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ABSTRACT

Recent advancements in large language models (LLMs) have exhibited promising
performance in solving sequential decision-making problems. By imitating few-
shot examples provided in the prompts (i.e., in-context learning), an LLM agent can
interact with an external environment and complete given tasks without additional
training. However, such few-shot examples are often insufficient to generate high
quality solutions for complex and long-horizon tasks, while the limited context
length cannot consume larger-scale demonstrations. To this end, we propose an
offline learning framework that utilizes offline data at scale (e.g, logs of human
interactions) to facilitate the in-context learning performance of LLM agents.
We formally define LLM-powered policies with both text-based approaches and
code-based approaches. We then introduce an Offline Data-driven Discovery

and Distillation (O3D) framework to improve LLM-powered policies without
finetuning. O3D automatically discovers reusable skills and distills generalizable
knowledge across multiple tasks based on offline interaction data, advancing the
capability of solving downstream tasks. Empirical results under two interactive
decision-making benchmarks (ALFWorld and WebShop) demonstrate that O3D
can notably enhance the decision-making capabilities of LLMs through the offline
discovery and distillation process, and consistently outperform baselines across
various LLMs with both text-based-policy and code-based-policy.

1 INTRODUCTION

Recent years have witnessed remarkable advancements in artificial intelligence (AI), particularly in
the development of Large Language Models (LLMs). One of the standout features of LLMs is their
in-context learning ability, where the LLM can perform tasks with only a few-shot examples provided
in the prompts, making it possible to deploy LLMs to various applications seamlessly.

Although most existing research focuses on one-step text generation such as question answering,
many real-world scenarios desire autonomous agents that can interact with external environments and
make sequential decisions to complete given tasks. There are some recent works that successfully
showcase the application of LLMs in sequential decision-making (Yao et al., 2023b; Shinn et al.,
2023; Liu et al., 2023c; Yang et al., 2023), by either directly letting the language model interact with
the environment, or using LLMs to write code which then executes in the environment. With a few
examples of acting and reasoning (Yao et al., 2023b), an LLM-based agent can interact with the
environment and even learn by reflecting on historical errors (Shinn et al., 2023).

However, existing methods still struggle to solve many complex domains with LLMs due to the
intrinsic difficulties that arise from long-horizon interactive tasks. On the one hand, it is widely
known that the task complexity increases exponentially with the interaction horizon (Sutton & Barto,
2018), such that a large amount of data or demonstrations can be desired for an agent to fully
understand the environment dynamics, especially for heterogeneous real-world environments and
tasks, where cross-task generalizability is important. On the other hand, the in-context learning ability
is constrained by the limited context window of an LLM. Even if many demonstrations exist, it is
hard to prompt LLMs with sufficient examples. Although finetuning is a solution, it can be much
more expensive and less accessible for normal users.
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Offline
Dataset

DiscoverPrompt Segmentation

You will be given interaction
histories... Please break the full
interaction log into several sub-tasks,
and summarize these sub-tasks in an
abstract way
Trail: (trajectories)
Environment-specific subtasks: ___ - find(object)

- take(object)
- put(object, receptable)
- clean(object)
...

Discovered Skills
find(object)

take(object)

put(object, receptable)

Skill
Dataset

DiscoverPrompt

You will be given interaction
histories... Please extract the valid
environment-specific actions with
the correct syntax.
Trail: (trajectories)
Environment-specific actions: ___ - go to [receptacle] [id]

   Example: go to countertop 1
- take [object] [id] from [receptacle] [id]
   Example: take mug 1 from countertop 1

Discovered Primitives

Skill
DatasetSkill-based

Datasets

Stage 1

DistillPrompt
You will be given failure and
success histories... Please find the
mistakes in the failure trial, and
summarize general tips to fix the
mistakes.
Failure Trails: (trajectories)
Success Trails: (trajectories)
Summirized Tips: ___

- When looking for an object, make sure to
check all possible locations.
- Use the correct command to put an
object in a cabinet. The correct command
is "put [object] in/on [surface]".
...

Distilled Tips

Code-based-Policy

Interact with an environment to solve a task.
Please consider the following tips: 
{tips}
Please only generate following actions: 
{primitives}
Here are some examples:
{trajectories}
Here is your task:

Text-based-Policy

def put_object(specific_object_to_put,
specific_target_location):
    # Go to the target location
    action = go(specific_target_location)
    env_observation, won =
interact_with_environment(action)
    ...

Stage 2

Stage 3

    call: find(apple)

    Your task is: put an apple on sidetable.

    On countertop 1, you see an apple 3.

    call: take(apple)

Skill-based
datasets

    You pick up the apple 3.

    call: put(apple, sidetable)

LLM Agent

LLM Agent

LLM Agent

Environment

Environment

Environment

skill of find

skill of put

skill of take

skill of clean

LLM LLM

LLM

iterative

LLM

ImprovePolicy

ConstructPolicy

Figure 1: The proposed O3D framework.

In response to these challenges, this paper asks and aims to answer the follow question:

Can we develop a data-driven learning framework for sequential decision-making with LLMs, such

that LLMs can learn from large-scale offline data without the need of model training?

In this paper, we define an offline learning framework to enable LLMs to discover and distill
useful knowledge from interaction trajectories on multiple tasks. We first formalize LLM-powered
policies that unify the two parallel approaches in literature which generate text and code as policies,
respectively. For these LLM-powered policies, we carefully design a generic learning paradigm
called Offline Data-driven Discovery and Distillation (O3D), which can iterate over the offline dataset
and keep improving the policy. Importantly, our method does not require a high-quality expert
offline dataset, as it can benefit from both positive examples and negative examples of environment
interactions, making the framework easier and cheaper to use in practice. As shown in Figure 1, O3D
is composed of 3 stages: the first stage aims to discover reusable skills by segmenting the offline
interaction trajectories; the second stage then conducts skill-conditioned policy improvement by
distilling knowledge from offline data; the third stage constructs the interactive policy by calling
the learned skills given diverse tasks. All stages are based on querying LLMs and iterating over
existing text- or code-based policies. As a result, O3D can learn better policies from offline dataset
at scale without any model finetuning. Experiments in two commonly used domains (ALFWorld
and WebShop) show that our LLM agent augmented by offline knowledge has much better few-shot
performance than prior methods on a variety of downstream tasks.

Summary of contributions: (1) We establish the first offline in-context learning framework for LLM
sequential decision-making agents, such that the LLM can learn from offline experience without
any finetuning. This offline learning paradigm allows more effective usage of past interactions
(including both good and bad behaviors) generated by human or other agents, alleviating the cost of
online learning. (2) Our offline learning algorithm unifies two common approaches of LLM-based
decision-making: textual action generation and code generation. For both approaches, our method
achieves significant improvement over baseline methods on challenging domains. (3) Different
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from prior work which prompts and solves different types of tasks independently, our algorithm
can leverage offline experience from multiple tasks. By letting LLMs automatically distill shared
high-level knowledge, our algorithm achieves few-shot generalization to various types of tasks with a
single set of prompts.

2 RELATED WORK

LLMs for sequential decision-making with in-context learning.
• Text-based methods. Yang et al. (2023) and Liu et al. (2023b) conduct extensive experiments to
showcase the ability of LLMs to make sequential decisions in a range of challenging multi-step
reasoning tasks. Yao et al. (2023b) propose ReAct, a method to combine multi-step reasoning and
interactive decision-making, which achieves significant improvement in multiple domains. Shinn
et al. (2023) develop agents that can verbally summarize from its past failures and incorporate the
reflective text into subsequent trials of the same task, analogous to an online reinforcement learning
paradigm. Our method, in contrast, adopts an offline learning method to minimize the cost of online
learning and can adapt to various new tasks.
• Code-based methods. It has been shown in multiple domains that embodied agents can be em-
powered by LLM-written code Liang et al. (2022); Wang et al. (2023a). Sun et al. (2023) propose a
method to refine the code-based plan during interaction rather than executing in a fixed loop. Liu
et al. (2023c) propose to extract hierarchical summary from robot past experiences to adjust the plan.
A concurrent work by Wang et al. (2023b) proposes a framework that generates robot task code from
demonstrations via recursive task summarization. But our O3D differs from these methods as 1)
O3D can iteratively improve the policy by utilizing offline data at scale, 2) O3D takes a bottom-up
approach rather than a top-down recursive way to decompose the task, and 3) O3D works for both
text-based policies and code-based policies.
• Combining LLMs with existing planning approaches. It has also been shown that LLMs can be
combined with classical planning approaches, such as Planning Domain Definition Language (PDDL)
(Liu et al., 2023a; Silver et al., 2023). Differently, our paper focuses on end-to-end LLM policies
without additional planning algorithm or knowledge.

Training or fine-tuning LLMs for sequential decision-making. Another line of related work
includes training textual policies with imitation learning (Shridhar et al., 2021; 2020) and fine-tuning
language models to behave as policies (Wang et al., 2023a; Driess et al., 2023; Wang et al., 2023c)
in sequential decision-making. Again, our work is different as it aims at achieving high-quality
LLM-based decision-making without fine-tuning.

Multi-step reasoning and task decomposition with LLMs. Multi-step reasoning using LLMs
has been widely studied in language domains, including chain-of-thought style reasoning Yao et al.
(2023a); Fu et al. (2022); Wei et al. (2022), step-by-step feedback based reasoning Lightman et al.
(2023); Zheng et al. (2023), and self consistency and verification based reasoning Ling et al. (2023);
Wang et al. (2022). In contrast, we focus on sequential decision-making tasks in partially observable
environments, where each step results in state transitions and only sparse rewards are available.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

LLM-powered Policy. We first formally define an LLM-powered policy. A policy ⇡ for sequential
decision-making is a function that maps the interaction history to a distribution over actions. Let
⇡(a|⌧) denote the probability of selection action a given interaction history ⌧ , which is a sequence
of all past observations and actions, ho1, a1, o2, a2, · · · , oti. Then, with a pre-trained LLM, a policy
can be realized in the following two ways.

• Text-based-Policy. With a pre-trained LLM which outputs text based on any text input, a policy can
be written as

⇡text(a|⌧) := LLM(a|⌧ ; ✓pmt, ✓pret). (1)

• Code-based-Policy. It is well-known that LLMs can program, such that one can ask LLM to directly
generate code to implement the policy function, i.e.,

⇡code(a|⌧) := Code(a|⌧) LLM(✓pmt, ✓pret). (2)
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The goal is to learn a policy that can maximize the total reward. In both the above cases, the pre-
trained LLM weights ✓pret are fixed, and our O3D learns a policy by learning and optimizing the base
prompt ✓pmt as well the written policy code Code(a|⌧) from offline data.

Skill-conditioned Policy. A policy can be conditioned on specific skills or subgoals (e.g., find a
mug), which are compositional factors of the original task (e.g., heat some milk). Let z be a skill,
then a skill-conditional policy can be denoted as ⇡z , with ⇡z(a|⌧) the probability of selecting action
a given history ⌧ when executing skill z.

3.2 LEARNING FROM OFFLINE DATA

In many real-world decision-making systems, there exists interaction log from various users, including
experts who can successfully perform the task, as well as non-experts who may fail and make mistakes.
Our goal is to learn a good “policy” defined in Section 3.1 by utilizing the offline dataset to learn the
base prompt, but having the model weights, ✓pret, fixed.

Intuitively, seeing the interaction logs from others performing a task can be helpful for one to
understand the environment and finish similar tasks. Since LLMs have strong abilities of interpretation
and generalization, recent works such as ReAct (Yao et al., 2023b) have shown that LLMs can solve
many interactive decision-making problems when prompted with a few expert demonstrations. This
learning paradigm is analogous to behavior cloning, where an agent learns to imitate how experts
react to certain scenarios. However, traditional behavior cloning suffers from the distribution shift
between expert demonstrations and the agent’s own online interactions, especially when the expert
dataset is small and not representative of all scenarios in the domain. Although LLMs are powerful at
interpolating and generalizing with the pre-trained language understanding ability, their fixed context
length only allows a limited number of expert demonstrations, making it hard to fully understand an
external decision-making environment with specific dynamics and requirements. That is, even when
there exist a rich and diverse offline dataset, in-context behavior cloning (Yao et al., 2023b) is only
able to utilize a small subset of the data and obtain sub-optimal policies. To overcome this issue, we
introduce an offline learning framework for LLM-powered policies, including both Text-based-Policy
and Code-based-Policy defined in Section 3.1.

3.3 O3D: A FRAMEWORK OF LLM-BASED OFFLINE POLICY IMPROVEMENT

Our proposed offline policy learning framework consists of 3 stages, as depicted in Figure 1. The
first stage enables the LLM to discover and abstract reusable skills from offline datasets (potentially
from diverse tasks). Then, the second stage aims to learn a skill-based policy for each discovered
skill, through iterative discovery and primitives and iterative policy improvement with knowledge
distillation. The final stage is to construct the main LLM-powered agent who can reason and call
corresponding skills sequentially to solve given tasks. Below we explain each stage in detail.

Stage 1: Offline Skill Discovery and Data Segmentation. Many real-world decision-making
processes requires a number of steps to complete a task, such as controlling a robot to pass several
obstacles and navigate to the door, which results in two challenges for LLM-powered agents. First,
the limited context length may not be enough to contain the few-shot demonstration and online
interaction history. Second, the language model may lose track of its goal and not pay attention to
the most important information. To mitigate this issue, we propose a hierarchical policy learning
framework that can iteratively extracts skills from interaction logs with primitive-level executions.
Here the skills are analogous to the options or temporally extended actions (Sutton et al., 1999) in
hierarchical reinforcement learning. It is well-known that discovering options is difficult in traditional
RL, whereas we find that skill discovery with textual logs can be well-achieved with the semantic
understanding ability of LLMs.
Our skill discovery process iterates over the offline trajectories, using a DiscoverPrompt as shown
in Figure 1 (Stage 1). The full prompt we use is in Appendix B. We ask LLMs to divide the
interaction histories into skill-oriented sub-trajectories, and abstract the skills in function forms. For
example, from all 6 types of ALFWorld (Shridhar et al., 2021) tasks, the LLM can reliably discover 7
skills: find(object), take(object), clean(object), heat(object), cool(object), use(object) and put(object,
receptable), covering all the required sub-procedures in the domain and are reusable across tasks.
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Stage 2: Offline Policy Improvement with Knowledge Distillation. The main idea of this stage is
to distill generalizable knowledge from offline datasets, such that the knowledge can improve the
policy’s performance in downstream tasks. Such knowledge should be generalizable to tolerate the
distribution shift between offline data and online interactions. We propose to distill the following
types of knowledge from the segmented skill-based trajectories in an iterative process, which leads to
improved skill-conditioned policies.
• Distilling Primitive Actions. A common mistake of LLM-powered agents is hallucination, i.e., the
agent outputs actions that are not valid in the environment. To ensure effective usage of LLM in
decision-making applications, it is important to specify the space of actions in the form of natural
language or code. Many prior works (Liang et al., 2022; Liu et al., 2023c) manually define the
available primitive functions, which requires human labor and domain knowledge. Instead, we
propose to distill primitive actions or functions from the offline interaction data with LLM, which is
easy to scale up and automate the practical operation. Figure 1 describes how to distill the primitives
with an example, and the full prompt is in Appendix B.
• Distilling Policy Improvement Tips with Trajectory Contrasting. Inspired by the policy gradient
methods in RL, which increases the probability of selecting good actions and lower the probability
of selecting bad ones, we propose to distill knowledge that can enhance good (i.e., can incur high
long-term reward) behaviors and avoid undesired behaviors in the task distribution. We propose
to distill “policy improvement tips” about what actions are preferred under what circumstances.
However, with the offline data that only provides sequences of interactions and final scores, it is
non-trivial for an LLM to figure out the correct credit assignment and the useful tips to guide policy
improvement. To this end, we propose Trajectory Contrasting, where we sample both successful
(high-score) and failed (low-score) trajectories and let the LLM generate tips by contrasting them.
As a result, the LLM can identify the key to success and how to avoid failures. Figure 1 shows the
distillation process with a DistillPrompt which iteratively updates an LLM-powered policy. More
implementation details for Text-based-Policy and Code-based-Policy are provided in Section 3.4.

Your task is to: clean some apple and put it in
sidetable.
> call: find(apple)
> call: take(apple)
> call: clean(apple)
> call: put(apple, sidetable)

Your task is to: put some spraybottle on toilet.
> call: find(spraybottle)
> call: take(spraybottle)
> call: put(spraybottle, toilet)

Interact with a household to complete a given
task. You can call subprocedures find(object),
take(object), use(object), clean(object), heat(object),
cool(object) and put(object, receptable). 
Here are some examples.

...

Here is your task:
Your task is to: {New task}
>

Interact with a household to complete a given task.
Please consider the following tips to solve new
tasks:
{Distilled Tips}
Please only generate the following actions:
{Distilled Primitives}
Here are some examples

You are in the middle of a room, ...
Your historical interactions: 
{History }
Your task is: put(mug, shelf)
> go to shelf 1
On the shelf 1, you see a cup 2, a cup 1, a
peppershaker 1, and a saltshaker 1.
> put mug 3 in/on shelf 1
You put the mug 3 in/on the shelf 1.
> Done put(mug, shelf): I have put a mug (3) on
the shelf as required.

Here is your task:
Your task is: put({object}, {receptable})
>

Prompt for the base policy Prompt for the skill-conditioned policy "put"

Figure 2: Example prompts for the base policy and
the text-based skill-conditioned policy for hierar-
chical policy execution in Stage 3.

Stage 3: Downstream Interaction with Hier-
archical Policy Execution. So far, Stage 1 dis-
covers a set of skills, while Stage 2 produces and
optimizes the corresponding skill-conditioned
policies. The final stage is then to compose these
policies and interact with the downstream task
by calling the learned policies. We prompt a
base policy ⇡base with a few examples (come
from LLM’s own segmentation of offline trajec-
tories) on calling the proper skills sequentially
given a downstream task. Figure 2 shows an
example of how to construct the base policy by
prompting and how a skill-conditioned policy is
prompted when being called.

3.4 IMPLEMENTATION DETAILS OF O3D

The main algorithm is presented in Algorithm 1, and the implementation-specific functions for Text-
based-Policy and Code-based-Policy are defined in Algorithm 2 and Algorithm 3, respectively. We
provide all used prompts and additional implementation details in Appendix B. The major difference
in implementation between Text-based-Policy and Code-based-Policy is in the policy formulation
and improvement processes:
• Policy Initilization with Primitives. Text-based-Policy directly provides the discovered primitives
in the prompt of policy and advises the agent to follow the primitives, while Code-based-Policy
first lets the LLM write primitive functions and then calls these primitive functions in the code of
skill-conditioned policies.
• Policy Improvement. Since the distilled policy improvement tips are in natural language, we directly
ask the LLM to merge the new suggestion into the prompt of Text-based-Policy. For Code-based-
Policy, we let the LLM consider the policy improvement tips and re-write the policy code.
• Policy Construction and Execution. In Stage 3, we prompt the base policy to call the learned Text-
based-Policy or Code-based-Policy. Note that for Code-based-Policy, it is possible that the generated
skill-conditioned code has compilation errors, so that it requires human checking or validation on a
small set of tasks to verify that the code is executable.
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Algorithm 1: Policy Learning with Offline Data-driven Discovery and Distillation (O3D)
1 Input: Pre-trained LLM, offline dataset D, batch sizes N1, N2, max iteration steps T1, T2

2 Output: LLM-powered policy ⇡
// Stage 1: skill discovery and data segmentation

3 Initialize sets of skills Z = ;
4 for t = 1, . . . , T1 do
5 Sample N1 trajectories d ⇠ D
6 Attempt to discover more skills Z  LLM(Z, d;DiscoverPrompt)
7 Segment trajectories in D based on skillset Z , obtain Dzk for each zk 2 Z
// Stage 2: skill-conditioned policy improvement

8 for zk 2 Z do
9 Initialize the primitive set Pzk and the knowledge set T zk

10 Initialize ⇡zk  InitSkillPolicy(Dzk ,Pzk)
11 for t = 1, . . . , T2 do
12 Sample N2 trajectories dzk ⇠ Dzk

13 Attempt to discover more primitives Pzk  LLM(Pzk , dzk ;DiscoverPrompt)
14 Distill policy improvement knowledge T zk  LLM(T zk , dzk ;DistillPrompt)
15 Improve the policy with procedure ImprovePolicy(T zk ,⇡zk)
// Stage 3: policy composition and downstream interaction

16 Construct main policy ⇡  ConstructPolicy(D,Z) and interact with downstream tasks

Algorithm 2: Text-based-Policy
1 Function InitSkillPolicy(Dz,Pz):
2 Sample examples d ⇠ Dz

3 Initiate ✓pmt with d and Pz

4 return LLM(✓pmt, ✓pret) as policy
5 Function ImprovePolicy(T z,⇡z):
6 Ask LLM to incorporate T z into the

prompt of policy ⇡z

7 Function ConstructPolicy(D,Z):
8 Sample examples d ⇠ D and segment

them based on skills
9 Provide the examples as demonstrations

for ⇡text to call skills given the task
10 return Text-based-Policy ⇡text

Algorithm 3: Code-based-Policy
1 Function InitSkillPolicy(Dz,Pz):
2 Sample examples d ⇠ Dz

3 Let LLM write a function to reproduce d
with primitive functions Pz

4 return generated Code as policy
5 Function ImprovePolicy(T z,⇡z):
6 Let LLM improve the code ⇡z based on T z

7 Function ConstructPolicy(D,Z):
8 Sample examples d ⇠ D and segment them

based on skills
9 Let LLM write code as ⇡code to call skills

given the task
10 return Code-based-Policy ⇡code

Using LLMs to directly interact with environments (Text-based-Policy) and using LLMs to write
code to interact with environments (Code-based-Policy) are usually discussed separately. In this
paper, we take the first step to unify and compare these two approaches in a single framework. Our
study also reveals the different pros and cons of these two approaches.
• Advantages of Code-based-Policy. Code-based-Policy explicitly writes the acting policy in
code, which is more interpretable and reliable, and can fully avoid hallucination or syntax errors in
execution. Moreover, Code-based-Policy is usually more cost efficient, as the generated code can be
reused in new tasks without calling LLMs. Therefore, Code-based-Policy can be more suitable for
applications where reliability and efficiency are important.
• Advantages of Text-based-Policy. Text-based-Policy is relatively easy to implement in practice
with less human supervision. Also, in complicated environments such as WebShop where language
understanding is important, Text-based-Policy can achieve much better performance than Code-based-
Policy, as it retains the commonsense, expressiveness and reasoning ability of pre-trained LLMs.
Therefore, for language-oriented applications where reasoning and the ability of recovering from
failure are crucial, Text-based-Policy, or a combination of the two approaches, can be a better choice.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Problem Domains. We consider two sequential decision-making benchmarks, ALFWorld (Shridhar
et al., 2021) and WebShop (Yao et al., 2022). ALFWorld is a unique environment that mimics
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Table 1: Results in ALFWorld
Model Method Pick Clean Heat Cool Look Pick2 All

Text-based Policy

GPT-4
(0613)

ReAct 67 74 74 67 100 47 72
O3D 92 100 96 95 100 53 91

O3D -Human 83 100 87 95 100 53 88

GPT-3.5
(0613)

ReAct 13 10 0 0 17 0 7
O3D 71 35 4 67 44 24 41

O3D -Human 71 68 83 71 44 24 63

GPT-3.5
(0301)

ReAct 42 52 65 38 61 29 49
O3D 92 71 52 57 72 6 61

O3D -Human 83 87 78 90 44 18 71
Code-based Policy

GPT-4
(0613)

Demo2Code 96 58 13 43 0 65 48
O3D-Code 100 84 87 90 89 88 90

GPT-3.5
(0613)

Demo2Code 96 26 48 29 0 82 46
O3D-Code 100 71 91 86 89 18 78

Table 2: Results in WebShop
Model Method SR Score

Text-based Policy

GPT-4
(0613)

ReAct 26 39
O3D 41 58

O3D-Human 41 61

GPT-3.5
(0613)

ReAct 27 60
O3D 35 61

O3D-Human 31 61

GPT-3.5
(0301)

ReAct 12 28
O3D 18 33

O3D-Human 20 35
Code-based Policy

GPT-4
(0613)

Demo2Code 1 5
O3D-Code 19 31

GPT-3.5
(0613)

Demo2Code 0 0
O3D-Code 0 0

household scenarios and allows an decision-making agent to interact with the environment through a
text-based interface We use the same test set as introduced in ALFWorld paper, including 134 tasks
in total across six distinct task types. Following Shinn et al. (2023), we make the problem even more
challenging by limiting the horizon of each episode to be 30 (original is 50) steps and terminating the
episode if the agent takes the same action twice. WebShop provides a real-world online shopping
environment with 1.18M products, where an agent must explore the website, check relevant product
candidates, and purchase the one that matches a user instruction (e.g., ”I am looking for a queen sized
bed that is black, and price lower than 140.00 dollars”). Our evaluation considers the first 500 out of
12, 087 instructions as test set (following the official implementation (Yao et al., 2022)).

Baselines and Metrics. We mainly compare the proposed O3D and O3D-Code with a popular
text-based baseline method, ReAct (Yao et al., 2023b) and a state-of-the-art code-based baseline
approach, Demo2code (Wang et al., 2023b). Meanwhile, we have a variant of our method, named as
O3D-Human, using the knowledge summarized by a human from the logs of ReAct in the test set of
each domain, which we treat as an oracle baseline. This design is to investigate if the improvement
tips distilled by LLMs can be as effective as the tips distilled by humans. In ALFWorld, we assess
method performance by measuring the success rate (SR) under each task type as well as a total
success rate over 134 tasks. Besides the success rate, in WebShop, there is a product matching score
as an extra metric.

Models and Offline Data. To investigate the robustness of O3D across various LLMs, we consider
three GPT models (providing different ✓pret defined in Equation (1) and Equation (2)) in our experi-
ments, including GPT-4-0613, GPT-3.5-0613 and GPT-3.5-0301. The offline data include official
human demonstrations in both domains as the success data, and a set of failure data generated by using
ReAct on the training task set introduced in the original ALFWorld and WebShop implementations
(more details are referred to Appendix A.1).

4.2 RESULTS AND ANALYSIS

Effectiveness of discovering skills and primitives, and distilling policy improvement tips. In
our experiments, O3D efficiently extracts high-quality skills from raw human demonstrations in
the offline data, resulting in seven types of skills under ALFWorld domain, including: find(object),
take(object), put(object, receptacle), cool(object), heat(object), use(object) and clean(object); and
four types of skills under WebShop domain, including search item, select item, select item’s attributes

and purchase item. Each skill consists of a set of primitives to execute, along with a group of tips
to assist with the skill completion. Fig 3 shows several skill examples in ALFWorld domain (full
results are available in Appendix B.3). By learning from offline data, O3D is able to capture correct
primitives that can be composed to achieve each corresponding skill. Furthermore, we note that
tips distilled by O3D is functional to various degrees, such as suggesting general tips, encouraging
exploration, realizing action preconditions and highlighting syntax (as shown in Fig. 3).

O3D consistently outperforms baselines in both Text-based-Policy and Code-based-Policy across
various LLMs under ALFWorld (Table. 1) and WebShop (Table. 2). When using LLMs as text-
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- Ensure the object you want to take is actually in the location you are trying to take it from.
- Pay attention to the task description and take the correct object.
...
- Available primitives:
  take [object] [id] from [receptacle] [id]
   
        
 

skill of find

skill of take

skill of cool

- Check all possible locations when looking for an item.
- Expand your search area when you can't find an item in the expected locations.
...
- Available primitives:
  go to [receptacle] [id]; open [receptacle] [id]

Tips Categories

- Precondition

- Syntax

- Use the correct preposition when placing an object on a surface. The correct action is to
put the object "in/on" the surface, not just "on" the surface.
- If you put an object in a device (like a microwave), remember to take it out before trying
to put it in another location.
...
- Available primitives:
    go to [receptacle] [id]; put [object] [id] in/on [receptacle] [id]

   
        
 

skill of put

- You can directly cool an object with a fridge by taking the corresponding action.
- Avoid getting stuck in a loop of actions that do not contribute to the completion of the task.
...
- Available primitives:
    go to [receptacle] [id]; cool [object] [id] with [receptacle] [id]

- Exploration

- General Tips

Figure 3: Examples of discovered skills with primitives and distilled knowledge under ALFWorld.

based policies, O3D respectively outperforms ReAct by 19%, 34% and 12% in ALFWorld, and
15%, 8% and 6% in WebShop in terms of success rate, with using GPT-4-0618, GPT-3.5-0613 and
GPT-3.5-0301 repsectively. Furthermore, as shown in Table 1, the success rate achieved by O3D
under each task category is always greater than the one achieved by ReAct with GPT-4-0613 and
GPT-3.5-0613. This further confirms that the tips distilled by O3D from offline data is generalizable
and useful across diverse task types. For example, the tip of “pay attention to the task description
and take the correct object” helps the LLM agent avoid taking a similar object (a pot) rather than the
requested one (a pan), and the tip of “The correct action is to put the object ’in/on’ the surface, not
just ’on’ the surface” prevents the LLM agent from using wrong syntax of primitives, which are the
two common mistakes made by ReAct). Importantly, O3D can achieve competitive performance with
O3D-Human in both domains, and even surpasses O3D-Human when using GPT-4 in ALFWorld
and GPT-3.5-0613 in WebShop. This is strong evidence to validate that O3D’s knowledge distillation
is a promising approach to extract human-level tips from offline data to enhance the capability of an
LLM to solve downstream tasks without finetuning or labor-intensive prompt engineering.

In ALFWorld, O3D-Code surpasses Demo2Code, achieving a remarkable 32% higher performance
with GPT-4-0613 and 14% with GPT-3.5-0613. Additionally, there’s an 18% performance improve-
ment on WebShop tasks using GPT-4-0613. However, GPT-3.5 struggles with these tasks due to the
intricate nature of language processing and the complexity of the logic in WebShop. The principal
advantage of our approach lies in its unique method of generating code: it adopts a bottom-up style,
effectively constructing policies on top of robust skill functions. Through iterative skill refinement,
the model cultivates robust skills by leveraging extensive and diverse data from demonstrations. Skill
functions can then be efficiently utilized and reused to compose higher-level policies. In contrast,
Demo2Code follows a top-down approach, requiring the generation of code for the same set of skills
each time it receives a new task. Due to the context length constraint inherent in LLMs, only a
limited number of demonstrations are used to guide skill code generation in Demo2Code, resulting in
unstable and inconsistent skills.

Webshop poses a substantial challenge for code-based policies owing to its need for comprehensive
natural language understanding within the environment feedback. We address this challenge by
enabling LLMs to construct skills by employing a limited set of LLM-based functions that encapsulate
the underlying LLM capabilities (see Appendix B.5.2). To ensure a fair comparison, we also offer the
same set of functions to Demo2Code. While our approach substantially enhances the performance of
code-based policies in comparison to the baseline, it’s important to note that skill generation remains
considerably constrained by the intricate and diverse text-based environment feedback.

Primitives, skills and policy improvement tips independently advance baseline performance in
both ALFWorld and WebShop. O3D has three major processes: skill discovery (SD), primitives
discovery (PD) and policy improvement tip distillation (TD). To investigate each component’s contri-
bution to performance in downstream task solving, we conducted an ablation study considering three
variants of O3D, each with only one component. Fig. 4 shows that, in both domains, the three variants
of O3D either outperform the baseline or achieve the same performance as the baseline across tested
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Figure 4: Comparison on success rate (SR) with three variants of O3D against the baseline method.

LLM models. In ALFWorld, O3D (PD-only) plays the dominant role in performance improvement
with GPT-4-0613 and GPT-3.5-0301. This is because the major mistakes made by the baseline are
in terms of outputing primitive actions with syntax errors or hallucinating unavailable actions. O3D
(SD-only) boosts the performance the most with GPT-3.5-0613, becuase the tasks in ALFWorld
are too complex for ReAct with GPT-3.5-0613, and O3D (SD-only) solves the tasks in hierarchy by
performing skill selections that greatly reduces the complexity. In WebShop, the three components
consistently benefit the baseline performance across the three GPT models, with their individual
contributions also being model-dependent. Since the offline data was collected using GPT-3.5-0613,
we observe that the highest overall improvement of the three components occurs in this model.

ALFWorld

WebShop

- Check all possible locations for the required item, not just the most obvious ones.
- Use the correct commands to interact with items.
- You can clean items directly with the sinkbasin without needing to turn it on.

- Cellphones can be found on sidetables and beds. After finding a cellphone, place it in dresser.
- Kettles can be found on stoveburners. After finding the kettles, place them in the cabinet.
- Spoons can be found on countertops. After finding the spoon, clean it using the sink basin before
placing it on the sidetable.

- Check the product's features to ensure it meets all the requirements in the instruction before
making a purchase.
- If the first product selected does not meet all the requirements, go back to the search results and
select a different product.

-  After selecting an item, check its features to ensure it meets the task requirements before
purchasing.
- If the item does not meet the requirements after checking its features, go back and select
another item.

Figure 5: Comparison on averaged success rate over GPT models between using tips distilled via
contrastive and non-contrastive (NC) methods, with examples in green and pink boxes respectively.

The advantage of using a contrastive method to distill improvement tips versus a non-contrastive
method is domain-dependent. Fig. 5 shows that the proposed trajectory contrasting, which compares
both successful and failed trials in offline data, is relatively helpful in certain domains, compared
with the non-contrastive (NC) way based on only success data. In ALFWorld, failures in baseline
method are often caused by violations of the domain-specific dynamics and rules. Therefore, the
contrastive approach can generate general tips (green box in Fig. 5) to correct mistakes that occur in
failure cases, while the non-contrastive approach only summarizes the facts (pink box in Fig. 5) from
successful trials, which is less helpful. However, in WebShop, the two approaches achieve similar
performance, as they output very analogous tips as shown in the corresponding boxes in Fig. 5.

5 CONCLUSION

This paper introduces an offline in-context learning framework, O3D, for LLM sequential decision-
making agents, where agents can learn from previous experiences in a scalable offline manner to
improve performance without the need of fine-tuning. O3D stands out by allowing LLMs to distill
shared high-level knowledge from offline interaction logs, which is injected into a single set of
prompts to be reused in solving diverse downstream tasks. Empirically, O3D leverages a unified
algorithm that enhances both text-based policies and code-based policies with LLMs, outperforming
baseline methods in two challenging benchmark domains. Our work offers a possibility for future
LLM-based algorithm development in terms of efficiently leveraging offline data at scale for real-
world sequential decision-making applications.
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