching or shrinkage in areas of topological mismatch,
which we measure using use the score log(|detJΦ|)

2.

We adapt both approaches to the task of tumor detection by subtracting the average scores over
healthy patients, analogous to (7).

2. The approach by An and Cho [1] for unsupervised anomaly detection in images is based on the lo-
cal reconstruction error of a variational autoencoder. The error score is ‖J−dec(enc(J))‖2, where
enc(J) maps J to the mean of the variational proposal distribution and dec is the corresponding
learned decoder. As the score does not use registration, we cannot use equation (7).

3. A supervised segmentation model trained for segmenting topological changes based on two input
images on the cell dataset, and tumor segmentation based on a single input image on the brain
dataset. Since this model requires annotated data, we withhold 75% of the annotated volumes for
training and evaluate the segmentation model only on the remaining samples.

In both tasks, we measure the pixel-wise agreement of the models with the annotated ground-truth
using the receiver operating characteristic curve (ROC curve) and compare the area under the curve
(AUC) between the models. AUC estimates are bootstrapped on the subject level to obtain error
estimates.

As additional evaluations, we present qualitative examples and investigate whether brain regions
with known topological variability get assigned higher scores in our model. For this we compute the
pairwise average score Lsym over multiple healthy subjects and register them all to a brain atlas using
EI,K [Lsym(I|K) ◦ ΦI→Atlas]. We group the scores by their position on the brain atlas into partitions:
cortical surfaces, subcortical regions, and ventricles.

4.1 Tasks and Data

Topology change detection in Cells Serial block-face scanning electron microscopy (SBEM) is a
method to obtain three-dimensional images from small biological samples. An image is taken from
the face of the block, after which a thin section is cut from the sample to expose the next slice. A
challenge is the accurate reconstruction of the volume, as neighboring slices differ by both natural
deformations and changes in topology. Natural deformations can be introduced by shape-changes of
objects between the slices, and deformations of the sample due to the physical cutting. Changes in
topology occur due to objects present in one slice but not the other, and tears of the physical sample
induced by the cutting.

We evaluate our method on the detection of topological changes between neighboring slices of human
platelet cells recorded with SBEM. We use the pre-segmented dataset by Quay et al. [41] as a base. In
the dataset, image slices are affinely pre-aligned and manually segmented into 7 classes. Afterwards,
for the validation and test set, we annotated changes in the topology of the segmentation masks.
Using this approach, not all instances of topological changes in the image can be annotated as the
segmentation maps merge several types of cell components into a single class. The data is cropped
into patches of 256× 256 pixels and we use 9 patches of 50 slices for training, 4 patches of 24 slices
for validation, and 5 patches of 24 slices for test (3 patches for the supervised approach due to the
training-test split of annotated data).

Brain tumor detection Individual brains offer a range of topological differences, especially in the
presence of tumors. Further, inter-subject differences are found at the cortical surface, where the sulci
vary significantly [48], and near ventricles, which can either be open cavities, or partially closed [36].
We quantitatively evaluate our method on the proxy task of detecting brain tumors. Tumors change the
morphology of the brain and can thus be detected indirectly via the large transformations they cause.
For this, we first train our model using a dataset of healthy images from the control group and then use
(7) to obtain a score for topological outlier detection. For the control set, we combine T1 weighted
MRI scans of the healthy subjects from the ABIDE I [11]1, ABIDE II [12] and OASIS3 [27] studies.

1CC BY-NC-SA 3.0, https://creativecommons.org/licenses/by-nc-sa/3.0/
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For the tumor set we use MRI scans from the BraTS2020 brain tumor segmentation challenge [3, 4,
34], which have expert-annotated tumors. We use the T1 weighted MRI scans, and combine labels
of the classes necrotic/cystic and enhancing tumor core into a single tumor class. All datasets are
anonymized, with no protected health information included and participants gave informed consent
to data collection.

We perform standard pre-processing on both brain datasets, including intensity normalization, affine
spatial alignment, and skull-stripping using FreeSurfer [14]. From each 3D volume, we extract a
center slice of 160× 224 pixels. Scans with preprocessing errors are discarded, and the remaining
images of the control dataset are split 2381/149/162 for train/validation/test. Of the tumor dataset, 84
annotated images with tumors larger than 5cm2 along the slice are used for evaluation (17 for the
supervised approach due to the training-test split of subjects).

4.2 Model and training

All models evaluated are based on a U-Net [44] architecture, except An and Cho [1], which we
implement using as a spatial VAE following the previously published adaptation to Brain-scans by
Venkatakrishnan et al. [50]. The networks consist of encoder and decoder stages of 64, 128, 256
channels for all registration models, and 32, 64, 128, 256 channels for the segmentation and VAE
models. Each stage consists of a batch normalization [23] and a convolutional layer.

In our approach, we use a U-Net to model p(Φ|I,J). The output of the last decoder stage is fed
through separate convolution layers with linear activation functions to predict the transformation
mean and log-scaled variance. Throughout the network, we use LeakyReLu activation functions. The
generator step I ◦Φ is implemented by a parameterless spatial transformer layer [24]. During training
of our model, we use the analytical solution for prior parameters α, β (supplementary material,
Eq. 8), averaged over the mini-batch of 32 image pairs. For validation and test, we use the running
mean recorded during training. The diagonal covariance of the reconstruction loss Σf is treated as a
trainable parameter.

For all datasets, we use data augmentation with random affine transformations of the training images.
For training, the optimization algorithm is ADAM [25] with a learning rate of 10−4. Regularization
of all models is performed by applying an L2-penalty to the weights with a factor of 0.01 for the cell
dataset and 0.0005 for the brains. We train each model on a single TitanRTX GPU, with maximum
training times of 1 day for the cells and 4 days for the brains. Hyperparameters: The network by
Venkatakrishnan et al. [50] has σ = 1 chosen from {0.1, 1, 10}, based on reconstruction loss on
validation set. The deterministic registration model was trained using λ = 0.1 as in [8]. For [30], the
parameters σ of the Gaussian derivative kernel and hyper-parameter K where chosen to maximize
the AUC score, selecting σ = 6, K = 2 out of {1, . . . , 9}2.

For the reconstruction loss, we compare two different loss functions. The first is using the MSE as
in [9, 30]. The second is a semantic similarity metric similar to [8]. To obtain the semantic image
descriptors, we train a U-net with 32, 64, 64 channels for image segmentation, using the manual
annotations of the cell set and automatically created labels obtained with FreeSurfer [14] for the brain
control images. Notably, the segmentation models used for the loss have not been trained on images
or pairs containing topological changes or tumors. From this network, we extract the features of the
first three stages and use them as a 160-channel feature map in the loss (3). For both the MSE and
the semantic loss, we learn the variance parameters while training the variational autoencoder.

4.3 Results

The ROC curves of all trained models on the cell and brain tasks can be seen in Figure 2. For both
tasks, the supervised model performed best (AUC 0.90, 0.95), while our proposed approach with
semantic loss performed best among the unsupervised models (AUC 0.88, 0.80). The unsupervised
approach for topological change detection by Li and Wyatt [30] (AUC 0.75, 0.70) performed overall
best among the baselines, but worse than our method. The unsupervised anomaly detection method
by An and Cho [1] (AUC 0.72, 0.67) performed well at detecting brain tumors, but worse at detecting
topological changes in the cell images. Using the Jacobian determinant (AUC 0.75, 0.62) performed
well on the cell images but worse on the brain tumor detection task. Our approach using MSE (AUC
0.72, 0.61) performed worse than the other methods on both tasks.
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Figure 2: Receiver operating characteristic curves (ROC) and area under the curve (AUC) for
detecting topological changes on the cell and brain datasets. We test models of our method for
unsupervised topological change detection, trained with a semantic loss function and the MSE in
the reconstruction term, and compare against unsupervised baselines from image registration (Li
and Wyatt [30], Jacobian Determinant) and unsupervised anomaly detection (An and Cho [1]). For
reference, we also include a supervised segmentation model, which has been trained on the ground
truth annotations.

I

J

Lsym(J|I)

Figure 3: Topological differences detected by our method, cell dataset. Neighboring slices I, J in
rows 1 and 2. Heatmaps of the likelihood of topological differences detected with Lsym in row 3.
Heatmaps are overlayed on image J to ease comparison. Annotated topological differences used for
evaluation outlined in red. Note that only a subset of topological anomalies present is annotated in
our dataset.

When analyzing the ROC curves, our model performed best among the unsupervised models for all
false positive rates, while the supervised model is the best overall. Finally, even though both models
share the same trained model, the score used by Li and Wyatt [30] performed better than scoring
using the Jacobian determinant on the brain tumor detection task, while on the cell dataset, both
approaches performed the same.

We show qualitative results on the cell dataset in Figure 3. In row 3, we see that Lsym detected
annotated areas of topological change (contoured in red), but is more certain at detecting changes in
areas with high intensity difference. In many cases, the model assigns a likelihood of topological
changes to areas that have not been annotated in the dataset, such as the merging cell boundary in
column 2 or many small changes in the cell interior in column 4.
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Figure 4: Topological differences detected by our method, brain dataset. Structurally normal brain I

in column 1, brain with tumor J in column 2. Heatmaps of the likelihood of topological differences
detected with Lsym in columns 3, 4 . Likelihood of topological differences caused by the structural
anomaly filtered by Eq. 7 in columns 5, 6. Contour of the ground truth brain tumor in red. Heatmaps
are overlayed on image J to ease comparison.
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Figure 5: Left: Heatmap of average location of topological differences among the control group,
predicted by the semantic model, averaged with EI,K [Lsym(I|K) ◦ ΦI→Atlas] using a brain atlas as
reference image. Center: We use morphological operations to split the atlas into cortical surface
(blue), ventricles (orange) and sub-cortical structures (green). Right: Likelihood of topological
differences occurring in each region. Boxplot with median, quartiles, deciles.
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Qualitative results on the brain data are presented in Figure 4. When looking at columns 3 and 4, we
see that Lsym detected notable areas with high changes in topology compared to the reference image
I. This includes the ventricles (rows 2,3), the cortical areas with the sulci (all rows) as well as tumor
areas (rows 1,3,5). There was a clear difference in the behaviour between semantic loss and MSE as
the semantic loss highlights broader regions of the surface. When comparing the outlier-detection
measure Q(J) in columns 5 and 6, we can see that our approach filtered most of the ventricles and
sulci leaving an area around most tumor regions. Notable exceptions are rows 2 and 4, where the
tumor area was not highlighted, as well as row 1 where only part of the tumor was detected.

In Figure 5, we show the average topological change score on healthy subjects. We see on the brain
image and the box plot, that the cortical surfaces and ventricles get assigned higher scores than the
subcortical structures.

5 Discussion and conclusion

In this work, we have introduced a novel approach for the detection of topological changes. We
evaluated our approach qualitatively and compared it quantitatively to previous approaches using
both a novel dataset with purpose-made annotations and on an unsupervised segmentation proxy task.
On both tasks, our approach performed best among the unsupervised methods, but could not reach
the performance of the supervised method.

An unsupervised method is useful in practice, as annotations of topological changes are rarely
available. While our results are not pixel exact, they indicate where a registration algorithm must
be used more carefully to obtain a valid registration. The results on the cell dataset align well with
the annotations, and many of the false positives appear to be caused by incomplete annotation of
the data. This is also reflected in the reported ROC-curves, which show that our model outperforms
the supervised segmentation model at false positive rates larger than 0.5. The results obtained on
the tumor segmentation proxy task are reinforced by the distribution of scores obtained on healthy
patients in different parts of the brain. The high likelihood of topological differences in ventricles
found agrees with previous work [36] and the higher scores in cortical surfaces reflect the fact, that
the sulci of the cortical surface exhibit high variability between subjects [7], which was previously
difficult to quantify.

Our results also show that using a semantic loss function is advantageous compared to the MSE in
this task, as all MSE based methods performed worse than our approach using the semantic loss.
This is likely because the contrast between some anatomical areas is quite small and thus missed by
the MSE. In contrast, the semantic loss incorporates more texture information and thus is capable of
differentiating between areas of similar intensity but different semantics. However, particularly on
the brain example, even the semantic approach misses tumors close to the cortex. We hypothesize,
that this is in part caused by the similar appearance of tumors and grey matter, in part by the semantic
model not being trained on tumors, and in part due to the cortical area containing high topological
variation among the control group as well.

On the brain dataset, our unsupervised results for the method by An and Cho [1] are in line with
previously reported results on a comparable dataset [50]. However, our supervised results are not
comparable to the results published for the BRATS challenge, as we selected a subset of data for
training and only used structural MRI images, discarding the other modalities. On the cell dataset, no
other work on topology change or outlier detection is available.

Our study has several limitations. We only investigate registrations in 2D and topological differences
might vanish if the whole 3D volume is considered. The transformations obtained by our unsupervised
method differ from strongly regularised methods, as the hyperparameter-less learned prior under-
regularises in order to maximize the likelihood of a topological match during training. Conversely,
the poor performance of the Jacobian determinant might be due to a strong regularisation for good
performance in image registration as we used the hyperparameters as found in [8].

In conclusion, our approach serves as the first step for unsupervised annotation of topological changes
in image registration. Our approach is fully unsupervised and hyperparameter-free, making it a
prospective building block in an end-to-end topology-aware image registration model.
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