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ABSTRACT

Over the past four years, models based on Neural Ordinary Differential Equations
have become state of the art in the forecasting of irregularly sampled time series.
Describing the data-generating process as a dynamical system in continuous time
allows predictions at arbitrary time points. However, the numerical integration of
Neural ODEs typically comes with a high computational burden or may even fail
completely. We propose a novel Neural ODE model that embeds the observations
into a latent space with dynamics governed by a linear ODE. Consequently, we do
not require any specialized numerical integrator but only an implementation of the
matrix exponential readily available in many numerical linear algebra libraries. We
also introduce a novel state update component inspired by the classical Kalman
filter, which, to our knowledge, makes our model the first Neural ODE variant to
explicitly satisfy a specific self-consistency property. It allows forecasting irreg-
ularly sampled time series with missing values and comes with some numerical
stability guarantees. We evaluate the performance on medical and climate bench-
mark datasets, where the model outperforms the state of the art by margins up to
30%.

1 INTRODUCTION

Continuous dynamical systems described by ordinary differential equations (ODE) propagate a given
state into any time in the future. Hence ODE based models are natural candidates for the task of
forecasting irregularly sampled time series. Furthermore many real world systems are well described
by ODEs. Since the seminal paper by Chen et al. (2018) Neural ODEs have become building blocks
of state of the art models for irregularly sampled time series forecasting. To predict a future state an
ODE model would need an estimation of the present state and then propagate the state by solving
an initial value problem. The present work proposes a model that introduces novel ideas both with
respect to the state estimation and to the propagation. One serious issue with Neural ODEs is the
cost and possible failure of the numerical integration. There exist many numerical schemes for this
purpose, but in any case the cost of the integration for a required accuracy depends on the analytical
properties of the right hand side and can become arbitrarily large or lead to failure. This is a serious
problem for Neural ODEs, which has been tackled by different types of regularizations (Finlay et al.,
2020; Ghosh et al., 2020; Kelly et al., 2020).

We propose a model where the observations are nonlinearly mapped into a latent space and a linear
ODE with constant coefficients describes the latent dynamics. Solving the initial value problem
simplifies to taking the matrix exponential, for which efficient and stable numerical implementations
are available. According to Koopman operator theory (Brunton et al., 2022) such linear ODEs are
expressive enough to approximate nonlinear ODEs. Furthermore, such linear dynamics are well
understood and can be analyzed and modified using tools from linear algebra.

For the state estimation we propose a filter inspired by the classical Kalman filter that updates the
state given a new observation. However, it does not operate in the linear latent domain, but in the
observation domain, and it is not probabilistic. The filter is designed to deal in a natural way with
missing values and satisfies a self-consistency condition, such that the model state will only change
at an observation if it differs from the model prediction.

To the best of our knowledge our model is the first model that gives provable guarantees of forward
stability at intialization.
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We evaluate the model on three benchmark datasets for forecasting irregularly sampled time series
with missing values (USHCN, MIMIC-III, MIMIC-IV) and improve on the existing models by a
considerable margin in all cases.

The contributions of this work are as follows:

(1) We provide a joint view of many ODE-based and related models as latent state space models
with four different model components system, filter, encoder and decoder, which by design
can handle irregular time series data.

(2) We formulate and argue five different desiderata for the properties of such models, esp.
having fast and simple system components / ODE integrators, self-consistency, forward
stability and handling missing values.

(3) We propose a model consisting of a linear ODE system and a Kalman-like filter, LinODEnet,
and show that it guarantees to fulfil these desidered properties.

(4) In experiments on forecasting three different irregular time series datasets with missing
values we show that LinODEnet reduces the error by up to 30% over the previous state of
the art.

2 RELATED WORK

In the last decades a variety of different forecasting models with principally different architectures
such as recurrent neural networks (RNNs), attention based models, convolution based models, varia-
tional autoencoders and generative adversarial networks and others have emerged (see appendix D
and Benidis et al. (2020) for a recent survey). Most closely related to our work are models based on
ODEs, models using Kalman Filtering, Koopman theory and Neural Flows.

ODE based models. A neural ODE is a model that is specified as the solution to an ordinary
differential equation of the form

d

dt
x(t) = f(t, x(t), θ)

where f is a neural network parametrized by θ. Neural ODEs were pioneered by Chen et al.
(2018), who derived a continuous time analogue of the backpropagation algorithm that allows for
effective training of such models. The GRU-D model (Che et al., 2018) could be considered an
even earlier version of a neural ODE since it coincides with linear differential equation of the form
d
dtx(t) = diag(−λ1, . . . ,−λm)x(t).

Since then there has been tremendous development with a large amount of offspring models. ODE-
RNNs and Latent Ordinary Differential Equations (Latent-ODE) were introduced by Rubanova et al.
(2019), combining the dynamics of an ODE with an RNN to perform a state space update at the
point of a new observation. GRU-ODE-Bayes (De Brouwer et al., 2019) is an improvement over
the standard ODE-RNN that parametrizes the ODE component as a continuous time analogue of a
GRU, increasing stability. Neural Controlled Differential Equations (NCDE; Kidger et al. (2020))
use a spline smoothing technique in order to create a continuous reconstruction of the time series
before feeding it to the ODE. This model however was only used for classification tasks. Neural ODE
Processes (NDPs; Norcliffe et al. (2020)) extend the framework of Neural Processes (NPs; Garnelo
et al. (2018b;a)) to the class of Neural ODE models. Similarly, Neural Jump Stochastic Differential
Equations (NJSDE; Jia & Benson (2019)) combine Neural ODEs with Stochastic Processes. Finally,
the recent Linear State-Space Layers (LSSL; Gu et al. (2021)) interpret both RNNs and convolutions
as special cases of linear state space layers, and construct deep LSSLs by stacking multiple such
layers.

Kalman Filtering. The Kalman Filter (Kalman, 1960) provides optimal incremental state updates
for linear differential equations with Gaussian noise. While the original version requires complete
observations, a modified Kalman filter copes with missing values (Cipra & Romera, 1997), which is
one of the motivations for our filter design.

The Normalizing Kalman Filter (de Bézenac et al., 2020) is closest in spirit to our model, it proposes
a discrete time linear Gaussian model and an invertible observation map given by a normalizing flow.
As ours the model can cope with missing values, but it is not apt for irregularly sampled time series.
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KalmanNet (Revach et al., 2022) is another model for regularly sampled time series that uses an
RNN to calculate the Kalman gain. It is meant to present a robust alternative to other approaches
of nonlinear Kalman filtering (extended Kalman filter) and not a general times series forecasting
algorithm. Some other work on Kalman filtering by neural networks (Wilson & Finkel, 2009; Millidge
et al., 2021) either addresses very special cases or are related to the modelling of the brain and rather
far away from our work.

Koopman Theory. A Koopman Operator (Koopman, 1931) is a linear operator on a space of
time dependent functions that describes the propagation of observations of a dynamical system
through time. While these function spaces are infinite dimensional, in many cases there exist useful
finite dimensional Koopman operator approximations that can be created by various methods, that
have been summarized in a recent review (Brunton et al., 2022). Such Koopman representations
have been combined with Kalman filters for the linear operator (Netto & Mili, 2018), but the
linear representation is obtained by a classical method which does not work for irregularly sampled
observations with missing values. Some works use neural networks to learn Koopman representations
(cf. section 5.4 of Brunton et al. (2022)), but have largely different architectures and are not applied to
irregularly sampled time series with missing values. The model we present can be seen as learning an
approximate Koopman operator, but it is outside the scope of this work to exploit this representation
along the lines of Koopman theory.

Neural Flows. Neural Flows (Biloš et al., 2021) are another related model class. The authors propose
replacing ODEs by invertible time dependent diffeomorphisms and use different parametrizations for
such diffeomorphisms (ResNet, GRU, coupling flow). This is similar to and in special cases would
amount to learning the solution of a differential equation instead of learning the right hand side. They
mention also the parametrization of the solutions by a matrix exponential, but then opted for other
parametrizations.

3 PROBLEM FORMULATION

A time series dataset D is a set of time series instances, sequences (ti, xobs
ti ) ∈ (R ∪ O)∗ encoding

observations xobs
ti at time ti. The observation space O usually is just composed of M channels:

O := RM . If observations in some channels can be missing, we write O := (R ∪ {NaN})M and
dinstinguish it from the space X := RM of complete observations.

The time series forecasting problem is, given a time series dataset D from an unknown distribution
q, a loss ℓ : O∗ ×X ∗ → R on observations, and a function split : R∗ → (R∗ × R∗)∗ that splits the
time points of a time series into (possibly multiple) pairs of two subsequences, pasts p and futures s,
to find a model x̂ : R∗ × (R ×O)∗ → X ∗ that for given future time points and past observations,
predicts future observations, minimizing the expected loss

E(t,xobs)∼q

[ 1

|split(t)|
∑

(p,s)∈split(t)

ℓ
(
xobs
s , x̂(s, (p, xobs

p ))
)]

A simple index-based split function just outputs all possible splits into a past of P time points and
F future time points, and the loss usually is just an instance-wise loss, e.g., the instance-wise mean
squared error:

splitindex(t;P, F ) :=
((

(ti−P+1, . . . , ti), (ti+1, . . . , ti+F )
)
| i ∈ P :|t| − F

)
, P, F ∈ N

ℓMSE(xobs, x̂) :=
1

|xobs|

|xobs|∑
i=1

||diag(not-missing(xobs
i ))(xobs

i − x̂i)||22

where not-missing(xobs
i ) yields the indicator vector for xobs

i,m ̸= NaN.

4 LATENT STATE SPACE MODELS

First, consider a general class of latent state space models that follow the schema from Algorithm
1. That is, the model has a state estimate x̂t which is encoded into a latent state ẑt and propagated
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forward in time by a system component. For each observation, latent state is decoded and updated
with a filter component.

Filter Filter Filter

EncoderDecoder Encoder

time

EncoderDecoder

System System

Decoderlatent space 
──────── 
data space

Figure 1: Latent State Space Model

Algorithm 1 Latent State Space Model.

Input: Query times (sj)j=1...m,
Observations D = (ti, x

obs
ti )i=1:n

Parameters: Initial latent state c.

D̃ ← sort
(
D ∪ {(sj ,NaN)}j=1:m

)
t0 ← t1; zt0 ← c

for ti, xobs
ti in D̃ do

∆ti ← tt − ti−1

ẑti ← System(∆ti, z
′
ti−1

)

x̂ti ← Decoder(ẑti)
x̂′ti ← Filter(x̂ti , xobs

ti )
ẑ′ti ← Encoder(x̂′ti)

end for
Return: Estimated states (x̂′ti)i=1:n.

This setup is indeed a very general model class, Table 1 shows how many current state space models
can be described by this schema.

Neural ODEs, introduced in 2018 by Chen et al., use a ordinary differential equation to represent the
system component. The vector field which describes the right hand side of the ODE is given by a
neural network f :

ż = f(t, z(t)), z(t0) = z0 =⇒ z(t) = odeint(f, z0, [t0, t]) (1)

Crucially, they introduced a continuous version of backpropagation through time that allows to
compute gradients for a Neural ODE model with respect to a loss function by solving a so called
adjoint equation backwards in time. This allows one to compute gradients without implementing a
differentiable ODE-integrator and without back-propagating through the integrator steps.

Table 1: Comparison of Continuous Time Latent State Space Models

Model System Component Filter Component

GRU-D ż(t) = − diag(max(0, wi))⊙ z(t)
x′t ← mtx

obs
t + (1−mt)xt

z′t ← GRUCell(x′t, zt)

ODE-RNN ż(t) = NN(t, z(t)) z′t ← RNNCell(xobs
t , zt)

GRU-ODE-Bayes ż(t) = GRUCell(0, z(t))− z(t) z′t ← GRUCell(f(xobs
t ,mt, zt), zt)

NCDE ż(t) = g(z(t))ṡ(t) s(t)← CubicSpline(t | (ti, xi)i=1...n)

Neural Flow F (∆t, x) = x+ φ(∆t)g(∆t, x) Bayesian Filtering

LinODEnet (ours) ż(t) = Az(t) x′t = KalmanCell(xobs
t , xt)

= xt − f(mt ⊙ (xt − xobs
t ))

By design, latent state space models can handle irregularly sampled time series. We formulate five
further principled desiderata and argue for them in the following:

D1. fast (and simple) integrators: solving the ODE system for propagating the latent state should
be fast (and simple).

D2. self-consistency: the model does not change its forecast when observing its own predictions.

D3. forward stability: at initialization the model maps data with zero mean and unit variance to
outputs with zero mean and unit variance for arbitrarily long sequences.

D4. can handle missing values: the model can handle missing values in the observations.
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D5. observed channels can influence all other channels: observed values in one channel can
influence the estimation of unobserved states of all channels.

D1. Fast (and simple) integrators. Neural ODE models only faithfully represent the solution to an
ODE when the numerical integrators use sufficiently small adaptive step-sizes (Ott et al., 2020). Thus,
fitting generic Neural ODEs is a challenging task since during training the ODE can become stiff,
which forces adaptive step-size integrators to take minuscule time steps. Towards this end, several
remedies are available: Ghosh et al. (2020) and Finlay et al. (2020) propose temporal regularization
terms, and many models implicitly address this issue by choosing a special form of vector field.
An overview is in Table 1. For example, GRU-ODE-Bayes uses a GRUCell with a tanh activation
function that induces global Lipschitz continuity, which increases stability.

D2. Self consistency. All of the proposed models use different filter mechanisms to update the state
estimate when new observations are recorded. However, in our analysis we noted that a classical
Kalman Filter (Kalman, 1960) satisfies a self-consistency property that none of the published Neural
ODE models seems to incorporate.

We say a point-forecasting model is self-consistent, if and only if the model does not change its
forecast when observing its own predictions. More specifically, given a forecasting model ŷ(t | D),
where D = {(ti, xi) | i = 1 . . . n} is the set of observations, then ŷ is self-consistent if and only if
for all finite sets of generated predictions D̂ = {(sj , ŷ(sj)) | j = 1 . . .m}

ŷ(t | D) = ŷ(t | D ∪ D̂) (2)

For a probabilistic models p(y(t) | D) we similarly define self-consistency as the condition

Eŷ∼p(y(t)|D)[ŷ] = Eŷ∼p(y(t)|D∪D̂)[ŷ] (3)

Note that in this case it is expected that Varŷ∼p(y(t)|D∪D̂)[ŷ] should decrease with the size of D̂.

D3. Model stability. Model stability is crucial in order to allow training over long sequences without
issues of divergence.
Definition 1 (forward stability). We say a function f : Rn → Rm is forward stable, if and only if it
maps data with zero mean and unit variance to outputs with zero mean and unit variance.

∀i :
[
Ex∼p[xi]
Vx∼p[xi]

]
=

[
0
1

]
=⇒ ∀j :

[
Ex∼p[f(x)j ]
Vx∼p[f(x)j ]

]
=

[
0
1

]
(4)

Similarly, one can define backward stability as the condition that the gradients, or more precisely the
vector-Jacobian product maps data with zero mean and unit variance to gradients with zero mean
and unit variance. Typically, the random distributions of network parameters are chosen in a way to
ensure either forward- or backward stability at initialization or a compromise between the two at as
in general simultaneous forward and backward stability is impossible He et al. (2015). For example,
Attention layers (Vaswani et al., 2017) introduce a scaling factor of 1/

√
d and Dropout (Srivastava

et al., 2014) multiplies the input by the reciprocal of the droprate.

However, recently a new approach has emerged that achieves both in a ResNet architecture, by
simply introducing an additional single scalar parameter initialized with 0 that masks the non-
linearity, making the model look like an identity map. We will refer to this as the ReZero-technique
(Bachlechner et al., 2021), although previous works also showed similar ideas Hayou et al. (2021);
Skorski et al. (2021); De & Smith (2020); Zhang et al. (2018); Balduzzi et al. (2017); Shang et al.
(2017)

ReZero: x← x+ αf(x) α: learnable scalar initialized with 0 (5)

In particular recent research suggests that this techniques allows one to refrain from using batch-
normalization layers (Ioffe & Szegedy, 2015). We use variants of the ReZero-technique throughout
all model components.

D4. Can handle missing values. The model can handle missing values. For latent state space models
the filter needs to be able to do so.

D5. Observed channels can influence all other channels. This is crucial as often channels are
correlated with each other, hence observing one channel can provide information about all other
channels.
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5 LATENT LINEAR ODES WITH NEURAL KALMAN FILTERING (LINODENET)

We propose two specific innovations for ODE-based latent state space models: (i) to use a linear
ODE for the system component and (ii) to use a Kalman like filter component, such that the overall
model fulfills the desiderata D1 to D5, and call it LinODEnet. LinODEnet is structured as shown in
Algorithm 1. We describe its components in turn.

5.1 SYSTEM COMPONENT

To avoid having to use complicated numerical integrators, LinODEnet uses a simple homogeneous
linear ODE with constant coefficients. This has the huge advantage that the solution can be expressed
in closed form in terms of the matrix exponential.

Definition 2 (Linear ODE). If the vector field is an affine function of the state vector the ODE is
called linear, i.e. if and only if it is of the form:

ẋ(t) = A(t) · x(t) + b(t) x(t0) = x0 (6)

for some matrix valued function A : R→ Rn×n and vector-valued function b : R→ Rn. If A and b
are constant, we call it a linear ODE with constant coefficients. If b = 0, we say it is homogeneous.

Lemma 1 (Solution of Linear ODE). The solution of a homogeneous linear ordinary differential
with constant coefficients can be expressed in term of the matrix exponential

ẋ(t) = Ax(t) ⇐⇒ x(t+∆t) = eA∆tx(t) (7)

Proof. See for instance Teschl (2012).

In particular, implementations of the matrix exponential are readily available in many popular
numerical libraries such as SCIPY (Virtanen et al., 2020), TENSORFLOW (Abadi et al., 2016) or
PYTORCH (Paszke et al., 2019). Typical implementations such as scaling and squaring approaches
by Higham (2005) and Al-Mohy & Higham (2009) offer high performance and tight error bounds,
establishing desideratum D1.

A second advantage of the linear system is the possibility to parametrize or regularize the kernel
matrix in order to achieve certain properties. We highlight the initialization with a skew-symmetric
matrix as of particular importance, and we use it as the default initialization in all experiments.

Lemma 2. If K is skew-symmetric, then eK is orthogonal and h(t) = eK·tx is forward stable for
all t and x ∼ N (0n, In).

Algorithm 2 LinODECell

Input: scalar time delta ∆t
latent state zt
Parameters: matrix K
zero-initialized scalar ε
parametrization ψ

zt+∆t ← eε·ψ(K)·∆t · zt
Return: latent state zt+∆t

Motivated by these properties, we define the LinODECell (Alg
2). Note that crucially, in comparison to the GRU-D model, a
general latent linear ODE model allows for imaginary eigenval-
ues of the system matrix, corresponding to oscillatory system
behaviour. In the GRU-D model, the authors intentionally re-
stricted the model to a non-positive, real diagonal matrix.

5.2 FILTER COMPONENT

Any state space model must have a way of incorporating new
measurements as they come in.

Definition 3. We call a function of the form f : O × X → X , (xobs, x̂) 7→ x̂′ a filter. If the
observation spaceO contains NaN values we say it allows for missing observations. If the state space
X is equal to the non-missing part of the observation space O, we call it autoregressive. Finally, we
say a filter cross-correlates channels, if even the observation of just a single channel can potentially
update the state estimate in all channels.

One of the big achievements of classical filtering theory is the Kalman Filter (Kalman, 1960), which
is the provably optimal state update in terms of squared error loss when the system consisting of
normally distributed variables evolving according to a linear dynamical system.
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Assuming the state is distributed as x ∼ N (µt, Σt), at time t, and evolves according to a linear
dynamical system ẋt = Atxt + wt, then since the family of Normal distributions are closed under
linear transformations, the state is normally distributed for all times t. Given a noisy measurement
yt = Htxt + vt with Rt = E[vtv

⊤
t ], which is only partially observed according to a mask mt, then

the optimal state update is (Cipra & Romera, 1997)

µ′
t = µt − ΣtHtΠt(HtΣtH

⊤
t +Rt)

−1Πt(Htµt − ỹt) (8a)

Σ′
t = Σt − ΣtHtΠt(HtΣtH

⊤
t +Rt)

−1ΠtHtΣt (8b)

Where Πt = diag(mt), and ỹt is yt where the missing values were replaced with arbitrary values.
Inspired by this formula, we introduce the linear and non-linear KalmanCell which can be used as
drop-in replacements for regular RNN-, GRU- or LSTMCells.

linear KalmanCell: x̂′t ← x̂t − αB̃H⊤ΠtÃΠt(Hx̂t − xobs
t ) (9a)

non-linear KalmanCell: x̂′t ← x̂t − εϕ(BH⊤ΠtAΠt(Hx̂t − xobs
t )) (9b)

Algorithm 3 Non-Linear KalmanCell

Input: Current State estimate x̂t ∈ Rn,
observed datapoint xobs

t ∈ Rm
Parameters: Learnable matrices A, B, H
zero-initialized scalar ε, neural network ϕ.
Options: If autoregressive, m = n and
H = In.

Πt ← diag(not-missing(xobs
t ))

x̂′t ← x̂t− εϕ(BH⊤ΠtAΠt(Hx̂t−xobs
t ))

Return: Updated state estimate x̂′t.

In both cases A,B,H are learnable weight matrices.
In the linear case we introduce a special parametriza-
tions Ã = I+εAA and B̃ = I+εBB. Here ε, εA, εB
are learnable scalars, that are initialized with zero,
which ensures forward stability. ϕ is an arbitrary neu-
ral network with ϕ(0) = 0. By design the Kalman-
Cell can handle NaN values, for implementation de-
tails see 4 and 5, establishing D4.
Lemma 3 (KalmanCell at initialization). At initial-
ization, the non-linear KalmanCell is the identity
function. The linear KalmanCell’s behaviour is de-
pendent on the choice of α: if α = 1, it always
updates the state to the last observed value, whereas if α = 0 is carries the first observed value
through. The choice α = 1

2 corresponds to the classical Kalman Filter (cf. Appendix B.2)

Note that (9) is different from both Szirtes et al. (2005), Wilson & Finkel (2009), and the recent
pre-prints Millidge et al. (2021) and Revach et al. (2022). Moreover, since the KalmanCells do, in
contrast to the GRU-D model, use full and not diagonal matrices, D5 is satisfied.

Moreover it is possible to stack multiple filters (fi)i=1...k.

Stacked Filter: x̂
(i+1)
t = fi(x

obs
t , x̂

(i)
t ) for i=1. . .k (10)

With regards to desideratum D2, there is a strong relationship to the setup of the filter component.

Definition 4. We say an autoregressive filter F : X̃ × X → X , (xobs, x̂) 7→ x̂′ is idempotent, if and
only if it returns the original state estimate as-is whenever all non-missing observations agree with it.

xobs
i = x̂i∀i : xobs

i ̸= NaN =⇒ F (xobs, x̂) = x̂ (11)

Lemma 4. If a latent state space model (Alg. 1) is self-consistent, then its filter must be idempotent.

Proof. It this wasn’t the case, then ŷ(t | D) ̸= ŷ(t | D ∪ {t, ŷ(t | D)}).

5.3 OVERALL MODEL PROPERTIES

Proposition 1. If in Algorithm 1 the system component represents a dynamical system, and the
filter component is idempotent, and the encoder is left-inverse to the decoder, then the model is
self-consistent.
Corollary 1. LinODEnet is self-consistent at initialization. If the encoder is left-inverse to the
decoder it is self-consistent throughout training, establishing desideratum D3.

The proofs can be found in Appendix B. Table 2 summaries the properties of git adLinODEnet in
comparison to other models.
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Table 2: Comparison of foreasting model features (†: transformer model)

model TFT† NKF GRU-D GRU-ODE-Bayes Neural Flow LinODEnet

missing-values ✓ ✓ ✓ ✓ ✓ ✓
continuous time ✓ ✗ ✓ ✓ ✓ ✓
global existence <NA> ✓ ✓ ✗ ✓ ✓
self-consistency ✗ ✗ ✗ ✗ ✗ ✓
forward stability ✗ ✗ ✗ ✗ ✗ ✓
coupled channels <NA> ✗ ✗ ✓ ✓ ✓

Remark 1 (LinODEnet with hidden state). Since LinODEnet can parse NaN values, we consider a
small modification consisting of concatenating a number of dummy channels, completely filled with
NaN-values to all input data. This allows the model to have a working memory in case that the state
space does not capture the full dynamics.

6 EMPIRICAL EVALUATION

6.1 EXPERIMENTS ON IRREGULAR TIME SERIES

While there are many publications dealing with irregular time series for classifications or imputation
tasks, there are few that approach with irregular sampled time series forecasting natively. We identify
GRU-ODE-Bayes (De Brouwer et al., 2019) and Neural Flow (Biloš et al., 2021).

Irregular time series occur naturally whenever collections of sensor devices sample data independently,
sometimes as vastly different rates. This is for example the case with clinical records such as the
MIMIC-III (Johnson et al., 2016) and MIMIC-IV (Johnson et al., 2021) datasets or in weather
observations such as the USHCN dataset (Menne et al., 2015). We use the same data-preprocessing
and evaluation protocol as our baselines De Brouwer et al. (2019) and Biloš et al. (2021). The task is
to predict the next 3 samples using an observation horizon of 36 hours.

Table 3: Average MSE and standard deviation across 5 cross-validation folds.
†: results reported by De Brouwer et al. (2019) ‡: results reported by Biloš et al. (2021)

Model USHCN MIMIC-III MIMIC-IV

NeuralODE-VAE† 0.96 ± 0.11 0.89 ± 0.01 –
NeuralODE-VAE-Mask† 0.83 ± 0.10 0.89 ± 0.01 –
Sequential VAE† 0.83 ± 0.07 0.92 ± 0.09 –
GRU-Simple† 0.75 ± 0.12 0.82 ± 0.05 –
GRU-D† 0.53 ± 0.06 0.79 ± 0.06 –
T-LSTM† 0.59 ± 0.11 0.62 ± 0.05 –
GRU-ODE-Bayes† 0.43 ± 0.07 0.48 ± 0.01 –
Neural Flow (GRU)‡ – 0.49 ± 0.004 0.364 ±0.008

LinODEnet w/ hidden 0.29 ± 0.06 (↑33%) 0.45 ± 0.02 (↑5%) 0.274 ± 0.002 (↑25%)
LinODEnet w/o hidden 0.31 ± 0.05 (↑31%) 0.45 ± 0.02 (↑5%) 0.274 ± 0.002 (↑25%)

Table 3 shows that LinODEnet outperforms all baselines by significant margin. We also observe that
in the USHCN dataset, adding hidden channels (Remark 1) gives an additional lift. We suspect that
this is due to the numbers of channels being very small (5) for this dataset.

Training Details. We use the ADAMW-optimizer (Loshchilov & Hutter, 2018), a variant of the
popular ADAM-optimizer Kingma & Ba (2015) that provides a correction when using weight decay.
For the filter we use a stack of a linear KalmanCell and two nonlinear KalmanCells. The full
hyperparameter selection is in Appendix E.2.
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Reproducibility. We created two pip-installable python packages: tsdmprovides utilities for
dataset acquisition, pre-processing and a library of encoders. A reference implementation of the
model in PYTORCH is available as the package linodenet.The experimental code is in a separate
repository.

6.2 OBSERVATIONS
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Figure 2

During training, we consistently observed the emergence of corre-
lation between the rows and columns of the system-components
kernel-matrix (Figure 4). This indicates that the matrix get close
to a low-rank matrix. Since the rank itself cannot be computed in
a numerically stable manner, we considered a smoothed relaxation
known as the effective rank (Roy & Vetterli, 2007).
Definition 5. The effective rank of a matrix is defined as the expo-
nential of the entropy erank(A) = eH(p), where p = σ/∥σ∥1 is the
discrete probability distribution given by normalizing the singular
values σ of A.

Figure 3 shows the evolution of the spectrum of the kernel matrix
for a sample run on the USHCN dataset. One can see that the
eigenvalues stay close to being purely imaginary. We speculate that this is due to the main dynamics
are essentially periodic in nature, as weather patterns repeat over time

(a) epoch 0 (b) epoch 10 (c) epoch 100

Figure 3: Evolution of the kernel spectrum.

(a) epoch 0 (b) epoch 10 (c) epoch 100

Figure 4: Evolution of the kernel values.

7 CONCLUSIONS

We propose a novel forecasting model for irregularly sampled time series with missing values, that
maps the observation space to latent space with constant linear ODE dynamics and performs state
estimations by an update rule inspired by the Kalman filter. For solving the linear ODE we do not need
numerical integration but just matrix exponentials, for which stable and efficient implementations
exist. Forward stability of the model at intialization is guaranteed. The model is evaluated and most
of the existing forecasting benchmarks for irregularly sampled time series and improves on existing
models by a considerable margin. The model opens a way for interesting future work: It naturally
allows for future covariates in the forecasting problem. The linear representation of the dynamics
allows modification and analysis by means of linear algebra.
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Gábor Szirtes, Barnabás Póczos, and András Lőrincz. Neural Kalman filter. Neurocomputing, 65–66:
349–355, June 2005. ISSN 0925-2312. doi: 10.1016/j.neucom.2004.10.028.

Gerald Teschl. Ordinary Differential Equations and Dynamical Systems. American Mathematical
Soc., August 2012. ISBN 978-0-8218-8328-0.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is All you Need. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
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