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Abstract

We provide quantitative bounds measuring the L2 difference in function space be-
tween the trajectory of a finite-width network trained on finitely many samples from
the idealized kernel dynamics of infinite width and infinite data. An implication of
the bounds is that the network is biased to learn the top eigenfunctions of the Neural
Tangent Kernel not just on the training set but over the entire input space. This bias
depends on the model architecture and input distribution alone and thus does not
depend on the target function which does not need to be in the RKHS of the kernel.
The result is valid for deep architectures with fully connected, convolutional, and
residual layers. Furthermore the width does not need to grow polynomially with
the number of samples in order to obtain high probability bounds up to a stopping
time. The proof exploits the low-effective-rank property of the Fisher Information
Matrix at initialization, which implies a low effective dimension of the model (far
smaller than the number of parameters). We conclude that local capacity control
from the low effective rank of the Fisher Information Matrix is still underexplored
theoretically.

1 Introduction

Training heavily overparameterized networks via gradient based optimization has become standard
operating procedure in deep learning. Overparameterized networks are able to interpolate arbitrary
labels both in principle and in practice (Zhang et al., 2017), rendering classical PAC learning theory
insufficient to explain the generalization of networks within this modality. The high capacity of
modern networks ensures that there are both good and bad empirical risk minimizers. Miraculously
the network preferentially chooses the good solutions and sidesteps those that are unfavorable, posing
a challenge and opportunity to today’s researchers.

The success of overparameterized networks has prompted the theoretical community to search for
more subtle forms of capacity control (Neyshabur et al., 2015, 2017; Gunasekar et al., 2017). The
contemporary point-of-view is that the data distribution, model parameterization, and optimization
algorithm are all relevant in limiting complexity. This has led to a variety of efforts to characterize
the properties that networks and related models are biased towards when optimized via gradient
descent. Examples include max-margin bias for classification problems (Soudry et al., 2018; Ji &
Telgarsky, 2019; Nacson et al., 2019; Gunasekar et al., 2018), minimum nuclear norm bias for matrix
factorization (Gunasekar et al., 2017; Li et al., 2018; Gunasekar et al., 2018), and minimum RKHS
norm bias in the kernel regime (Zhang et al., 2020).
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Empirically it is known that neural networks tend to learn low Fourier frequencies first and add
higher frequencies only later in training (Rahaman et al., 2019; Xu et al., 2019; Yang et al., 2022),
the phenomenon that has been titled “Spectral Bias" or the “Frequency Principle". Theoretical
justifications of this have been proposed by studying networks in the kernel regime. For shallow
univariate ReLU networks Basri et al. (2019, 2020) demonstrate that the dominant eigenfunctions of
the Neural Tangent Kernel (NTK) (Jacot et al., 2018) correspond to the low Fourier frequencies for
the uniform distribution and more generally to smoother components for nonuniform distributions.
This echos the results by Williams et al. (2019) and Jin & Montúfar (2021) that show that univariate
ReLU networks in the kernel regime are biased towards smooth interpolants. Abstracting away from
Fourier frequencies, “Spectral Bias" can be interpreted more broadly to mean bias towards learning
the top eigenfunctions of the Neural Tangent Kernel. By looking at empirical approximations to the
eigenfunctions, spectral bias was demonstrated to hold on the training set by Arora et al. (2019a),
Basri et al. (2020), and Cao et al. (2021). A recent work by Bowman & Montúfar (2022) was able
to demonstrate that spectral bias holds off the training set for shallow feedforward networks when
the network is underparameterized. In the present work we exploit the low-effective-rank property
of the Fisher Information Matrix and are able to demonstrate that spectral bias holds outside the
training set without the underparameterization requirement. In fact the number of samples can be
on the same order as the width of the network. Furthermore, by leveraging a recent work by Liu
et al. (2020b) bounding the Hessian of wide networks, our result permits deep networks with fully
connected, convolutional, and residual layers. Consequently we are able to conclude that spectral
bias holds for more realistic sample complexities and diverse architectures.

1.1 Our Contributions
• We provide quantitative bounds measuring the L2 difference in function space between the trajectory

of a finite-width network trained on finitely many samples from the idealized kernel dynamics of
infinite width and infinite data (see Theorem 3.5 and Corollary 3.7).

• As an implication of these bounds, eigenfunctions of the NTK integral operator (not just their
empirical approximations) are learned at rates corresponding to their eigenvalues (see Corollary 3.7
and Observation 3.8).

• We demonstrate that the network will inherit the bias of the kernel at the beginning of training even
when the width only grows linearly with the number of samples (see Observation 3.9).

1.2 Related Work

NTK Convergence Results The NTK was introduced by Jacot et al. (2018) while almost concur-
rently Du et al. (2019b) used it implicitly to prove a global convergence guarantee for gradient descent
applied to a shallow ReLU network. These two highly charismatic works led to a flurry of subsequent
works, of which we can only hope to provide a partial list. Global convergence for arbitrary labels
was addressed in a series of works (Du et al., 2019b,a; Oymak & Soltanolkotabi, 2020; Allen-Zhu
et al., 2019; Nguyen & Mondelli, 2020; Nguyen, 2021; Zou et al., 2020; Zou & Gu, 2019). For
arbitrary labels to our knowledge all works require the network width to either grow polynomially
with the number of samples n or the inverse desired accuracy ✏�1. If one assumes the target function
aligns with the NTK model, for shallow networks this can be reduced to polylogarithmic width for
the logistic loss (Ji & Telgarsky, 2020) or linear width for the squared loss (E et al., 2020; Su & Yang,
2019; Bowman & Montúfar, 2022).

Spectrum of the NTK/Hessian and Generalization The fact that the NTK tends to have a small
number of large outlier eigenvalues has been observed in many works (e.g. Arora et al. 2019a; Oymak
et al. 2020; Li et al. 2020). Papyan (2020) demonstrated that for classification problems the logit
gradients cluster within classes, which produces outliers in the spectra of the NTK and the Hessian
of the loss. There have been a series of works analyzing the NTK/Hessian spectrum theoretically
using random matrix theory and other tools (e.g. Karakida et al. 2021; Pennington & Worah 2018;
Pennington & Bahri 2017; Fan & Wang 2020; Yang & Salman 2019). Recently the spectrum of the
NTK integral operator for ReLU networks has been shown to asymptotically follow a power law
(Velikanov & Yarotsky, 2021). Arora et al. (2019a) provided a generalization bound that is effective
when the labels align with the top eigenvectors of the NTK. Oymak et al. (2020) were able to use the
low effective rank of the NTK to obtain generalization bounds, and Li et al. (2020) used the same
property to demonstrate robustness to label noise. The low effective rank of the Hessian has also been
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incorporated into PAC-Bayes bounds, most recently by Yang et al. (2021). Interestingly, the notion
of the effective dimension they define is essentially the same quantity we use to bound the model
complexity of the network’s linearization.

NTK Eigenvector and Eigenfunction Convergence Rates Luo et al. (2020) explicitly tracked
the dynamics of the infinite width shallow model in the Fourier domain. Arora et al. (2019a)
demonstrated that when training the hidden layer of a shallow ReLU network, the residual error
on the training set projected along eigenvectors of the NTK Gram matrix decays linearly at rates
corresponding to the eigenvalues. Cao et al. (2021) proved a similar statement for training both layers,
and Basri et al. (2020) proved the analogous statement for a deep fully connected ReLU network
where the first and last layer are fixed. Our result can be viewed as the corresponding statement for
the test residual instead of the empirical residual: projections of the test residual along eigenfunctions
of the NTK integral operator are learned at rates corresponding to their eigenvalues. This was
shown in a recent work (Bowman & Montúfar, 2022) for shallow fully connected networks that are
underparameterized. By contrast our result does not require the network to be underparameterized,
and holds for deep networks with fully connected, convolutional, and residual layers. We view
our fundamental contribution as demonstrating that spectral bias holds with more realistic sample
complexities and in considerable generality with respect to model architecture.

2 Preliminaries

2.1 Notation

Vectors v 2 Rk will be column vectors by default. We will let h•, •i and k•k2 denote the Euclidean
inner product and norm. We define h•, •iRn = 1

n
h•, •i and k•kRn :=

p
h•, •iRn to be the normalized

Euclidean inner product and norm. The notation B(v, r) := {w : kw � vk2  r} will denote the
closed Euclidean ball centered at v of radius r. kAk

op
:= sup

kvk2=1 kAvk2 will denote the operator
norm for matrices. For a symmetric matrix A 2 Rk⇥k, �i(A) denotes its i-th largest eigenvalue, i.e.
�1(A) � �2(A) � · · · � �k(A). For a set A we will let |A| denote its cardinality. For a natural
number k � 1, we will let [k] := {1, . . . , k}. We will let Lp(X, ⌫) denote the Lp space over domain
X with measure ⌫. We will denote the inner product associated with L2(X, ⌫) as h•, •i⌫ . We will
use the standard big O and ⌦ notation with Õ and ⌦̃ hiding logarithmic terms.

2.2 NTK Dynamics

Let f(x; ✓) be our scalar-valued neural network model taking inputs x 2 X ⇢ Rd parameterized by
✓ 2 Rp. For now we will not specify a specific architecture. Our training data will be n input-label
pairs {(x1, y1), . . . , (xn, yn)} ⇢ Rd

⇥ R where we assume that the labels yi are generated from a
fixed scalar-valued target function f⇤, namely f⇤(xi) = yi. We will let y 2 Rn denote the label
vector y = (y1, . . . , yn)T . Let r̂(✓) 2 Rn denote the vector that measures the residual error on the
training set, whose i-th entry is r̂(✓)i := f(xi; ✓)� yi. We will optimize the squared loss

�(✓) :=
1

2n
kr̂(✓)k22 =

1

2
kr̂(✓)k2Rn

via gradient flow
@t✓t = �@✓�(✓),

which is the continuous time analog of gradient descent. For conciseness we will denote r̂(✓t) by r̂t
and let rt(x) := f(x; ✓t)� f⇤(x) denote the residual for an arbitrary input x not necessarily in the
training set. We may also write r(x; ✓) := f(x; ✓)� f⇤(x) for the residual for an arbitrary ✓.

We recall some key definitions and facts about the NTK. For a comprehensive introduction we refer
the reader to Jacot et al. (2018). We recall the definition of the analytical NTK

K1(x, x0) := E✓0⇠µ [hr✓f(x; ✓0),r✓f(x
0; ✓0)i] ,

where the expectation is taken over the parameter initialization ✓0 ⇠ µ. The kernel K1 induces an
integral operator TK1 : L2(X, ⇢) ! L2(X, ⇢)

TK1g(x) :=

Z

X

K1(x, s)g(s)d⇢(s), (1)
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where X is our input space and ⇢ is the input distribution. We assume our training inputs
x1, . . . , xn are i.i.d. samples from ⇢. More generally, for a continuous kernel K(x, x0) we define
TK : L2(X, ⇢) ! L2(X, ⇢)

TKg(x) :=

Z

X

K(x, s)g(s)d⇢(s). (2)

Returning back to K1, by Mercer’s theorem we have the decomposition

K1(x, x0) =
1X

i=1

�i�i(x)�i(x
0),

where {�i} is an orthonormal basis for L2(X, ⇢) and {�i} is a nonincreasing sequence of positive
values. We will see that the bias at the beginning of training within our framework can be described
entirely through the operator TK1 and its eigenfunctions. We note that TK1 depends only on the
model architecture, parameter initialization distribution µ, and input distribution ⇢. The training data
sample x1, . . . , xn introduces a discretization of the operator TK1

Tng(x) :=
1

n

nX

i=1

K1(x, xi)g(xi) =

Z

X

K1(x, s)g(s)db⇢(s), (3)

where b⇢ = 1
n

P
n

i=1 �xi is the empirical measure. We now introduce the time-dependent NTK

Kt(x, x
0) := hr✓f(x; ✓t),r✓f(x

0; ✓t)i

with the associated time-dependent operator T t
n

T t

n
g(x) :=

1

n

nX

i=1

Kt(x, xi)g(xi) =

Z

X

Kt(x, s)g(s)db⇢(s). (4)

The update rule for the residual rt under gradient flow is given by

@trt(x) = �
1

n

nX

i=1

Kt(x, xi)rt(xi) = �T t

n
rt.

Speaking loosely, as the network width tends to infinity the time-dependent NTK Kt(x, x0) becomes
constant so that Kt(x, x0) = K1(x, x0) uniformly in t. If Kt = K1 then we have the operator
equality T t

n
= Tn. Similarly, heuristically as n ! 1 we have Tn ! TK1 . Thus in the idealized

infinite width, infinite data limit the update rule becomes
@trt = �TK1rt,

which has the solution rt = exp(�TK1t)r0 which is defined via its projections
hrt,�ii⇢ = exp(��it)hr0,�ii⇢.

Thus in this idealized setting the network learns eigenfunctions �i at rates determined by their
eigenvalues �i. The dependence of the convergence rate on the magnitude of �i is particularly
relevant as the NTK tends to have a very skewed spectrum. We can estimate the spectrum of K1

by randomly initializing a network and computing the Gram matrix (G0)i,j := K0(xi, xj). In
Figure 1 we plot the spectrum of the NTK Gram Matrix (G0)i,j := K0(xi, xj) at initialization. We
observe a small number of outlier eigenvalues of large magnitude followed by a long tail of small
eigenvalues. This phenomenon has appeared in many works (e.g. Arora et al. 2019a; Oymak et al.
2020; Li et al. 2020). For ReLU networks the spectrum is known to asymptotically follow a power
law �i ⇠ ⇤i�⌫ (Velikanov & Yarotsky, 2021). The goal of this work is to quantify the extent to
which a finite-width network trained on finitely many samples behaves like the idealized kernel
dynamics rt = exp(�TK1t)r0 corresponding to infinite width and infinite data.

2.3 Applicable Architectures

We now specify an architecture for our model f(x; ✓). We consider deep networks of the form

↵(0) := x,

↵(l) :=  l(✓
(l),↵(l�1)), l 2 [L],

f(x; ✓) :=
1

p
mL

vT↵(L),
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Figure 1: We plot the NTK spectrum on MNIST and CIFAR10 for two networks using 10 random
parameter initializations and data batches. In both plots the x-axis represents the eigenvalue index
k (linear scale) and the y-axis the normalized eigenvalue �k/�1 magnitude (log scale). To avoid
numerical issues, we compute the NTK on a batch of size 2000 and plot the first 1000 eigenvalues.
The left plot computed the NTK corresponding to the logit of class 0 for LeNet-5 on MNIST. The
right plot is for a shallow fully-connected softplus network with 4000 hidden units on CIFAR10.

where each  l(✓(l), •) : Rml�1 ! Rml is a vector-valued function parameterized by ✓(l) 2 Rpl and
v 2 RmL . We define ✓(L+1) := v and set ✓ := ((✓(1))T , . . . , (✓(L+1))T )T to be the collection of all
parameters. We assume each layer mapping  l has one of the following forms:

Fully Connected :  l(✓
(l),↵(l�1)) = !

✓
1

p
ml�1

W (l)↵(l�1)

◆

Convolutional :  l(✓
(l),↵(l�1)) = !

✓
1

p
ml�1

W (l)
⇤ ↵(l�1)

◆

Residual :  l(✓
(l),↵(l�1)) = !

✓
1

p
ml�1

W (l)↵(l�1)

◆
+ ↵(l�1)

Here ✓(l) = vec(W (l)) and ! is a twice continuously differentiable function such that ! and !0 are
Lipschitz. All parameters of the network will be trained as in practice. For feedforward and residual
layers W (l)

2 Rml⇥ml�1 is a matrix. For the case of convolutional layers W (l)
2 RK⇥ml⇥ml�1

is an order-3 tensor with filter size K. The precise definition of the convolution ⇤ is offered in the
appendix. We will let m = minl ml denote the minimum width of the network. We will assume that
maxl

ml
m

= O(1). The input dimension d := m0, the depth L, and the filter sizes K of convolutional
layers will be treated as constant. The depth L being constant is essential for NTK convergence; see
Hanin & Nica (2020) for an explanation of failure modes whenever depth is nonconstant.

We will now discuss our initialization scheme. We will perform the antisymmetric initialization trick
introduced by Zhang et al. (2020) so that the model is identically zero at initialization f(•; ✓0) ⌘ 0.
Let f(x; ✓) be any neural network of the form described above. Then let ✓̃ =

⇥
✓

✓
0

⇤
where ✓, ✓0 2 Rp.

We then define

fASI(x; ✓̃) :=
1
p
2
f(x; ✓)�

1
p
2
f(x; ✓0)

which takes the difference of two rescaled copies of our original model f(x; ✓) with parameters ✓
and ✓0 that are optimized freely. The antisymmetric initialization trick initializes ✓0 ⇠ N(0, I) then
sets ✓̃0 =

⇥
✓0
✓0

⇤
. We then optimize the model fASI starting from the initialization ✓̃0. This trick

simultaneously ensures that the model is identically zero at initialization without changing the NTK
at initialization (Zhang et al., 2020). For ease of notation we will simply assume from now on that
f(x; ✓) = fASI(x; ✓) and not write the subscript ASI .
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3 Main Results

Before stating our main result, we enumerate our key assumptions for the sake of clarity, assumed to
hold throughout. Detailed proofs are deferred to the appendix.
Assumption 3.1. The activation ! is twice continuously differentiable and ! and !0 are Lipschitz.
Assumption 3.2. The input domain X is compact with strictly positive Borel measure ⇢.
Assumption 3.3. The target function f⇤ satisfies kf⇤

k
L1(X,⇢) = O(1).

Assumption 3.4. We use the antisymmetric initilization trick so that f(•; ✓0) ⌘ 0.

Most activation functions except for ReLU satisfy Assumption 3.1, such as Softplus !(x) = ln(1 +

ex), Sigmoid !(x) = 1
1+e�x , and Tanh !(x) = e

x
�e

�x

ex+e�x . Assumption 3.2 is a sufficient condition for
Mercer’s Theorem to hold. While Mercer’s theorem is often assumed to hold implicitly, we prefer to
make this assumption explicit. Assumption 3.3 simply means the target function is bounded. We
believe the antisymmetric initialization specified in Assumption 3.4 is not strictly necessary but it
greatly simplifies the proofs and associated bounds. To sidestep 3.4 one would utilize high probability
bounds on the magnitude |f(x; ✓0)| at initialization. In the following results f(x; ✓) will be any of
the architectures discussed in Section 2.3. We are now ready to introduce the main result.
Theorem 3.5. Let T � 1, ✏ > 0. Let K(x, x0) be a fixed continuous, symmetric, positive definite
kernel. For k 2 N let Pk : L2(X, ⇢) ! L2(X, ⇢) denote the orthogonal projection onto the span
of the top k eigenfunctions of the operator TK defined in Equation (2). Let �k > 0 denote the k-th
eigenvalue of TK . Then m = ⌦̃(T 4/✏2) and n = ⌦̃(T 2/✏2) suffices to ensure with probability at
least 1 � O(mn) exp(�⌦(log2(m)) over the parameter initilization ✓0 and the training samples
x1, . . . , xn that for all t  T and k 2 N

kPk(rt � exp(�TKt)r0)k
2
L2(X,⇢) 


1� exp(��kt)

�k

�2
·

h
4 kf⇤

k
2
1

kK �K0k
2
L2(X2,⇢⌦⇢) + ✏

i

and
krt � exp(�TKt)r0k

2
L2(X,⇢)  t2 ·

h
4 kf⇤

k
2
1

kK �K0k
2
L2(X2,⇢⌦⇢) + ✏

i
.

3.1 Interpretation and Consequences

Theorem 3.5 compares the dynamics of the residual rt(x) := f(x; ✓t) � f⇤(x) of our finite-
width model trained on finitely many samples to the idealized dynamics of a kernel method
exp(�TKt)r0 with infinite data. We recall that if �i is an eigenfunction of TK with eigenvalue �i
then hexp(�TKt)r0,�ii⇢ = exp(��it)hr0,�ii⇢. Thus the term exp(�TKt)r0 learns the projection
along eigenfunction �i linearly at rate �i. Whenever the NTK at initialization K0 concentrates
around K, the residual rt will inherit this bias of the kernel dynamics exp(�TKt)r0. Furthermore,
the bound for the projected difference kPk(rt � exp(�TKt)r0)k

2
L2(X,⇢) is smaller whenever �k is

large. Therefore the bias appears more pronounced along eigendirections with large eigenvalues.

Consequences for the special case K = K1 In the infinite width limit, we have that K0 ap-
proaches K1 for general architectures (Yang, 2020). For fixed x, x0, by concentration results the
typical rate of convergence is |K0(x, x0)�K1(x, x0)| = Õ(1/

p
m) with high probability (Du et al.,

2019b,a; Huang & Yau, 2020). Bounds that hold uniformly over x, x0 of the same rate were provided
by Bowman & Montúfar (2022) and Buchanan et al. (2021). A more pessimistic estimate of 1/m1/4

is provided by Arora et al. (2019b). Even if the rate is 1/m1/4, we have that m = ⌦̃(✏�2) is strong
enough to ensure that |K0(x, x0)�K1(x, x0)|  ✏1/2. Given these results, it is reasonable to make
the following assumption for the architectures we consider (see Appendix E).

Assumption 3.6. m = ⌦̃(✏�2) suffices to ensure that kK0 �K1
k
2
L2(X⇥X,⇢⌦⇢)  ✏ holds with high

probability 1� �(m) over the initialization ✓0 where �(m) = o(1).

Under this assumption, by setting K = K1 in Theorem 3.5 we get the following corollary.
Corollary 3.7. Let �(m) be defined as in Assumption 3.6 which we assume to hold. Let T � 1 and
✏ > 0. For k 2 N let Pk : L2(X, ⇢) ! L2(X, ⇢) denote the orthogonal projection onto the span of
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the top k eigenfunctions of the operator TK1 defined in Equation (1). Let �k > 0 denote the k-th
eigenvalue of TK1 . Then m = ⌦̃(T 4/✏2) and n = ⌦̃(T 2/✏2) suffices to ensure with probability at
least 1�O(mn) exp(�⌦(log2(m))� �(m) that for all t  T and k 2 N

kPk(rt � exp(�TK1t)r0)k
2
L2(X,⇢) 


1� exp(��kt)

�k

�2
· ✏

and
krt � exp(�TK1t)r0k

2
L2(X,⇢)  t2 · ✏.

Informally Corollary 3.7 states that up to the stopping time T , we have that rt ⇡ exp(�TK1t)r0. As
discussed before, the term exp(�TK1t)r0 projected along the i-th eigenfunction of K1 decays lin-
early, hexp(�TK1t)r0,�ii⇢ = exp(��it)hr0,�ii⇢. Given that K1 tends to have a highly skewed
spectrum (see, e.g. Figure 1), the effect the magnitude of �i has on the convergence rate is particularly
relevant. Furthermore the bound on the projected difference kPk(rt � exp(�TK1t)r0)kL2(X,⇢) is
smaller whenever �k is large due to the dependence of the bound on the inverse eigenvalue ��1

k
.

Thus we have that the bias along the top eigenfunctions is particularly pronounced. Hence we make
the following important observation.
Observation 3.8. At the beginning of training the network learns projections along eigenfunctions of
the Neural Tangent Kernel integral operator TK1 at rates corresponding to their eigenvalues. This
is particularly true for the eigenfunctions with large eigenvalues.

Scaling with respect to width and number of training data samples Now let us interpret how
the width m and number of training samples n in the theorem scale. We note that as long as n  m↵

for some ↵ > 0 the failure probability O(mn) exp(�⌦(log2(m))) goes to zero as m ! 1. Thus
once m and n are sufficiently large relative to the stopping time T and precision ✏, they can both tend
to infinity at just about any rate to achieve a high probability bound. We also observe that m and n
both have the same scaling with respect to ✏, namely m,n = ⌦̃(✏�2). Thus for a fixed stopping time
T we can send m and n to infinity at the same rate m ⇠ n to send the error ✏! 0. This is significant
as typical NTK analysis requires m = ⌦(poly(n)). We reach following important conclusion.
Observation 3.9. The network will inherit the bias of the kernel at the beginning of training even
when the width m only grows linearly with the number of samples n.

Scaling with respect to stopping time We will now address the scaling with respect to the stopping
time T . The relevant question is how quickly the terms Pk exp(�TK1t)r0 and exp(�TK1t)r0
converge to zero. We observe that

kPk exp(�TK1t)r0kL2(X,⇢)  exp(��kt) kr0kL2(X,⇢)  exp(��kt) kf
⇤
k
L1(X,⇢) ,

where we have used the antisymmetric initialization r0 = f(•; ✓0)� f⇤ = 0� f⇤ = �f⇤ and the
basic inequality k•k

L2(X,⇢)  k•k
L1(X,⇢). Based on this we have that t � log(kf⇤

k
L1(X,⇢) /✏)/�k

suffices to ensure kPk exp(�TK1t)r0kL2(X,⇢)  ✏. Using this fact we get the following corollary.

Corollary 3.10. Let �(m) be defined as in Assumption 3.6 which is assumed to hold. Let T =
⌦̃(1/�k) and ✏ > 0. For k 2 N let Pk : L2(X, ⇢) ! L2(X, ⇢) denote the orthogonal projection
onto the span of the top k eigenfunctions of the operator TK1 defined in Equation (1). Let �k > 0
denote the k-th eigenvalue of TK1 . Then m = ⌦̃(�k�8/✏2) and n = ⌦̃(��6

k
/✏2) suffices to ensure

that with probability at least 1�O(mn) exp(�⌦(log2(m))� �(m)

kPkrT k
2
L2(X,⇢)  ✏

and in particular
1

2
krT k

2
L2(X,⇢)  Õ(✏) + k(I � Pk)r0k

2
L2(X,⇢) .

The interpretation of the Corollary 3.10 is that the stopping time T = ⌦̃(1/�k) is long enough
to ensure that the network has learned the top k eigenfunctions to ✏ accuracy provided that m =
⌦̃(��8

k
✏�2) and n = ⌦̃(��6

k
✏�2). We note that the second conclusion of Corollary 3.10 is a

bound on the test error 1
2 krtk

2
L2(X,⇢). From the antisymmetric initialization r0 = �f⇤ so that
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k(I � Pk)r0k
2
L2(X,⇢) = k(I � Pk)f⇤

k
2
L2(X,⇢). For a general target f⇤, this quantity can decay

arbitrary slowly with respect to k. Our goal with Theorem 3.5 was not to get a learning guarantee, but
to describe how the bias of the kernel K1 is inherited by the finite-width network at the beginning of
training even for general target functions. Nevertheless we will briefly sketch how it is possible to
get a learning guarantee from Corollary 3.7 when f⇤ is in the RKHS of K1. In this case one can
show that kexp(�TK1t)r0k

2
L2(X,⇢) = O

⇣
kf

⇤
k
2
H

t

⌘
where k•k

H
is the RKHS norm. Then treating

kf⇤
k
H

as a constant one can choose the stopping time T ⇠ ✏�1 to bring the test error to ✏ provided
that m,n = ⌦̃(poly(✏�1)). More generally Velikanov & Yarotsky (2021) derive sufficient conditions
for the power law kexp(�TK1t)r0k

2
L2(X,⇢) ⇠ Ct�⇠ to hold. Using a similar argument in this case

one can choose the stopping time T ⇠ ✏�1/⇠ and get a learning guarantee for m,n = ⌦̃(poly(✏�1)).

3.2 Technical Comparison to Prior Work

Lee et al. (2019); Arora et al. (2019b) compared the network f(x; ✓) to its linearization flin(x; ✓) :=
hr✓f(x; ✓0), ✓� ✓0i+ f(x; ✓0) in the regime where m = ⌦(poly(n)). When m = ⌦(poly(n)) one
can show the loss converges to zero and the parameter changes k✓t � ✓0k2 are bounded. By contrast
we avoid the condition m = ⌦(poly(n)) by employing a stopping time. Arora et al. (2019a); Cao
et al. (2021); Basri et al. (2020) proved statements similar to Theorem 3.5 and Corollary 3.7 that
roughly correspond to replacing TK1 with its Gram matrix induced by the training data (G1)i,j =
K1(xi, xj) and replacing ⇢ with the empirical measure ⇢̂ = 1

n

P
n

i=1 �xi . Arora et al. (2019a); Basri
et al. (2020) operate in the regime where m = ⌦(poly(n)) and as a benefit do not need to employ
a stopping time. Cao et al. (2021) instead of requiring m = ⌦(poly(n)) requires that the width
m satisfies at least m = ⌦(max{��14

k
, ✏�6

}) where �k is the cutoff eigenvalue. The most similar
work is Bowman & Montúfar (2022), which demonstrated a version of Corollary 3.7 for a shallow
feedforward network that is underparameterized. If p is the total number of parameters, they require
m = ⌦̃(✏�1T 2) and n = ⌦̃(✏�1pT 2). This requires the network to be greatly underparameterized
n � p. Our result was able to remove the dependence of n on p and demonstrate the result for
general deep architectures at the expense of slightly worse scaling with respect to T and ✏.

4 Proof Sketch

For simplicity we will go through the case where K = K1. At a high level the proof revolves around
bounding the difference between the operators TK1 and T t

n
defined in Equations (1) and (4).

Bounding Operator Deviations Bowman & Montúfar (2022) demonstrated

rt = exp(�TK1t)r0 +

Z
t

0
exp(�TK1(t� s))(TK1 � T s

n
)rsds.

This exhibits the residual rt as a sum of exp(�TK1t)r0 and a correction term. The proof of Theorem
3.5 revolves around bounding the correction term which involves bounding

k(TK1 � T s

n
)rskL2(X,⇢)  k(TK1 � Tn)rskL2(X,⇢) + k(Tn � T s

n
)rskL2(X,⇢) .

At a high level k(Tn � T s
n
)rskL2(X,⇢) will be small whenever the kernel deviations K0 � Ks are

small. On the other hand by metric entropy based arguments we have that k(TK1 � Tn)rskL2(X,⇢)

will be small whenever n is large enough relative to the complexity of the residual functions rs.

Comparison with Linearization Let H(x; ✓) := r
2
✓
f(x; ✓) denote the Hessian of our network

with respect to the parameters ✓ for a fixed input x. It turns out that if kH(x, ✓)k
op

was uniformly
small over x and ✓ then the kernel deviations K0 �Ks would be bounded and the complexity of
our model f(x; ✓) would be controlled by the complexity of the linearized model flin(x; ✓) :=
hr✓f(x; ✓0), ✓ � ✓0i. The caveat to this approach is we do not in fact have a way to bound the
Hessian H(x, ✓) uniformly. However Liu et al. (2020b) demonstrated that for fixed x and R > 0 we
have with high probability over the initialization ✓0

sup
✓2B(✓0,R)

kH(x, ✓)k
op

= Õ

✓
R
p
m
poly(R/

p
m)

◆
. (5)
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Using a priori parameter norm deviation bounds we have that k✓t � ✓0k2 = O(
p
t) and thus we

can set R = O(
p
T ). The difficulty then arises to get bounds that only depend on the Hessian

H(x; ✓) evaluated only on finitely many inputs x. We overcome this difficulty by showing for fixed
✓0 one has high probability bounds over the sampling of the training data x1, . . . , xn that only require
the Hessian evaluated on a finite point set. This requires some elaborate calculations involving
Rademacher complexity. We then use the Fubini-Tonelli theorem and the Hessian bound (5) to get a
bound over the simultaneous sampling of ✓0 and x1, . . . , xn.

Covering Number of the Linearized Model The complexity of the residual functions rs up to the
stopping time T can be controlled by bounding the complexity of the function class C = {flin(x; ✓) :
✓ 2 B(✓0, R)}. In Appendix A we show that the L2(X, ⇢) metric entropy of the linearized model
C = {flin(x; ✓) : ✓ 2 B(✓0, R)} is determined by the spectrum of the Fisher Information Matrix

F :=

Z

X

r✓f(x; ✓0)r✓f(x; ✓0)
T d⇢(x). (6)

Let �1/21 � �1/22 � · · · � 0 denote the eigenvalues of F 1/2. We define the effective rank of F 1/2 at
scale ✏ as

p̃(F 1/2, ✏) = |{i : �1/2
i

> ✏}|.

This measures the number of dimensions within the unit ball whose image under F 1/2 can be larger
than ✏ in Euclidean norm. In Appendix A we demonstrate that the ✏ covering number of C in L2(X, ⇢),
denoted N (C, k•k

L2(X,⇢) , ✏), has the bound

logN (C, k•k
L2(X,⇢) , ✏) = Õ(p̃(F 1/2, 0.75✏/R)).

It turns out that for k(TK1 � Tn)rskL2(X,⇢) to be on the order of ✏ we merely need n to be large
relative to p̃(F 1/2, 0.75✏/R). By contrast Bowman & Montúfar (2022) required that the network was
underparameterized so that n was large relative to the total number of parameters p. Since p̃ ⌧ p,
this is what lets us relax the sample complexity dramatically. In fact for fixed R and ✏ we have that
p̃ = Õ(1) with high probability as the width grows to infinity whereas p ! 1. Interestingly, the
quantity p̃ for the loss Hessian at convergence was used recently to derive analytical PAC-Bayes
bounds (Yang et al., 2021). Note for the squared loss the (empirical) FIM1 can be taken as an
approximation to the Hessian, and at a minimizer this approximation becomes exact. Thus these two
notions are closely related.

5 Conclusion and Future Directions

We provided quantitative bounds measuring the L2 difference in function space between a finite-width
network trained on finitely many samples and the corresponding kernel method with infinite width
and infinite data. As a consequence, the network will inherit the bias of the kernel at the beginning of
training even when the width scales linearly with the number of samples. This bias is not only over the
training data but over the entire input space. The key property that allows this is the low-effective-rank
property of the Fisher Information Matrix (FIM) at initialization which controls the capacity of the
model at the beginning of training. An interesting avenue for future work is to investigate if flat
minima manifesting a FIM of low effective rank at the end of training can be related to the behavior
of the network on out-of-sample data after training.

Limitations Our framework can only characterize the network’s bias up to a stopping time. There
is compelling evidence that the kernel adapts to the target function later in training (Baratin et al.,
2021; Atanasov et al., 2022), and this falls outside our framework. Accounting for adaptations in the
kernel is an important problem that is still being addressed by the theoretical community.

Broader impacts We do not foresee any negative societal impacts of characterizing the spectral
bias of neural networks. To the contrary we believe that cataloging the properties that networks are
biased towards in a variety of regimes will be essential to developing fair and interpretable artificial
intelligence over the long-term.

1Note that we define F as an expectation over the true input distribution ⇢. To approximate the Hessian of
the empirical loss one must replace ⇢ with the empirical measure ⇢̂.
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