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Abstract

Model merging aims to achieve multitask perfor-
mance by merging multiple expert models without
the need to access the raw training data. Recent re-
search identified the representation bias of model
merging, characterized by a discrepancy in the
representation distribution between the merged
and individual models, hindering the performance
of model merging methods. To mitigate this bias,
a task-specific MLP, Surgery, was built to model
the bias that is subsequently decreased on the
merged representation. However, this strategy is
still suboptimal due to the limited modeling capa-
bility within the deterministic manner. To address
this issue, we present ProbSurgery, a probabilistic
module specifically designed to accurately model
the representation bias. This module generates an
embedding distribution for each sample and out-
puts the representation bias through a sampling
process. ProbSurgery offers superior representa-
tional capacity by naturally handling the uncer-
tainty resulting from parameter interference of
merging multiple models. Besides, we provide a
theoretical analysis to reveal the advance of the
probabilistic manner and propose an extension
of ProSurgery for adapting to the task-sharing
setting. Extensive experiments verify the effec-
tiveness of ProbSurgery while maintaining gener-
alization capabilities in real-world scenarios. The
code is now available at this url.

1. Introduction

Multi-task learning (MTL) (Caruana, 1997) is a machine
learning approach that simultaneously learns multiple re-
lated tasks to improve model generalization and efficiency.
Compared with traditional single-task learning that focuses
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solely on a specific task, MTL leverages the shared knowl-
edge and representations among tasks, enhancing the overall
performance (He & Lawrence, 2011). However, constrained
by a rigid training paradigm, i.e., “data collection first and
then jointly training”, MTL raises several concerns: 1) the
high cost of data collection as well as the risk of privacy
leakage, and 2) limited flexibility, as introducing a new task
necessitates retraining the MTL model on a combination of
both old and new (tasks’) datasets.

Recently, model merging has attracted increasing attention
(Matena & Raffel, 2022; Ilharco et al., 2023; Yadav et al.,
2023; Yu et al., 2024; Yang et al., 2024c;a), as it offers a
new approach to fulfilling MTL without requiring training
data. This approach is encouraged by the growth of open-
source communities like Huggingface! and recognizes
that published trained (or fine-tuned) models can be treated
as resources, similar to datasets. Therefore, a model can
obtain multi-task knowledge by adapting the parameters
of multiple existing expert models that share a consistent
network structure instead of training from scratch on a task-
combined dataset. In the era of foundation models, the
advantages of data independence and training free make
model merging more practical.

However, models merged through existing methods (Matena
& Raffel, 2022; Ilharco et al., 2023; Yadav et al., 2023; Yang
et al., 2024c¢) often experience performance degradation,
making them hardly comparable to traditional MTL meth-
ods (Sun et al., 2020b; Royer et al., 2024), let alone that
of individual models. A recent study (Yang et al., 2024a)
analyzed this issue from a representation perspective and
discovered a discrepancy in the representation distribution
between merged and individual models, termed representa-
tion bias, leading to degenerated performance. To mitigate
this bias, the authors introduced a task-specific, learnable
module after the encoder, termed Surgery, to refine the bi-
ased representation. With the Surgery module, the merged
model attains representational capabilities close to those of
individually trained models.

Despite notable improvements achieved, we argue that there
are still two concerns about the Surgery module:

'nttps://huggingface. co. For example, HuggingFace
hosts a collection of over 1.7 million pretrained models.
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Figure 1. Comparisons of varying generated representations, given Task Arithmetic as the baseline and ViT-B/32 as the backbone. We can
see that the feature rectified by Surgery (the red points) is not totally aligned with the optimal (the blue points).

* (Insufficient performance) Has the representation discrep-
ancy been fully addressed? We visualize the represen-
tations learned with Surgery across different methods in
Figure 1. The results indicate that the rectified representa-
tions via Surgery still remain considerably distant from
the optimal ones, which cannot be correctly tackled by
the subsequent classification head.

* (Limited applicability) Can multiple task-specific Surgery
modules be substituted with a single task-shared one?
The Surgery module is task-specific which relies on prior
knowledge about the task ID during inference. Ideally,
we aim to construct a single but powerful module, akin to
a meta-model, capable of handling biased representations
across all tasks. It provides fewer parameters and better
applicability in real-world applications.

To address these concerns, we deeply dig into modeling the
representation bias by the Surgery mechanism and discover
its probabilistic understanding in this paper. Specifically,
rather than the deterministic manner employed in Surgery,
which is constricted by limited representation capability, we
reformulate the representation bias as a distribution whose
parameters are determined by MLPs in an amortized fashion.
We refer to this module as ProbSurgery in our work. Then,
the representation bias can be obtained by sampling from the
generated distribution. In contrast to Surgery, ProbSurgery
presents two advantages, including 1) better representation
capability: Due to significant interference among the param-
eters of multiple models when merging, the generated repre-
sentation exhibits uncertainty. Probabilistic representation
learning can effectively model the uncertainty. 2) Superior
applicability: One single ProbSurgery can be directly uti-
lized for tackling all merging tasks (named one-to-all setting
in this paper), whose performance even outperforms that
of Surgery trained by the task-specific setting. This proba-
bilistic reformulation not only improves the flexibility and
robustness of the model but also broadens its applicability
to diverse and challenging real-world scenarios. Eventually,
we further provide a theoretical analysis for ProbSurgery
based on a PAC-Bayes framework (McAllester, 2003), un-
covering that modeling representation bias as a distribution
yields lower classification error.

Our contributions are summarized as threefold:

* We propose a probabilistic representation surgery module,
named ProbSurgery, as post-calibration to correct biased
representations resulting from model merging, which can
consistently enhance the performance of existing model
merging methods.

* We provide theoretical analysis for ProbSurgery, which
shows that modeling representation bias as a distribution
yields lower classification error.

* We propose two strategies for extending ProbSurgery to
the one-to-all setting, i.e., learning one ProbSurgery mod-
ule for all merged tasks, which offers practical values.

Advancing performance and extensive analyses demonstrate
the effectiveness and applicability of ProbSurgery.

2. Related Work
2.1. Model Merging for Multi-Task Learning

Referring to Yang et al. (2024a), we divide existing model
merging methods into three types based on the stage they
focus on: before, during, and after merging.

1) The methods that operate before merging mainly focus on
providing valuable prior knowledge for subsequent model
merging. For example, Ortiz-Jimenez et al. (2024) add a
constraint when fine-tuning the pretrained model in different
tasks, i.e., updating the model’s parameters in independent
Tangent spaces (Jacot et al., 2018). Similarly, one recent
work, DARE (Yu et al., 2024), proposes to force the offsets
of randomly selected parameters (above 90%) to remain
unchanged. Thus, different tasks can benefit from an indi-
vidual parameter subspace and reduce performance losses.

2) The majority of works in model merging pay attention
to mitigate the issue of interference and conflicts with dif-
ferent models, which belong to a family of during merging.
Previous studies such as Weighted Averaging (Li et al.,
2023), Ties-Merging (Yadav et al., 2023), and AdaMerging
(Yang et al., 2024c) typically pre-set or learn task-specific
weights to adjust the contributions of different tasks to the
final merged model. In the past year, a lot of methods (Lu
et al., 2024; Tang et al., 2024; Huang et al., 2024) based
on Mixture-of-experts or Router technique (Masoudnia &
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Ebrahimpour, 2014) were proposed to split shared and task-
specific knowledge and then dynamically select them for
tackling downstream tasks after merging.

3) The methods that operate after merging (Yang et al.,
2024a;b) are proposed to rectify the biased representations
generated after merging. The most representative method,
Surgery (Yang et al., 2024a), constructs a lightweight, task-
specific module to capture the bias between the optimal and
interfered representations. A key merit of these methods
lies in their seamless integration with weight-space merging
methods, thereby enhancing the overall performance.

In this paper, we design a post-calibration approach derived
from the Surgery framework in a probabilistic manner, offer-
ing enhanced generalization and representation capabilities.
ProbSurgery can be integrated into existing merging meth-
ods and further boost their performance.

2.2. Probabilistic Representations

Learning representations in a stochastic embedding space
first emerged in word embeddings (Vilnis & McCallum,
2014) and has since been widely applied to various natu-
ral language processing tasks (Li et al., 2018; Neelakantan
et al., 2015). Meanwhile, the probabilistic representations
are also adapted into various vision tasks like face recog-
nition (Chang et al., 2020; Shi & Jain, 2019), human pose
estimation (Sun et al., 2020a), prototype-based few-shot
learning (Scott et al., 2019) and video understanding (Park
et al., 2022). Existing methods demonstrate that probabilis-
tic representations contribute to uncertainty modeling and
improving the model’s generalization (Li et al., 2018).

3. Preliminaries

Problem Definitions. Consider a set of models denoted
as {fe,,..., fo,}, fine-tuned from a base model fy,
on 7' individual tasks. In the context of model merging,
our objective is to integrate these parameters {6;}7_; into
a unified one 6,,i¢, where the resulting model, fg__ .., can
achieve consistently strong generalization across all 7" tasks.

Formally, we aim to obtain a merged model fg, . that can
fulfill the minimal loss value on the test dataset { D{¢}7_;
of all tasks, which can be formulated by this objective
min 7 Zthl E(z,y)~Dtel(f0,: (), y), Where £ denotes
the loss function, such as the cross-entropy loss.

3.1. Representative Model Merging Methods

In this section, we first define some notations within model
merging and introduce four representative merging methods.

Definition 3.1. (Task vector). Assume a model fo, obtained
by fine-tuning the base model fo, .. on t-th task. The task
vector T is defined as the element-wise difference between
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Figure 2. VIT-B/32 and 8 vision tasks. Left: Comparison of av-
erage performance and L1 representation distance regarding four
methods on all vision tasks. Right: Performance improves after
rectifying representations using Surgery or ours. Upper perfor-
mance denotes the average performance of various expert models
on corresponding merged tasks.

abase and Bt’ ie, Ty = 0t - abase-

Task vector can be regarded as the task-specific knowledge
and has been applied for various scenarios, such as knowl-
edge transfer and adaptation, modeling task relationships,
and rask fusion in model merging (Ilharco et al., 2023).

Based on these notations, we give the formal introduction to
four model merging methods. @ Weighted Average, which
directly averages the We%ght of models on 7 tasks, is repre-
sented by 0, = % 11 0. ® Task Arithmetic (Ilharco
et al., 2023), which merges the total 7' task vectors into
the base models’ parameters, denoted by @ynit = Opase +
A ZtT:l T¢, Where A is a hyper-parameter. @ Ties-Merging
(Yadav et al., 2023), which splits the merging processes into
three steps: TRIM, ELECT SIGN, and MERGE, where the
first two steps aim to eliminate the symbol conflict problem
in task vectors, denoted by ¢(-) for clarity. The merged
weight can be written as Oupnir = Opase + AZthl o(1e).
® AdaMerging (Yang et al., 2024c), which learns a set of
task-wise or layer-wise coefficients for Task Arithmetic or
Ties-Merging, denoted by 0 pnir = Opase + Zthl A7 and
Ounis = {0}, + Z;‘FZI MNr!yE | (L denotes the total num-

ber of layers / blocks in the model f), respectively.

3.2. Representation Bias in Model Merging

Here, we first provide a formal definition of representation
bias (Yang et al., 2024a) and then explain how it impacts
the performance of merged models.

Definition 3.2. (Representation bias). Consider T ex-

pert models and the merged model, the representation bias
. Dt "

on t-th task is defined as &, = ﬁ lezfl ! P20t 20),

where z denotes the extracted feature representation and

W(+) is the arbitrary distance measure function.

Observation 3.3. Consider T test datasets and individ-
ual expert models { D¢, fo,}I_,, the overall performance
gap between the merged model fo ., and these expert mod-

els obeys G(fo,,.c: {fo.}1=1) = Benim[Acc(fo,, Di¢) —
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Acc(fo,, D)) ox By &t

This observation can be empirically validated (see Figure
2), which indicates that model merging methods that mini-
mize the gap between expert models and the merged model
are likely to achieve superior performance. Consequently,
representation surgery emerges as a promising approach for
further performance enhancement for the merged model.

4. Methodology

We divided our proposed methodology into two core parts:

* A probabilistic representation surgery module, named
ProbSurgery, which enables more accurate modeling for
representation bias and thus achieves better performance.

* A theoretical analysis for ProbSurgery and two strategies
for extending ProbSurgery to the one-to-all setting, i.e.,
learning a single ProbSurgery module for all merged tasks.

ProbSurgery not only outperforms its counterpart, Surgery,
as a post-calibration technique for model merging, the pri-
mary goal of our work, but also showcases markedly supe-
rior performance in tackling out-of-distribution and domain-
shift challenges. Figure 3 shows the overall framework.

4.1. ProbSurgery

Previously, a post-merging representation surgery technique
was proposed by Yang et al. (2024a), which aims to align the
merged feature z%wit with the individual model-generated
feature 29 for the task ¢ via a surgery module denoted by
9w (+), where the network g is modeled as a three-layer fully
connected MLP and w denotes the learnable parameters
(see Figure 3 (b)). The training objective of Surgery is:

T |D{|
. o . Ounit 0
argmin Lajign = argmin E E w(ziy‘t‘ —fiyt,zi’),
{wi,..,wr {wi,.wr} 7 41

where &, = 9o, (Z?,Ltmif)'

ey

Totally, there are 7' trainable modules {g., , ..., Gw } that
are independently trained on 7" task validation sets. Due to
limited representation capability, one task-specific Surgery
module can hardly be extended to other tasks.

To solve this issue, we propose a simple method that adapts
the Surgery module in a probabilistic manner (see Figure
3). Firstly, we consider the same setting with Surgery (Yang
et al., 2024a), i.e., a one-to-one setting that learns 7" task-
specific modules for 7" individual tasks. Specifically, for a
specific task?, we formulate a probability distribution p(£|Q)
to represent the latent space () of the representation bias &,
which is denoted by a Gaussian distribution:

P(ElQ) ~ N, 0®),

?For clarity, we omit the symbol of the task index ¢.
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Figure 3. Comparisons of different MTL frameworks. (a) Typ-
ical model merging methods, which utilize the parameter fusion
technique to fulfill one unified model that can handle multiple
tasks simultaneously. (b) Post-merging representation surgery
framework. The (last-layer) representation surgery module can be
integrated with current model merging methods and boost their
performance. (¢) We compare our proposal, ProbSurgery, with
Surgery (Yang et al., 2024a), which provides a probabilistic repre-
sentation learning strategy for modeling the representation bias.

where 1 and o are learned by ProSurgery, a lightweight,
three-layer, fully connected MLP. From this representation
distribution p(£|Q), we sample an embedding £to represent
the latent representation bias of the original one &, where a
reparameterization trick (Kingma et al., 2015) is used as:

3

Correcting the biased embedding 2%t by decreasing the
probabilistic bias é offers the main advantage: the prob-
abilistic approach inherently incorporates uncertainty to
effectively model the biased embedding. This significantly
enhances the capacity to resolve ambiguities arising from
the merging of multiple models in parameter space.

5:#—’—60’ With ENN(0)1)7

Overall, the learning objective in our framework is

argmin Lalign + Alreg
{“’1 see,WT }
T |D{|
— ar : Ounif
= argmin Z Z (e
{winwr} 5y 55

€ie = 0(Vio, (20377)) and Lig, = KL(p(€]Q) [N (0, 1))

Note that A is a hyperparameter set to 1 x 10, ¢(+) denotes
the reparameterization trick, V,,, denotes our ProSurgery
module with learnable parameters wy, and Lk, denotes the
Kullback-Leibler (KL) divergence.

- éi,tv Z))+ ALk, @

4.2. Theoretical Evidence

We theoretically demonstrate that, under a PAC-Bayes
framework (McAllester, 2003), modeling representation
bias as a distribution yields lower classification error.

Let h(-) denotes the fixed classifier (after the encoder). To
correct the encoder’s output, we introduce a bias vector
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Table 1. Comparisons of different methods from four perspectives.
Note that a larger number of “O” denotes better performance.
Combining ProbSurgery with DFA/PDA achieves a trade-off be-
tween parameter efficiency and performance.

Methods No Parameter ~ Uncertainty Performance
Task ID  Efficient Modeling Acc  Robustness
Surgery X X X (@] O
ProbSurgery v X v o000 00
w/ DFA '4 v 4 ole} 000
w/ PDA v v 4 ole} 000

¢ € R? in subtractive form: the input to the classifier is
z — & We compare 1) the deterministic bias, a single
vector Eget, and 2) the probabilistic bias, a distribution Q¢
from which we sample for each input. Our goal is to show
that our probabilistic approach can yield a strictly smaller
classification error bound than the deterministic one.

Firstly, we formally give the expected 0-1 classification error
for our probabilistic method, as follows:

Rprob = E(w,y)NDNEéf\,Q(é‘z) []l(h(z - é) 7é y)]a (5)

where 1(-) is an indicator function and DV denotes the
whole sample set of all merged tasks with a size of N.

Theorem 4.1. (PAC-Bayes Theorem, adapted from
(McAllester, 2003)) Let Qo(é) be a prior distribution over
bias corrections and Q(€|z) be a data-dependent posterior.
With the probability 1 — & over the set DV, we have

Rorop < — ZQNﬁ
+wﬂ(m@o) +In(3)

N
The bound highlights that the probabilistic method achieves
a balance between fitting the training data (low empirical
risk, the first term) and maintaining simplicity (low KL-
divergence, the second term). By controlling the trade-
off between these two terms, the bound ensures that the
model generalizes well to unseen data, even when the output
representations are biased.

- &) #=yJ]

©)

Theorem 4.2. (Proofs: Appendix A) Based on the theorem
above, the probabilistic method achieves a strictly tighter
generalization error bound than the deterministic baseline:

KL(Q| Qo)

Rprob < Rdet + O( N )

(N
This theorem demonstrates that the probabilistic method
(our ProbSurgery) not only achieves a tighter error bound
but also explicitly reduces the generalization error compared
to the deterministic baseline (i.e. Surgery).

4.3. Extending ProbSurgery to One-to-All Setting

In this section, we move beyond the “one-for-one” constraint
in Surgery and propose two strategies to extend a single
ProbSurgery module for all merged tasks while preserving
competitive performance.

I: Direct feature alignment (DFA). Owing to the strong
performance of the probabilistic model, we empirically un-
cover that a single ProbSurgery module alone can handle
all biased representation from multiple tasks. Thus, the
optimized objective in Eq. (4) is reformulated as

argmin Latign + Alreg

{w}
T |D{°| .
—argmlnzzw ‘”“f — &, 28 MLk,  (®)
t=1 i=1

where the original optimized target {w1, ..., w7} is replaced
by w. Experimental results show that existing model merg-
ing approaches can achieve better performance improve-
ments even when only a single ProbSurgery module is used,
compared to scenarios with multiple Surgery modules.

I1: Proxy distribution alignment (PDA). To further boost
the performance of the probabilistic model in uncertainty
prediction, we change the mode of “feature-to-feature”
alignment to the “distribution-to-feature” alignment by mini-
mizing scoring rules (Gneiting & Raftery, 2007), a function
S(+) that evaluates how well a predicted distribution P over
a random variable X aligns with the actually observed real-
izations x of X.

To be specific, we change the alignment target from the
optimal representation 2% to the bias 28wt — 29, Then,
by scoring rules, we can calculate the score between the
generated bias distribution (1, o) and the actual observed
bias. Eventually, the optimization objective is

arg min S<QW7 Pbias) = arg min ]EzbiaSNPbiaS [Qwa zbias} .
w w

©)
In practical implementation, we have only one realized ob-
servation for the bias, i.e., 21 = z0uwit — 20: Then, we
approximate S(+) to two terms and write the ObJeCtIVC as

(10)
where x € [0, 1] and is empirically set as 0.5, and r denotes
the sampling number that is set as 5. Note that the first term
is a function of the sampled bias 27 and the observation bias
2123 The second term is a function of two embeddings, 27
and z*, drawn from the distribution Q,,. More analyses for
the sampling number r can be found in Appendix C.

A detailed comparison of varying methods is shown in Table
1. Experimental results showcase that the performance of
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Table 2. Multi-task performance when merging ViT-B/32 models on eight vision tasks. The green value denotes the improvement of
ProbSurgery compared with the counterpart method, Surgery. Results with more backbones are shown in Appendix C.5.

Method | SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD | Avg
Pretrained 62.3 59.7 60.7 45.5 31.4 32.6 48.5 43.8 48.0
Individual 75.3 71.7 96.1 99.7 97.5 98.7 99.7 79.4 90.5
Traditional MTL 73.9 74.4 93.9 98.2 95.8 98.9 99.5 77.9 88.9
Fisher Merging (Matena & Raffel, 2022) 68.6 69.2 70.7 66.4 72.9 51.1 87.9 59.9 68.3
RegMean (Jin et al., 2023) 65.3 63.5 75.6 78.6 78.1 67.4 93.7 52.0 71.8
Concrete TA (Tang et al., 2023) 62.5 61.1 76.0 95.7 91.0 81.9 98.5 51.9 71.3
Concrete AM (Tang et al., 2023) 67.8 70.0 87.5 96.0 91.6 96.7 98.7 63.8 84.0
TW AdaMerging (Yang et al., 2024c) 58.0 53.2 68.8 85.7 81.1 84.4 92.4 44.8 71.1
Weight Averaging 65.3 63.4 71.4 71.7 64.2 52.8 87.5 50.1 65.8
w/ Surgery (Yang et al., 2024a) 67.6 64.6 85.8 96.8 76.9 82.9 97.8 67.3 80.0
w/ ProbSurgery (Ours) 70.7 70.1 94.0 99.6 83.4 98.7 99.3 78.1 | 86.7(6.7)
Task Arithmetic (Ilharco et al., 2023) 55.2 54.9 66.7 78.9 80.2 69.7 97.3 50.4 69.1
w/ Surgery (Yang et al., 2024a) 63.8 59.9 83.3 97.9 87.0 87.0 98.6 69.4 80.9
w/ ProbSurgery (Ours) 67.0 67.0 94.1 99.8 91.2 98.8 99.4 79.0 | 87.0(6.1)
Ties-Merging (Yadav et al., 2023) 65.0 64.4 74.8 774 81.2 69.3 96.5 54.5 72.9
w/ Surgery (Yang et al., 2024a) 69.8 66.1 87.3 97.5 86.7 87.6 98.5 71.6 83.1
w/ ProbSurgery (Ours) 71.5 70.6 94.4 99.7 90.6 98.9 99.4 78.9 | 88.0(4.9)
LW AdaMerging (Yang et al., 2024c) 64.5 68.1 79.2 93.8 87.0 91.9 97.5 59.1 80.1
w/ Surgery (Yang et al., 2024a) 71.2 72.0 92.3 99.0 92.2 97.9 99.0 76.1 87.5
w/ ProbSurgery (Ours) 71.7 73.1 94.8 99.7 93.6 98.8 99.5 79.3 | 88.8(1.3)
SOTA: EMR-MERGING (Huang et al., 2024) \ 75.2 72.8 93.5 99.5 96.9 98.1 99.6 74.4 \ 88.7

Table 3. Multi-task performance when merging BERT models on five NLP tasks. The green value denotes the improvement of ProbSurgery

compared with the counterpart method Surgery (Yang et al., 2024a).

Method ‘ AG News  Yelp Sentiment Amazon Sentiment Yahoo Q&A DBPedia Wikipedia ‘ Avg.
Traditional MTL 90.6 59.1 55.6 71.3 98.5 75.0
KD4MTL (Li & Bilen, 2020) 91.6 59.2 57.0 71.2 98.7 75.5
Weight Averaging 79.2 49.8 45.0 50.3 55.1 55.8
w/ Surgery 90.3 58.0 54.2 70.8 98.4 74.3
w/ ProbSurgery (Ours) 91.4 62.1 55.8 72.4 98.1 76.0 (1.7)
Task Arithmetic (Ilharco et al., 2023) 82.9 55.8 48.4 53.1 81.5 64.3
w/ Surgery 89.8 58.4 55.4 70.3 98.0 74.4
w/ ProbSurgery (Ours) 90.7 60.4 56.4 72.3 98.7 75.7 (1.3)

only one single ProbSurgery module with DFA (or PDA) can
remarkably outperform that of multiple Surgery modules.

5. Experiments
5.1. Experimental Setup

All experiments are implemented by Pytorch library and
conducted on a single NVIDIA RTX A6000. We tested
three times with different random seeds and reported the
average performance.

We categorize the compared methods into two parts: 1)
basic (non-merged) methods: Pretrained, Individual, and
Traditional MTL, 2) model merging methods: Weight Aver-
aging, Fisher Merging (Matena & Raffel, 2022), RegMean
(Jin et al., 2023), Task Arithmetic (Ilharco et al., 2023),
Ties-Merging (Yadav et al., 2023), Concrete TA (Tang et al.,

2023), Concrete AM (Tang et al., 2023), AdaMerging (Yang
et al., 2024c), Surgery (Yang et al., 2024a), and EMR-
MERGING (Huang et al., 2024).

Architecture. (1) Following Surgery (Yang et al., 2024a),
we adopt CLIP (Radford et al., 2021) as the backbone model
for vision tasks, where various ViT family architectures are
utilized for the visual encoder. For NLP tasks, we assign
Bert as the backbone. (2) The structure of ProbSurgery is a
lightweight, three-layer connected MLP network, formally
denoted by {h1, ha, h1}, where hy represents the embed-
ding size output by the encoder in CLIP or NLP models and
ho is the width of the hidden layer, a hyperparameter (set as
128 for all settings) in this paper.

Other details are divided into three parts, including 1)
Datasets. See Appendix B.1, 2) Baseline. See Appendix
B.2, and 3) Training implementation. See Appendix B.3.
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Table 4. Comparison results of ProbSurgery and Surgery. X denotes “learning eight modules for eight tasks independently” and v denotes

“learning one module for all merged tasks”.

Methods One Module \ SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD \ Avg.
Task Arithmetic 55.2 54.9 66.7 78.9 80.2 69.7 97.3 504 | 69.1
w/ Surgery X 63.8 59.9 83.3 97.9 87.0 87.0 98.6 694 | 80.9
w/ ProbSurgery X 67.0 67.0 94.1 99.8 91.2 98.8 99.4 79.0 | 87.0
w/ Surgery v 60.3 56.0 70.1 92.1 82.7 76.8 97.7 55.0 | 73.8
w/ ProbSurgery v, D 62.2 58.4 84.8 98.9 88.7 94.2 98.8 684 | 81.8
w/ ProbSurgery v/, PD 63.1 58.7 85.7 99.5 89.0 95.0 99.2 689 | 824
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Figure 4. Performance comparisons of our ProbSurgery with Surgery (Yang et al., 2024a) regarding calibrating the representation bias.

5.2. Main Results

Vision tasks. In Table 2, we report the comparison results
of ProbSurgery with previous state-of-the-art methods on
eight vision tasks where the backbone is ViT-B/32. We can
observe that 1) current model merging methods are signifi-
cantly worse than traditional multi-task learning methods,
even for the best one, LW adamerging. It is because the
issue of parameter interference largely degrades the task
knowledge provided by different models. 2) ProbSurgery
demonstrates consistent improvements across various model
merging strategies, including all four base methods, achiev-
ing notably higher average accuracy on a diverse set of
vision tasks. Compared to standard Surgery, ProbSurgery
delivers stronger and more stable gains without sacrificing
performance on individual tasks. For example, applying
ProbSurgery to Weight Averaging boosts the average ac-
curacy from 80.0% to 86.7%, an increase of 6.7%. These
consistent gains across different model merging strategies
highlight the robust performance benefits that ProbSurgery
brings to multi-task learning.

NLP tasks. Following (Yang et al., 2024a), we adopt Bert
as the backbone for five NLP tasks and then conduct model
merging. We report the results in Table 3. From this table,
our post-calibration method (ProbSurgery) consistently out-
performs Surgery on all five NLP tasks, yielding up to a
1.7% improvement (from 74.3% to 76.0%) under Weight
Averaging and a 1.3% improvement (from 74.4% to 75.7%)
under Task Arithmetic. Notably, this is the first time a post-
hoc calibration approach has surpassed a dedicated multi-
task learning algorithm (KD4MTL (Li & Bilen, 2020)), as

ProbSurgery achieves an average accuracy of 76.0% versus
KD4MTL'’s 75.5%. These results underscore the effective-
ness and broad applicability of our method in delivering
state-of-the-art performance across diverse NLP tasks.

5.3. Performance in One-fo-All Setting

Ideally, we hope to resort to one module to rectify repre-
sentations from all merged tasks, which greatly reduces
the training cost and improves the practicality. In Table
4, the results demonstrate the superiority of our proposed
ProbSurgery approach. Notably, using a single ProbSurgery
module significantly outperforms the performance achieved
by using eight independent Surgery modules (81.8% or
82.4% vs. 80.9%), as reflected in the average accuracy
scores. Additionally, both strategies, DFA and PDA, consis-
tently enhance performance across multiple tasks, further
validating the effectiveness of our probabilistic framework.
This highlights the efficiency and robustness of our method
in handling diverse tasks with a unified module, largely
promoting the real-world application of ProbSurgery.

5.4. More Analysis

Performance on modeling the representation bias. In
this work, we aim to minimize the discrepancy in the rep-
resentation distribution between the merged and individual
models. To demonstrate this, we plot L1 distance after
post-calibrating four methods with our ProbSurgery.

The results are presented in Figure 4. Overall, our method
(represented by the red bars) consistently achieves lower
L1 distance across various tasks and base methods, indi-



Representation Surgery in Model Merging with Probabilistic Modeling

Table 5. Comparison results of ProbSurgery and Surgery in the setting of domain shift and out-of-distribution.

Settings | Domain shift | Out-of-distribution
Methods Weighted Averaging Task Arithmetic Weighted Averaging Task Arithmetic
In-domain  Other-domain | In-domain  Other-domain ACC (1) AUROC (1) ACC (1) AUROC (1)
Only merge 84.6 71.4 86.2 73.1 82.7 58.5 84.2 62.1
w/ Surgery 89.1 (4.5) 72.1 (0.7) 90.2 (4.0) 74.6 (1.5) 90.6 (7.9) 69.5 (11.0) 92.7 (8.5) 72.6 (10.5)
w/ ProbSurgery | 91.4 (6.8) 76.8 (5.4) 93.1 (6.9) 77.2 (4.1) 93.7(11.0) 76.1(17.6) | 955(11.3) 80.2(18.1)
= Weighted Averaging Weighted Averaging 89-
C: 8025- —— Merge w/ Surgery ke 88.47 88.52 88.52
0'g0- - —— Merge w/ Ours. —
% g 0.20- ’ B 88 87.27 b 8755 87,53
= pemmemen] 2 I 287
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I —+— Merge w/ Surgery g = z —e— Task Arithmetic
g 75- —— Merge w/ Ours a 0.15- .\‘,,‘__ 84 - 84.10 —e— \Weighted Averaging
© *":QQ Qex")@ﬂ&oo"f’@”y@Q %%QQVQQQ@QQ@QQQ N "JQ%«,erxf’QD'LQQQ’f’QQ“)QQ%%"@VQQQ&”QQ%@Q 3‘2 6‘4 128 512 20‘48
Steps Steps h,, the width of hidden layer

Figure 5. Better efficiency is achieved by our proposed Prob-
Surgery compared to Surgery (Yang et al., 2024a).

cating superior performance in mitigating representation
bias. Compared with “merge only” (green) and “merge w/
surgery” (blue), our approach not only reduces L1 distance
more significantly in most tasks but also demonstrates con-
sistent effectiveness regardless of different merging strate-
gies. This highlights the stability and general applicability
of our method, which can better align the merged represen-
tations with their expected distributions, ultimately offering
improved generalization in multi-task settings. More results
on various distance metrics are shown in Appendix D.

Generalization. To evaluate the generalization of Prob-
Surgery, we conduct experiments on two settings, including:

* Domain shift. We test the performance in a domain-
shifted setting, which would reflect the generalization
of generated representation bias. Specifically, we merge
four individual models, independently trained on SUN397,
Cars, HomeOffice (Real-World), and DTD with traditional
model merging methods. After post-calibrating, we com-
pute the average test accuracy on the other three domain
datasets - HomeOYffice (Art, Clipart, and Product). The
results are shown in Table 5 left, reflecting that the im-
provement on the in-domain dataset brought by Surgery
can hardly transfer to other-domain datasets. In detail, we
can see that with weighted averaging, the improvement
of test accuracy in Real-world domain achieves 4.5% af-
ter training with Surgery, while only an average 0.7%
improvement is obtained in the other three domains. In
contrast, we have a performance increase of 5.4%.

* Out-of-distribution. We compare ProbSurgery with
Surgery on the OOD Detection task, where the test phase
will occur with samples from other datasets/distributions.

Figure 6. Hyper-parameter selection for hs, which denotes the
width of the hidden layer in ProbSurgery module.

We merged four models trained on CIFAR-10, EuroSAT,
SVHN, and GTSRB. Then, we introduce 500 samples from
SUN397 in the test phase as the OOD data. More experi-
mental details can be found in Appendix B.5. In Table 5
right, ProbSurgery outperforms Surgery on OOD tasks by
achieving higher ACC and AUROC in both methods. For
instance, it boosts ACC from 90.6% to 93.7% and AU-
ROC from 69.5% to 76.1% under Weighted Averaging.

Overall, we can consider that the variance in our proba-
bilistic manner introduces extra cross-model information,
contributing to boosting the generalization performance.

Efficiency. Probabilistic models often achieve faster con-
vergence than deterministic models because they effectively
model and capture uncertainty, which reduces the risk of
overfitting and leads to smoother optimization paths.

In Figure 5, we plot the test accuracy of four methods in-
tegrated with Surgery (Yang et al., 2024a) and ours. From
these curves, it is evident that our method ProbSurgery (blue
lines) converges much faster than Surgery (red lines) on all
merging methods. With only 300 steps, ProbSurgery has
already surpassed Surgery’s best performance across all
four base methods. This improvement underscores the effi-
ciency of our technique, demonstrating that even with fewer
training steps, it can achieve superior test accuracy.

5.5. Ablation Study

Hyper-parameters. In ProbSurgery, there exists one es-
sential hyper-parameter, i.e., ho, the hidden layer’s width.
Results shown in Figure 6 demonstrate that the choice of
would impact test accuracy. The best performance among
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all base methods is observed when the value of hy is be-
tween 128 and 512. At he = 128, the hidden layer is
wide and the complexity of learnable parameters is enough
to capture complex patterns, leading to a significant accu-
racy boost. Increasing ho to 512 further stabilizes perfor-
mance, but beyond this point (e.g., ho = 2048), accuracy
slightly decreases due to overfitting caused by excessive ca-
pacity. Thus, selecting ho within the interval of [128, 512]
contributes to both model generalization and task-specific
learning.

6. Conclusion

In this paper, we follow one research - Surgery (Yang et al.,
2024a) and study how to mitigate the representation bias
inherent in the final merged model, which aims to fill the
performance gap between the merged model and multiple
individual models. To this end, we propose to model the bias
in a probabilistic manner and design a module named Prob-
Surgery. This module outputs more robust representation
bias via sampling from the generated distribution that well
models the uncertainty within model merging. Meanwhile,
we propose two strategies that can extend ProbSurgery to
the one-to-all post-calibration setting, which brings more
practical values. Extensive experiments demonstrate the
effectiveness of ProbSurgery.
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Organization of the Supplemental Material
. The main contents of this appendix are as follows:

* Appendix A: We provide the theoretical proofs for the given therome in the paper.
* Appendix B: We describe the datasets, training procedures, and architecture of PorbSurgery in detail.
* Appendix C: We show some experimental results and analyses that are deleted due to the page limit of the main text.

* Appendix D: We visualize the representation generated by Surgery and ProbSurgery, respectively, via t-SNE technique
(Van der Maaten & Hinton, 2008).

A. Theoretical Proofs

In this section, we first provide an analysis for the limitation of the deterministic method and then give detailed proof steps
for Theorem 4.2.

A.1. Analysis for the Deterministic Method

The deterministic method as a post-representation calibration manner, like surgery, is equivalent to a Dirac delta posterior:

Quer(€12) = (€ — €ans), Where 8(€ — aer) — {“’3 2 7&2 (an

Substituting into the PAC-Bayes bound (McAllester, 2003), the KL-divergence term KL(Qges | Qo) diverges unless Q) is
also a delta distribution, which violates the PAC-Bayes assumptions. Thus, deterministic representation correction cannot
leverage PAC-Bayes bounds and instead relies on classical VC-dimension bounds:

- d
Raet < Raet + O(4/ N)’ (12)

where d denotes the complexity of the three-layer MLP in Surgery, and Ret, Raget denote the expected and empirical risk,
respectively.

A.2. Proofs for Theorem 4.2

From Theorem 4.1, for any prior () and posterior (9, with the probability 1 — & over the training set DV, we have

N 2\/ﬁ
1 KL(Q[Qo) + In =%~
Rpnoy < - ;EM [L(h(z — &) # )] + \/ 5 : (13)
Empirical Risk IA{Pmb Complexity Term
For the first term, i.e., the empirical risk term for ProbSurgery, it satisfies:
1Y 1Y
5 O Eeno[L(h(z — &) # 9l < 5 D 1z — Ear) # 92), (14)
i=1 i=1

where &4er = E¢g[€] is the deterministic correction (equivalent to Surgery). This follows from Jensen’s inequality applied
to the convex 0-1 loss. Thus, we can deduce that Rpop < Rget-

For the deterministic method (Surgery), classical VC-dimension bounds give:

- d
Raet < Raet + O <\/ N) ; (15)

where d is the VC-dimension (or parameter count) of the deterministic network.
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Eventually, by substituting the empirical risk bound in Eq. (14) into the PAC-Bayes bound in Eq. (13) and then combining
with Eq. (15), we have

KL(Q[ Qo
Rprob S Rdet + O( %) (16)
Here, we omit the item of In @ since its value is very small given a large scale of the training set (i.e., N is large).
B. Experimental Setup
B.1. Datasets

Following prior studies on model merging, such as Task Arithmetic (Ilharco et al., 2023), Ties-Merging (Yadav et al., 2023),
AdaMerging (Yang et al., 2024c¢), and Surgery (Yang et al., 2024a), we merge models trained on the following eight vision
datasets and five NLP datasets:

* SUN397 (Xiao et al., 2016): A benchmark for Scene Understanding (SUN) featuring 108,753 images across 397 classes.
Each class contains at least 100 images.

* Cars (Krause et al., 2013): The Stanford Cars dataset comprises 16,185 images spanning 196 car classes, approximately
split 1:1 into training and test sets.

¢ RESISC45 (Cheng et al., 2017): A publicly available benchmark for remote sensing image scene classification. It
includes 45 scene classes, each with 700 images (256256 resolution), totaling 31,500 images.

* EuroSAT (Helber et al., 2019): A dataset of Sentinel-2-based satellite images focusing on land-use classification. It
consists of 27,000 labeled and geo-referenced images divided into 10 classes.

e SVHN (Yuval, 2011): A dataset of real-world house number images in 10 classes, visually resembling MNIST (LeCun,
1998) but containing over 600,000 color images.

* GTSRB (Stallkamp et al., 2011): The German Traffic Sign Recognition Benchmark, with over 50,000 images in 43
classes. Images vary in lighting conditions and backgrounds.

e MNIST (LeCun, 1998): One of the most renowned datasets in machine learning: 70,000 (60k training + 10k testing)
grayscale images of handwritten digits in 10 classes, each sized 28 x28.

* DTD (Cimpoi et al., 2014): The Describable Textures Dataset (DTD) comprises 5,640 labeled texture images in 47
classes, with each class containing around 120 images (ranging from 300x 300 to 640x 640 in resolution).

* AGNews (Del Corso et al., 2005): A news classification dataset with roughly 120k training samples and 7.6k test
samples, covering 4 classes (World, Sports, Business, Science/Technology).

* Yelp (Zhang et al., 2015): A sentiment analysis dataset of user-submitted reviews (positive vs. negative), containing
around 560k training samples and 38k test samples.

* Amazon (Zhang et al., 2015): Another sentiment analysis dataset (positive vs. negative) from Amazon product reviews,
including about 3.6M training samples and 400k test samples.

* DBPedia (Zhang et al., 2015): Focused on categorizing Wikipedia article excerpts into 14 classes (e.g., Company,
Artist, Educationallnstitution), with approximately 560k training samples and 70k test samples.

* Yahoo (Auer et al., 2007): A question-and-answer classification dataset of around 1.4 million training samples and 60k
test samples, covering 10 classes (e.g., Society & Culture, Science & Mathematics, Health).
B.2. Baselines

We categorize the compared methods into two parts: 1) basic (non-merged) methods: Pretrained, Individual, and Traditional
MTL, 2) model merging methods: includes as follows

* Weight Averaging: Simply averages the corresponding weights from multiple trained models to a merged model.
* Fisher Merging (Matena & Raffel, 2022): Merges models by weighting parameters according to Fisher information,

prioritizing directions crucial for each task.
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Figure 7. Flowchat of the post-representation calibration processes with our proposal, ProbSurgery.

ProbSurgery

Table 6. Comparison of the number of learnable parameters within Surgery and ProbSurgery. Our proposal ProbSurgery can be applied
to one-to-all settings, i.e., learning one ProbSurgery module for all merged tasks. Thus, the number of extra parameters will not increase
with the number of merged tasks increase.

Networks | ViT-B/16 ViT-B/32 ViT-L/14
Number of the backbone’s parameters \ 907,589,640 894,337,032 2,740,496, 392

Number of extra learnable parameters
Surgery Module 131,072 196, 608
w/ merging N tasks N x 131,072 N x 196, 608
ProbSurgery Module 131,712 197,504
w/ merging N tasks 131,712 197,504

* RegMean (Jin et al., 2023): Adds a regularization term when averaging models, penalizing large deviations from each
individual task model.

e Task Arithmetic (Ilharco et al., 2023): Views models as points in parameter space and combines them via vector
arithmetic operations (e.g., addition, subtraction).

* Ties-Merging (Yadav et al., 2023): Selectively ties and reuses shared parameters across models to preserve beneficial
components during merging.

* Concrete TA & AM (Tang et al., 2023): Provides a continuous relaxation of task arithmetic, learning an optimal linear
mixture of task-specific parameters.

* AdaMerging (Yang et al., 2024c): Adaptively reweights each model’s parameters based on their contribution to the
merged solution.

B.3. Implementation Details

To (post)train and learn the parameters w of our proposal, ProbSurergy, we follow the convention in Surgery (Yang et al.,
2024a). To be specific, we do not require any information from the test labels rather than adopting a self-training manner.
For training, we adopt Adam as the optimizer with a learning rate of 1 x 1073 for all training iterations. We totally train
the ProbSurgery module for 5, 000 iteration with a batch size of 16. During the training phase, we utilize the stochastic
sampling strategy, i.e., the reparameterization trick, to obtain the generated representation bias. For inference and testing,
we consider the mean value p output by ProbSurgery as the representation bias.
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Table 7. Multi-task performance on the ViT-B/32 model when different loss functions are used in the representation surgery module. The
green value denotes the improvement of ProbSurgery compared with the counterpart method Surgery (Yang et al., 2024a).

Methods Loss Func. | SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD | Avg.

Task Arithmetic (Ilharco et al., 2023) | 552 54.9 66.7 78.9 802 697 973 504 | 69.1
w/ Surgery (L1 Loss) 638  59.9 83.3 97.9 870 870 986  69.4 | 809
w/ ProbSurgery (L1 Loss) 663  65.8 943 99.7 90.5 98.6 99.4 780 | 86.6(5.7)
w/ Surgery (MSELoss) 643 59.8 84.0 97.8 876 887 988 698 | 814
w/ ProbSurgery  (MSELoss) 66.5 659 94.1 99.7 91.1 98.9 99.5 785 | 86.7(5.3)
w/ Surgery (SmoothL1Loss) | 641  59.7 84.1 97.9 88.1 89.7 988 706 | 816
w/ ProbSurgery (SmoothL1Loss) 66.0 63.4 93.9 99.6 90.8 98.5 99.4 78.2 | 86.2 (4.6)

B.4. Architecture of ProbSurgery

Our proposal module, ProbSurgery, belongs to the lightweight network, which is parameterized by a three-layer fully
connected MLP and exhibited in Figure 7. We can observe that this module is simple and contains fewer learnable parameters,
whose architecture is represented by {hq, ho, h1}. Note that h; denotes the width of feature embedding output by the
encoder in CLIP or NLP models. For example, h; is set as 512 for ViT-B/16, 32 and 768 for ViT-L/14. Furthermore, hs is
the width of the hidden layer, a hyperparameter in this paper. We set i = 128 for all experiments.

We report the parameter comparison between Surgery and our ProbSurgery in Table 6. Firstly, even though our method
belongs to a probabilistic manner, it does not significantly introduce more parameters compared with Surgery. Then, when
the number of merged tasks increases, the advantage of the learnable parameter would be more obvious since ours can be
directly extended into one-to-all settings.

B.5. Implementation of OOD Experiments

In the OOD experiment, we introduce two metrics, i.e., test accuracy and AUROC, to evaluate the performance of Surgery
and ProbSurgery. The computation details for these two metrics are as follows. When we finish the model merging and
the post-calibration process with (Prob)Surgery, we test the performance of different model merging methods on OOD
detection. We use the test sets of four tasks and a small OOD set of 500 samples randomly sampled from the test set of
SUN397, denoted by Dg, D1, D2, D3, and D,,.

To measure test accuracy, we follow the standard model-merging approach and maintain separate task-specific classifiers

for the merged tasks. Formally, the test accuracy on the test set of the ¢-th task D; can be expressed as ACC; =

2 (wy)en+ 0o 1I=Y)
D]+ Doll

, where g denotes the predicted label.

To report AUROC, we use a commonly adopted unsupervised technique that does not rely on the classifier. Specifically, for
each task, we store its class prototypes during training (when no OOD samples are present). In the test phase, for task £, we
compute the representation of every sample in the test set D; + D, and measure its distance to the stored class prototypes.
The greater the distance, the more likely the sample is to be an outlier. Eventually, the AUROC value can be calculated on
the distance and the 0-1 label (where O and 1 denote the In-distribution and Out-of-distribution samples, respectively).

C. More Experimental Analyses
C.1. Impacts of Loss Functions

In this paper, to measure the discrepancy in the representation distribution be- tween the merged and individual models, we
utilize L1 distance (torch.nn.L1Loss () ) as the optimization loss function, which keeps the same as Surgery (Yang
et al., 2024a). To verify that this discrepancy is agnostic with different distance metrics, we test totally four distance metrics
and set them as the loss function for comparison, including L1 loss, MSE loss and Smooth L1 loss.

The experimental results in Table 7 demonstrate the superior performance of our proposed method, ProbSurgery, compared
to the baseline Surgery across various loss functions. ProbSurgery achieves consistent improvements in average performance,
with gains ranging from +4.6 to +5.7, highlighting its adaptability to different loss functions. Notably, ProbSurgery excels in
datasets like RESISC45 and DTD, where it significantly reduces task interference and enhances representation alignment,
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Figure 8. Performance impact of the sampling number regarding computing scoring values in our Proxy Distribution Alignment (PDA).

achieving gains as high as +11.0 and +8.6, respectively. These improvements demonstrate its robustness in handling diverse
tasks, from large-scale datasets like SUN397 to texture-based datasets like DTD. Moreover, its compatibility with different
loss functions and ability to generalize across tasks establish ProbSurgery as an effective approach for multi-task learning.

C.2. Impact of Sampling Number in Proxy Distribution Alignment (PDA)

In real implementation, to better estimate the discrepancy between the predicted distribution @, with our practical
representation bias observation z"*%, the scoring rules should leverage the sampling strategy (i.e., the reparameterization
trick) to compute the distance between two vectors. Therefore, a larger number for sampling can better approximate the true
distribution and reduce estimation uncertainty. It is worthy-noted that increasing the sampling number would not raise the
learnable parameters and training costs since it does not involve extra gradient computation.

In Figure 8, we report the influence of sampling number regarding computing scoring values in our proposed Proxy Distri-
bution Alignment (PDA). The experimental results demonstrate that increasing the sampling number in PDA consistently
improves test accuracy across different merging strategies, with the performance gains becoming stable as the sampling
number reaches 10 or more. This highlights the effectiveness of leveraging larger sampling sizes to better approximate the
true distribution and reduce estimation uncertainty. Notably, the use of PDA consistently outperforms the baseline (merging
without PDA) in all methods, with LW Adamerging achieving the highest overall accuracy. Furthermore, the approach
introduces minimal computational overhead, as no additional learnable parameters or gradient computations are required,
making PDA a practical and efficient method for improving model performance.

C.3. Impact of the Size of the Validation (Test) Set

In Surgery and ProbSurgery, we rely on unlabeled test/validation data to build self-supervision signals and update the
parameters of the (Prob)Surgery module. Here, we made an experiment to verify how the size of the validation set impacts
ProbSurgery’s performance. In the following table, we can see that using a larger proportion of the validation set helps the
ProbSurgery module better capture and mitigate inherent biases, leading to higher overall accuracy. Notably, even when
only 10% of the unlabeled validation data is used, our method still exceeds Surgery’s performance of 80.9%, demonstrating
its robustness under limited data conditions.

Table 8. Comparison of performance across datasets under different validation set ratios. The backbone is ViT-B/32.

Method Ratio SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD ‘ Avg
Task Arithmetic - 55.2 54.9 66.7 78.9 80.2 69.7 97.3 504 | 69.1
w/ Ours 10% 63.5 64.5 89.6 94.9 88.4 89.4 98.4 74.5 | 82.9
w/ Ours 50% 65.9 66.5 923 97.8 90.5 95.0 98.8 77.2 | 855
w/ Ours 100% 67.0 67.0 94.1 99.8 91.2 98.8 99.4 79.0 | 87.0
w/ Surgery 100% 63.8 59.9 83.3 97.9 87.0 87.0 98.6 69.4 | 80.9
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C.4. Performance on Merging Tens of Tasks

To verify the performance of our ProbSurgery in more challenging settings, we additionally add three tasks (ImageNet100,
CIFAR100, and real-world Homeoffice) to original eight tasks. The results in Table 9 show that ProbSurgery consistently
outperforms both the Task Arithmetic and Surgery baselines across all datasets. Notably, the performance gains are especially
pronounced on the newly introduced, more complex benchmarks: ProbSurgery achieves 74.8% on ImageNet100 (vs. 11.6%
for Task Arithmetic and 56.8% for Surgery). These results indicate even when merging a large number of models, our
method can effectively correct the representation bias and achieve superior performance.

) \QQ N\ $

N & & & S &

) o 2 N = 9
Method S g < Q S S > IS O & Avg
Task Arithmetic 318 393 496 603 744 604 958 384 116 42.6 703 | 523
w/ Surgery 505 527 768 963 838 799 986 658 568 55.6 803 | 725
w/ProbSurgery | 537 557 863 979 855 960 988 729 748 63.4 862 | 79.2

Table 9. Performance comparison of Surgery and ProbSurgery on merging 11 tasks.

C.5. Performance on More Backbones

For vision tasks, we further conduct comparison experiments on a different vision backbone, i.e., ViT-L-14, to verify the
effectiveness of our proposal, ProbSurgery.

* ViT-L/14. Table 10 demonstrates the performance of various methods for merging ViT-L/14 models across eight tasks.
Our proposed method, ProbSurgery, consistently outperforms the baseline Surgery and other existing methods in terms of
average performance (Avg.). Notably, ProbSurgery achieves significant improvements, with performance gains ranging
from +1.5% to +5.1% over Surgery. This highlights its superior ability to balance task-specific features and enhance
overall stability. Moreover, ProbSurgery adapts seamlessly to different merging strategies, such as Weight Averaging,
Task Arithmetic, and LW AdaMerging, consistently yielding better results. These advantages make ProbSurgery a
highly effective and generalizable solution for multi-task learning and large model merging tasks.

* ViT-B/16. Table 11 highlights the superior performance of our proposed method, ProbSurgery, in merging ViT-B/16
models across eight tasks. Compared to the baseline Surgery, ProbSurgery consistently achieves higher average scores,
with improvements ranging from +2.4% to +6.9%, demonstrating its ability to balance task-specific features effectively.
It excels across diverse datasets, including challenging tasks like DTD and SVHN, and outperforms other methods,
such as Weight Averaging, Task Arithmetic, and LW AdaMerging, across all strategies. ProbSurgery’s robust and
generalizable approach ensures better task balance, enhanced generalization, and improved stability, making it a highly
effective solution for multi-task learning.
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Table 10. Multi-task performance when merging ViT-L/14 models on eight tasks.The green value denotes the improvement of ProbSurgery
compared with the counterpart method Surgery (Yang et al., 2024a).

Method ‘ SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD ‘ Avg.
Pretrained 66.8 71.7 71.0 59.9 58.4 50.5 76.3 553 64.5
Individual 82.3 92.4 97.4 100 98.1 99.2 99.7 84.1 94.2
Traditional MTL 80.8 90.6 96.3 96.3 97.6 99.1 99.6 84.4 93.5
Fisher Merging (Matena & Raffel, 2022) 69.2 88.6 87.5 93.5 80.6 74.8 93.3 70.0 82.2
RegMean (Jin et al., 2023) 73.3 81.8 86.1 97.0 88.0 84.2 98.5 60.8 83.7
Concrete TA (Tang et al., 2023) 74.6 86.2 89.0 96.7 93.6 934 99.1 66.9 87.4
Concrete AM (Tang et al., 2023) 77.8 91.2 92.1 97.0 944 97.9 99.0 79.5 91.1
Weight Averaging 72.1 81.6 82.6 91.9 78.2 70.7 97.1 62.8 79.6
w/ Surgery (Yang et al., 2024a) 73.7 83.9 92.0 98.4 82.4 86.3 98.7 71.9 85.9
w/ ProbSurgery (Ours) 75.7 87.1 96.5 99.6 88.9 99.0, 99.5 81.6 91.0(.1)
Task Arithmetic (Ilharco et al., 2023) 73.9 82.1 86.6 94.1 87.9 86.7 98.9 65.6 84.5
w/ Surgery (Yang et al., 2024a) 75.7 84.4 93.1 98.8 91.3 93.4 99.1 76.1 89.0
w/ ProbSurgery (Ours) 77.0 87.5 96.2 99.7 94.2 99.1 99.4 81.8 92.0 (4.0
Ties-Merging (Yadav et al., 2023) 76.5 85.0 89.3 95.7 90.3 83.3 99.0 68.8 86.0
w/ Surgery (Yang et al., 2024a) 76.5 85.9 93.7 99.2 89.7 92.0 99.1 78.1 89.3
w/ ProbSurgery (Ours) 77.7 88.4 96.7 99.7 93.2 99.0 99.5 824 92.6(3.3)
LW AdaMerging (Yang et al., 2024c) 79.0 90.3 90.8 96.2 93.4 98.0 99.0 79.9 90.8
w/ Surgery (Yang et al., 2024a) 80.3 90.8 94.3 98.2 94.1 98.7 99.2 82.5 92.3
w/ ProbSurgery (Ours) 80.7 91.4 96.2 99.6 95.9 99.2 99.5 84.1 93.8(1.5)
SOTA: EMR-MERGING (Huang et al., 2024) ‘ 83.2 90.7 96.8 99.7 97.9 99.1 99.7 82.7 ‘ 93.7

Table 11. Multi-task performance when merging ViT-B/16 models on eight tasks. The green value denotes the improvement of ProbSurgery
compared with the counterpart method Surgery (Yang et al., 2024a).

Method ‘ SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD ‘ Avg.
Pretrained 63.8 64.6 65.7 54.5 52.0 43.3 51.7 45.1 55.0
Individual 81.8 86.8 96.9 99.7 97.8 99.1 99.7 82.0 92.9
Fisher Merging (Matena & Raffel, 2022) 68.5 69.9 75.2 80.4 73.2 61.2 94.5 50.7 71.7
RegMean (Jin et al., 2023) 69.1 71.6 77.6 88.8 83.7 70.2 96.9 54.6 76.6
Weight Averaging 67.7 70.0 75.3 79.5 74.9 60.1 94.4 43.8 70.7
w/ Surgery (Yang et al., 2024a) 70.3 72.4 88.8 97.6 82.0 83.1 98.1 68.5 82.6
w/ ProbSurgery (Ours) 74.0 79.4 95.7 99.7 87.8 98.8 99.4 81.2 | 89.5(6.9)
Task Arithmetic (Ilharco et al., 2023) 61.1 65.9 74.0 76.2 88.0 73.9 98.4 53.0 73.8
w/ Surgery (Yang et al., 2024a) 68.3 72.3 88.7 97.7 91.0 89.5 98.9 72.9 84.9
w/ ProbSurgery (Ours) 71.9 79.3 95.8 99.7 93.5 99.0 99.4 81.5 | 90.0 (5.1
Ties-Merging (Yadav et al., 2023) 69.1 72.5 80.5 84.0 85.0 71.5 98.1 54.9 77.0
w/ Surgery (Yang et al., 2024a) 73.0 76.2 90.7 98.1 89.7 86.7 98.7 75.2 86.0
w/ ProbSurgery (Ours) 75.1 80.9 95.8 99.7 92.2 99.0 99.5 82.0 | 90.5 (4.5)
LW AdaMerging (Yang et al., 2024c¢) 70.2 80.7 81.6 94.8 91.6 95.8 98.5 66.2 84.9
w/ Surgery (Yang et al., 2024a) 73.6 81.5 90.4 98.5 93.2 97.4 98.9 77.0 88.8
w/ ProbSurgery (Ours) 75.3 83.7 95.5 99.8 94.9 99.0 99.4 82.3 | 91.2(24)

D. Visualization Results

Representation visualization. In Figures 9, we visualize the generated representation via t-SNE technique, which
clearly illustrates the advantages of our proposed method, ProbSurgery, in generating high-quality representations as a
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post-calibration technique for model merging. Its advantages can be divided into three parts, including

 Better Alignment is evident as the red points produced by ProbSurgery closely align with the blue points representing
individual task-specific models, preserving critical features and ensuring the merged representations stay faithful to the
original tasks.

* Reduced Overlap is prominently shown across datasets such as DTD and SVHN, where ProbSurgery minimizes the
interference between tasks by creating well-separated and distinct clusters, in contrast to the significant overlap seen in
both four baseline methods like Weighted Averaging.

* Task-Specific Robustness is highlighted by ProbSurgery’s ability to consistently produce clear and tightly clustered
representations across diverse tasks, including both simpler datasets like MNIST and more complex ones like EuroSAT,
demonstrating its adaptability and effectiveness in handling a wide range of scenarios.

These strengths establish ProbSurgery as a superior method for generating interpretable, task-preserving, and reliable
representations.
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Figure 9. Comparisons of varying generated representations, where the baseline is Task Arithmetic and the backbone is ViT-B/32.
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